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Reconstruction of Permittivity Profiles in Cylindrical
Objects llluminated by Higher Ordé&rE,,,,, and
TM,,,, Modes

M. J. Akhtar Student Member, IEEEBNd Abbas S. OmaBenior Member, IEEE

Abstract—An improved and accurate technique for the recon- the so-called “Born approximation” is used [7]. However, only
struction of radially dependent permittivity profiles in cylindrical objects with very low permittivity can be reconstructed using
objects illuminated by higher order TE,,,, and TM,,,, cylin- this approximation.

drical modes is presented in this paper. The technique is based on a An alt fi h f tructing th ittivit
general kind of integral transform of the measured frequency-de- n ajternative approach for reconstructing the permitivity

pendent reflection data and the recently suggested renormalization Profiles in planar structures is the Riccati differential-equation
technique to obtain a unique solution of the corresponding inverse technique [8], which has been improved and combined with
problem. Nonlinear Riccati-similar differential equations for  “renormalization techniques” in recent years to cover objects
a properly defined reflection coefficient for both TE,,, and with higher profile’s contrasts [9], [10]. The main advantage

TM.,,.., cylindrical modes have first been derived in a unified way f thi thod is it i it hich leads t .
for this purpose. These equations have then been inverted using0 IS method IS IIS quasi-inearity, which feads 1o a unique

our proposed renormalization technique to uniquely obtain the Solution. We recently applied this approach to reconstruct the
unknown permittivity profile in terms of a Hankel transform of  radially dependent permittivity profiles in cylindrical objects
measured reflection coefficient data. About 150-200 measurementwith TM, illumination, which represents an axially and az-

data points over a wide frequency band (wavelength ranging from ; ; . i _
one-fifth of the inner diameter of the cylindrical object to infinity) imuthally independent incident wave [11]. As exciting and re

have been used for the reconstruction. A dummy time variable has ceiving cylindrical moqes W'th high modal pur!ty (€.8Moo)

been introduced to improve the overall reconstruction process. are generally not feasible in most of the practical cases, recon-
This variable has then been transformed into the spatial one struction of the permittivity profile making use of a mixed-mode
with the help of a proposed numerical algorithm. A number of jllumination is recommended.

reconstruction examples has been considered and a very good  1hig naper consists of two parts. The first part deals with the
agreement has been found between the original and reconstructed formulation of the direct problem. Nonlinear Riccati-similar dif-
profiles even for very high values of permittivity. P ’

. . o ferential equations for an appropriately defined reflection coef-
Index Terms—Biomedical electromagnetic imaging, electro-

. g J OIS ficient for the higher ordet’'E,,,,, andTM,,,,, cylindrical modes
magnetic scattering inverse problems, microwave imaging, remote h b derived i . for thi Th
sensing, tomography. ave been derived in a unique way for this purpose. These non-

linear equations have next been solved using MATLAB to gen-
erate synthetic reflection coefficient data for a known permit-
. INTRODUCTION tivity profile. The overall formulation is quite general and can

ECONSTRUCTION of permittivity profiles in a cylin- be L_Jsec_i for all types of cylindrical structures having outside il-

drical coordinate system plays a very significant role ilimination.
a number of research areas because of its wide variety of pracl the second part of this paper, the derived nonlinear Ric-
tical applications. Some of the applications include, e.g., enf@ti-similar equations have been inverted using our proposed
ronmental studies of water content, aging and possible disea§¥rmalization technique and a general kind of integral trans-
of trees in forests (e.g., [1], [2]), earth structure as seen froffM of the measured scattering data, which leads to a unique
an exploration well in oil fields [3], and imaging of human orJeconstruction of the permittivity profile. It may be noted here
gans in biomedical microwave tomography [4], [5]. Generallyhat because of the azimuthal dependence of the propagation
most of the methods reported in the literature for the profile réonstants of these higher order modes, the solution of the in-
construction employ a source reconstruction philosophy in ¢€rse problem becomes a tedious process. The main problem
ther spectral or spatial domain, leading to a nonunique and (4§ in the separation of the frequency and space dependences
certain solution of the corresponding nonlinear inverse problé?ﬁthe radial propagation constant. We have introduced here the

(e.g., [5], [6]). A unique solution may be obtained only whefoncept of effective relative permittivity to tackle this problem.
Various parameters are adjusted to optimize the value of this ef-
fective relative permittivity. A dummy time variable has been
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Z z
quo
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Hf =- sin(k.z) cos(ng)H® (k,p) (6)
\U/ Jw o

where the =" and “+” signs represent inward and outward
propagating waves, respectlvefjn (k,p) is the Hankel func-

l——> tion of pth type andnth order,H,(f) (k,p) is the first derivative

of the corresponding Hankel function,
m7r 2
-V = B~ (5 @

is the radial propagation constant, dnd= (mw /b) is the prop-
agation constant in the axial direction.
We are looking for a taper solution of the form

sin(k.z) cos(ng) HY (k,p)

£(p)

(<

H.=H_ +T'Hf=H, -T(H,)" (8)

Fig. 1. Radially varying permittivity profile. I A e
Ey=E; +TE} = E; +T(E;) 9)

Il. FORMULATION OF THE DIRECT PROBLEM

Let us consider a cylindrical dielectric object of the outer reﬂh 3reen1:)tlssat?1eagg:r?glrelitign?ueggzd reflection coefficient and

dius a, the inner radiugy, and a radially varying permittivity ;
profile e,.(p), as shown in Fig. 1. The object is located between We now define
two conducting plates at = 0 and> = b and illuminated by a

N i 1)’
higher order cylindrical mode of eith&tE,,,,, or TM,,,,, polar- 7 — By _ _JkoZo Hn~ (kpp) (10)
ized wave of wavenumbeég from the outer free space ¢ a). CHT ko H,(Ll)(k,,p)
The radial propagation constant is azimuthally and axially dgng
pendent for these higher order modes as compared to that of the . 2 2 1
TMog case [11]. The reflection coefficient is measured at the o = Z_ = _H"—l(k p) = Hii (kpp) Hii (k,p) (11)

outer radius of the cylindrical body to comply with most prac- 2 H,(Ql( kop) — H,(Llﬁl( oP) Hr(f)(k,;p

tical cases and, thus, the inward and outward traveling waves

are treated as being incident and reflected ones, respectivelywhereZ; is the free-space intrinsic impedance.
Equations (8)—(11) can be combined together to obtain

A. Riccati-Similar Differential Equations for th€E,,,,,

Cylindrical Wave H. =H-(1+4T) Es;=-ZH (1—al) (12)

First, we will consider thelr'E,,,,, illumination for the anal-
ysis. The field components @iE,,,,, cylindrical mode are given where

by [12] (Y
B, = sin(hes) s B (k) P=-Tg 3)
E;r I sin(k. z) sin(m/))H,(,?)(k,,p) (1) Next, we rewri_te Maxwell's equations for'HE,,,,, mode to
P obtain the following forms:
By =k sin(k.z) cos(ng)H' (k) T
= IR
E} =k, sin(k.z) cos(ng)H?' (k,p) ) " one Eqy
EZ=0 Ef=0 3) ] ) n?
L , O (0By) = jenop <2—,€2 - 1) H. (4
H = ﬁ cos(k.z) cos(ng)HY (k,p) P P
. From (12)—(14), we arrive at
HY =2 cosk ) cosud)H () @)
a I g B
_ _ —nk: —[1+D)H | =L Z(1 — al')H; 15
H, = Forion cos(k.z) sin(ng)HL (k,p) ap[( +DH] ko (1-al)H, (15)
—nk, d. = _ . 2
Hf = jwzop cos(k.z) sin(ng)HD (k,p) (5) a_p[pZ (1—ol)H| =jkop <1 - k2> (1+D)H (16)
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where
52 _ ik B ()
Zo ko BHO(k,p)
ko [HE (Bpp)  HY (kop)
2k Hrgl)(kpp) Hr(Ll)( kop)

is a normalized local impedance. Next, (15) and (16) are solved
simultaneously to eliminaté/>- and to arrive at the nonlinear
differential equation fof, shown in (18), at the bottom of this

page.
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H = - % cos(k.z) sin(ng) H® (k,p)
Hf = - % cos(b.z)sin(ng)HP (kop)  (23)
Hy = —k, cos(k.2) Cos(nd))H,(Ll)/(kpp)

4 H(;" = —k, cos(k.z) Cos(nd))H,(Ll)/(kpp) (24)
H: =0 Hf =0 (25)

wheree = ege,.(p) is the permittivity in the dielectric medium
nd the other symbols have the same meaning as iikhg,

Equation (18) can be simplified using (11) and (17) to ha

the form of (19), shown at the bottom of this page, which is a
nonlinear Riccati-similar differential equation for the radially
(and frequency) dependent reflection coeffici€iko, p) due

to a higher ordefl'E,,,,, illumination.

B. Riccati-Similar Differential Equation for th&M,,,,,

Cylindrical Wave

The analysis for thd'M,,,,, illumination is done in a similar
way as for theT'E,,,, illumination. The electromagnetic-field

components for this mode are given by [12]

Here we are looking for a taper solution of the form

E.=E; +TEf =E- —T(E])* (26)
Hy=H; +TH} = H; +T(H)". (27)
Next, we define
H , v’
Y — ¢ _ _JkOYEJ& (p) Hy (k/?p) (28)

E. ko H (k,p)
whereY is the free-space intrinsic admittance.

The following points may be noted here: 1) the field com-

_ kik, . ! t idered in th&M,,,,, case are. andH [see (26)
B = =R k2 HWY (1 ponents consi mn . o
L Jwe sin(k.z) cos(ng) .~ (kop) and (27)], which is complementary to th#,,,,, case, wheré{,
4+ kuk, (2! andE, (12) are considered and 2) the admittaiicés consid-
ES = jwe £ sin(k.z) cos(ng) Hy” (k,p) (20)  ered for analysis in th&M,,,,, case, whereas in thEE,,,,, case,
k. the impedanc¢ is considered. The reason is that the field com-
E, =- = sin(k,z) sin(ng) H (k,p) ponents involving the derivative of Hankel functions are always
Jwep taken in the numerator in order to simplify the overall analysis.
Ei — ?“W sin(k. z) sin(ng) Hr(LQ)(kP p) (21) Next, (26)—(28) can be combined to obtain
jwe
JkQ P . E.=E (1+41) Hy=YE (1-al)  (29)
-_"r
L = Joe cos(k.z) cos(nd)H W (k,p) where
k2 - (ED)* Y* H,
Ef = H®? 22 -\ - _ e
= e cos(k.z) cos(ng)H, ™ (k,p) (22) r r B a=+ Y B (30)
4 2 2 \
2| __n 9 o IRy a2
r lﬂmp <1 p%%) + ap(pocZ) pa’Z
o, 1 4T | 24k <1 ”2)+a(( 1)7)+2‘j% Z 0 (18)
-_— D —— 7 — 575 = o — - P& =
ap " (1+ a)pZ TP k2 ) T Fo
n? o, = Jk _»
+ |jkop (1 - == ) — —(pZ) — £ pZ
lt op< ka;%) ap(p ) P ‘
1 2
o 4j jnp [ (HO R0 HD (rpp) + HD, (ko) B (K ,,p
Op = | moH () HD (hyp) 3 | = (B (ko) HA, (ko) + Hﬁl(kpp)H( (ko)) 8
{"Z” HP (k,p) {Hé V) (k) — 7 HD } —al?] (19)
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Now, for aTM,,,, mode, Maxwell's equations are rewritten Equation (34) can then be simplified using (29), (30), and (33)

as
iKY
k057 ( )

9 11 +m)ED] =

1—alM)EZ
o (1= al)E:

(31)

a% [pY(1 - aF)E;} — jkoer(p)p <1 - Z;) (1+D)ET

(32)
where
- Y
Y =—
Yo
1 (5%
_ _ Jkoer(p) Hy (Kyp)
koo H® (k,p)
_ Jkoer(p) Hflljl(kﬂp) _ Hrgl(/ﬂpp) (33)
2k | HY (kpp)  H (kpp)

is a normalized local admittance.

to arrive at (35), shown at the bottom of this page, which is a
nonlinear Riccati-similar differential equation for the radially
(and frequency) dependent reflection coeffici€tg, p) due

to a higher ordef’M,,,,, illumination.

Il. | NVERSE SOLUTION
A. TE,,, Cylindrical Wave

Generally, in most of the practical casasas defined in (11),
can be replaced by its asymptotic value fgp — oo. Hence,

(19) can be rewritten as (36), shown at the bottom of this page.

Following the renormalization technique proposed in [10], a
linearized version of (36) describing a virtual reflection coeffi-
cientf(p) can be defined as (37), shown at the bottom of the
next page.

It is worth noting that the second term involvidgon the
left-hand side of (37) approaches zero if the Hankel functions
are replaced by their asymptotic expressions. Hence, this term
can be neglected provided that the spatial derivative of the per-

Equations (31) and (32) are now solved simultaneously maittivity is not too high. The optimum nonlinear transformation
eliminate£ and to arrive at the nonlinear differential equatiomelating the measurable reflection coefficiéip) to the virtual

for I', shown in (34) at the bottom of this page.

onel'(p) is found on similar bases, as in [10] and [11]. Equation

¢ . 712 3 o JkQ 2 3
P r
ar 1 n? 15] jk2 —9
— ' |25kope, 1——— — HY)+2 L Y =0 34
. n? 9, — k2
* |Jhorerle) <1 - p2k2> "5 he Y
\ P T J
4
or wpH (k) HY (k)
o jrpkz [ (HO G HD (ko) + B (o) HD (ko)) | 5 <5T(p)>
Ber(e) | — (HD (o) B, (ko) + HZ, (8, p)Hé”wpm) I\ Ky
I LT o g ] 2 ()
4j _dne
oy T1or2 | [ (EO G EE ) + B (k0 B (R0) | o,
— (B Grpp) HE (ko) + B (k) HS (ko)) | 9P
D FLIEO! (1) _ "o Ok,
{258 100 B2 000~ 5 8O0 | G2 ] 0
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(37) canthen be integrated resulting in (38), shown at the bottomFrom (39)—(41), we get
of this page, wheré,, as defined by (7), can be rewritten as

to

Fp = kov/en(p) — 62 = kov/E:(p) (39) ko, t) = / { — d‘?&( r)
where§ = (m/2bko), £.(p) = £,.(p) — &% (effective relative o (B VER) W
permittivity), ko = (kopo/27) = (po/ro) (normalized free- W)y (D g
space wavenumber), ahd= (b/po) (normalized length in axial iy [HH" (kot') — kot Hy, 2, (Kot )}
direction). ‘ H®P (koto)

The above defined parametedepends on the wavenumber

ko. For a systematic solution of the inverse problem, the pa- D1 17 () ,
rameters should be frequency independent, which is not gener- - H (kot ) H,7 (Kota) o di (42)
ally true and necessitates introducing some simplifying assump-
tions. One possibility is to substitute the average valug aiver
which the scattering data is measured iAtdt has been ob-

where use is made of the identity

served, however, that the overall reconstruction process is mu]ﬂﬂ’ l 4j B

sensitive to the lower value &p. As a matter of fact, the recon- )

struction is quite good, if the value &f in & is taken as three to * ** ! Hyy* (kot") Hi™ (Kot ”)

four times of the lowest value of the wavenumber at which the _1 H (kot Y HS (kot,) (43)
measurement is carried out. By considerlig,, po) = 0 as B HP kot YHY (kota)

a boundary condition, we simplify (38) into (40), shown at the
bottom of this page. with
Now, let us introduce a virtual time variabl@ccording to

P dé (p) ta = a\/é,,(a) to = Po 57,(p0). (44)
t= V ) ; = dt = V ) 1+ —= u d .
pVete) = 26.(p) dp } ~We now introduce the truncated Hankel transform of
~ /2. (p)dp. (41) R(ko) = T'(ko, t,) according to
The above approximation is valid providéé.(p)/dp is not . ko
too large PP P ()fdp 7(t) I/ R(ko)Jo(kot)ko dko (45)
' 0

o . 4j jmp
prr(Ll)(kpp)H,(f)(kpp) 8

(H8" k) HD (ko) + HD (o) HE (R0} | i,
— (H(k, >H,§1+>l<kpp>+H£21<kpp>Hél><kpp>) o

- {‘% H® (k,p) [H( ) (hop) —

ok
W (g bz}

4

~ ~ a 41
L(ko, a) = I'(kg, po) exp —/ - dp”
o ) =1 o o) { . Lpf'Hé”<k,7~p~>H£2><k,wp~>

jmp’ (2) ; n (1) / ey, / ak/’
ALy *5S — H, p') — Hy 21 (ky
. 1 (/fp ) |:/€pfp/ (k/? P ) n 1(kl7 p ) ap/ )
. ) y df (39)
@ wexp / X dp//
[ a 7I'pNH7(1,1)( ”P”)H( )( prp")
ik d(0) L { g HO }
Hn kp' F— Hn kyp k
. | 8y/e (o) ) [ o ) = Hoa )
F(k07 CL) = ’ dp/ (40)

@ -exp //7 4j dp//
o wp" HS (ki oY HP (K ")
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wherek, is the highest wavenumber at which the reflection co- Equation (51) is simplified making use of (41) and (43) to
efficient is measured. obtain the following:
Inserting (42) into (45) results in

K [(ko, ta) = /to 7 [26.(p') — ()] dE.(p)
(t) = / G(&(t)K (¢t ') dt! (46) ’ v | 8er () )Wad) W
| , [kot/Hr(Ql(kot/) - nH,(Ll)(kOt/)}
where g Hrgl)(kota)
T da(p)

G(e.(t)) (47)

8 () V) A -H£,1><kot’>H£?><kota>} dt'.  (52)
' corresponds tg’ according to (41), and

Next, the truncated Hankel transform is introduced as in the
K(t,t) TE case and the different terms in (46) are obtained as follows:

ko
/0

[ kot ) ot HED (ot JHS kot VS Rota) iz, (1))

g HY (koto) _ TR2e() )] df-?r(/p’) (53)
8er(p')er(p') \% &(p') dp
K(t, t)
To(kot) | ko dk 48 )
0(0)]° ’ (49) ] [t B ot )= S )| HE o) L2
of kot HIZ (o) = nH ot) [H ot HI Kot a)
. . . . o . o [ HP (koto)
is a variable-resolution selective function with a maximum at
' = #(t). It can be used to sampt&(é,.(t')) att’ = ¢ according
to Jo(/%ot) ko dko. (54)
e —) w) o
0 N e Finally, the unknown permittivity profiles,.(¢') is recon-
. K [e(0), ¢/] dt structed as
with ¢(£) as the inverse function dft) (@] . 8 [ s 2
: A ] g (t)=———"exp|— | G -(z))dx| -6 (55)
Finally, the unknown permittivity profile,.(t) can be readily [er(a) — 67 7 J,

reconstructed as _ _
where all the symbols have the same meaning as iTihg,,

g It case.
g.(t) = 8 + [e,(a) — 6%] *exp [—/ G(&,.(x)) da:} (50)
T Jta C. Numerical Inversion Algorithm

The permittivity profile as being reconstructed according to
(50) uses the virtual time variabte To reconstruct the actual
radially varying permittivity profile, we need to converinto
L the space variable. Thus, our concern is to find accurately
B. TM,., Cylindrical Wave the value ofy’, which corresponds to the particular value:of

For the inverse solution and reconstruction of the permielow we present a simple numerical algorithm based on (41)
tivity profile using TM,,,,, illumination, we start with (35) and and (50) for this purpose.
follow exactly the same procedure and apply the similar kind of Let

wheree,.(a) is the permittivity at the outer air—dielectric inter-
face andr is a dummy integration variable.

boundary condjtion as for th€E,,,,, case. The virtual reflec- g v
tion coefhme_ntl“(p) for this case is given by (51), shown at the gt) =2 / G(é(2)) da
bottom of this page. T Jy

Jmp'ko 26.(p") — e.(p") d(p')
A w| = e W
F(ko,a):/ en(p’) )

14
-H,(,,Q)(kp’) - exp l/

n
|:H7(11—)1(k/7’p/) y? ,Hr(Ll)(kp’pl):|
o' P

/
45 dp (51)

dp'"
7rpHH'r(1,1) (kp”p//)H'r(l,Q) (k,wp”)
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then (50) becomes 60 ' —
actual
50 - reconstructed -
er(t') = 6% + [er(a) — %] “exp [9(t)]. >
240 |
Sta/rtmg withg(¢}) = g_(ta) =0, vye follow the development ‘é §
of g(¢') in a very small time steph¢ 830 T
1) Att = t) = t, = ay/e,(a) = p}\/&, () g |
gzo
= pr=a &ty =e(a). T
10 *
2) Ingeneral, at’ = ¢, =¢t,_, — At o L . . B
AAY 1 1.2 1.4 1.6 1.8 2
o(th) = = [Glen(ti_y) + Glen(t))] Radial Distance
w
57,(t’i) =862+ [57,(a) — 62] " exp [g(t;)] Fig. 2. Actual and reconstructed profiles for the linear case (TE mode).
with ' ' ' '
100 | J——
er(tioy) + Ven(t) o
Y Y AP Y ) =2 actual
A =ty =8 = (piy = #l) 2 Z 80 reconstructed -~
€
. 20 S 807
= P =Pic1 — - - o
\/57*(t7‘,—1)+ er(t) '% 40 +
2
wheret corresponds t@} according to (41). 20 +
As e,.(t}) is already determined at sampled intervidlsi =
2, 3, ..., N and the intervalAt’ is chosen to be very small, 0 - . - )
the exact value of/, corresponding to the particular value of 1 12 1.4 16 18 2
t can be very accurately determined in subsequent steps using Radial Distance

the above algonthm. . . . . . Fig. 3. Actual and reconstructed profiles for quite high value of permittivity
The above algorithm is basically valid fofl&E,.,,, illumina-  (TE mode).

tion. The algorithm for th&'M,,,,, case can, however, be devel-
oped using (41) and (55) exactly on similar lines as describ

above gpgument asymptotic expressions and to compute (48) and (49)

analytically near the zero argument region. The selection of the
lowest value of this free-space wavenumber, however, depends
on two factors. If we take this value to be very low, then the
Figs. 2 and 3 show the actual and reconstructed lineapgrameters may be quite high and comparable with(p),
varying permittivity profiles for a'E ¢ illumination for a quite which may give some error in the calculation of the effective
high relative permittivity. As can be seen from (50) and (55)elative permittivityz,.(p) in (39). On the other hand, if we take
the reconstruction of the radially varying permittivity profilethis value to be quite high, then the reconstruction may not be
using a higher order TE illumination is simpler, as comparegtcurate, as our inverse algorithm is quite sensitive to the lower
to that corresponding to a higher order TM illumination. It izalues ofky. Thus, a tradeoff has to be done to optimize this
also obvious from (39) that for the cylindrical objects havingpwer value ofk.
finite axial length, the radial propagation constant depends onin Fig. 4, aI'M;, illumination is considered for a case with a
the axial direction if it is not possible to excite the lowest ordarmity relative permittivity at the outer radius (i.e., same as that
radial mode TMyo). It is, therefore, always recommendedf free space). The object can be assumed infinitely long in the
to use a TE illumination when the cylindrical object has axial direction. It may be noted here that, for the cylindrical ob-
finite length in the axial direction and the radial propagatiojects, which can be taken as infinitely long in the axial direction
constant can no longer be taken to be independent of #ied where the radial propagation constapican be approxi-
axial length. Another parameter, which is very critical for thenated by the total propagation constantI’My, illumination
reconstruction of the finite-length cylindrical object, is thés advantageous. This is because 1€,y mode is basically
lowest value of the normalized free-space wavenumber ovbe transmission line one and, hence, the overall analysis can be
which the measurement is carried out. Ideally, this value showceatly simplified. Fig. 5 shows the reconstruction of one more
vanish [see (45)]. However, since the Hankel functions alieearly varying profile using &8'My; illumination. As can be
singular when their arguments approach zero, we thus skip teasily seen from all of the above linear profiles, there is an ex-
point and start from any finite value close to zero. Anotherellent agreement between the exact and reconstructed profiles
possibility is to replace the Hankel functions by their smafbr all the cases even when the relative permittivity is quite high.

IV. RECONSTRUCTEDEXAMPLES
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Fig. 4. Actual and reconstructed profiles with continuity at the air—dielectrigig. 7. Actual and reconstructed profiles for the nonlinear case (TM mode).
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Fig. 5. Actual and reconstructed profiles for the linear case (TM mode).
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Fig. 6. Actual and reconstructed profiles for the nonlinear case (TM mode)

Fig. 6 shows the nonlinear profile considerin@ a1y, illu-
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Fig. 8. Actual and reconstructed profiles with 5% random noise.

where, again, 8M,; illumination was used. This may be ex-
plained from (41) as in this case, the relative permittivity is high
as compared to its spatial derivative and, hence, the second term
on the right-hand side of this equation can be easily neglected.
In all the above examples, error- and noise-free scattering data
have been synthetically produced by solving the nonlinear Ric-
cati-similar differential equations for known permittivity pro-
files using MATLAB.

In Fig. 8, the scattering data contains some random noise to
comply with the actual measuring conditions. This is done by
adding some random error to the calculated reflection coeffi-
cient datal (ko) + 0.05 x« (RAND — 0.5), whereI'(ky) is the
calculated reflected coefficient a®iAND is a uniformly dis-
tributed random number satisfyifig< RAND < 1. As readily
observed from this example, even with 5% random noise in the
scattering data, there is a very good match between the actual
and reconstructed profiles. It is worth noting here that the in-
verse problems are generally very ill poised and, thus, they are
quite sensitive to the measuring data. Sometimes even a small

mination. As evident from this plot, the agreement between tbhange in the measuring data may result in very large devia-
original and reconstructed profiles is not as good as it was figon in the reconstructed parameter if any numerical methods
the linear case. This is because of the fact that the spatial derigee used. Thus, the ruggedness of our inverse algorithm to the
tive of the relative permittivity is reasonably high in this casénput measuring data is also one of the main advantages of the
However, the agreement between the actual and reconstructexthod proposed here.

profiles is better even for the nonlinear case provided thatthe reldn all the above examples, around 100 to 150 data points
ative permittivity is also quite high. This is obvious from Fig. 7covering the spectral wavelength range from infinity down to
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one-fifth of the inner diameter of the cylindrical object have [9] T. J. Cui and C. H. Liang, “Nonlinear differential equation for the

been used for the reconstruction of the profile using our pro- reflection coefficient of an inhomogeneous lossy medium and its
d hni Th dial di in the ab | has b inverse scattering solutiondEEE Trans. Antennas Propagatol. 42,
posed technique. The radial distance In the above plots has been pp. 621-626, May 1994.

normalized with respect to the inner radius of the cylindrical ob{10] M. J. Akhtar and A. S. Omar, “Reconstructing permittivity profiles
jectunder consideration. A number of other permittivity profiles ~ using an improved renormalization technique,”IEEE MTT-S Int.

. . . . Microwave Symp. DigAnaheim, CA, June 1999, pp. 1815-1818.
have also been considered for the validation of our aIgontthll] A. S. Omar and M. J. Akhtar. “A Hankel-transform reconstruction

and a similar reconstruction accuracy behavior was observed In  technique for radially dependent permittivity profiles in cylindrical
most of the cases. objects,” inProc. European Microwave ConfMunich, Germany, Oct.
1999, paper WED4—4.
[12] R.F. HarringtonTime-Harmonic Electromagnetic FieldsNew York:
V. CONCLUSION McGraw-Hill, 1961.

A novel technique for the reconstruction of permittivity pro-
files in cylindrical geometries making use of a higher order
mode illumination has been presented in this paper. Two non-
linear Riccati-similar differential equations for thiek,,,,, and . J. Akhtar (S'98) was born in Gaya, India, in March, 1971. He received the
TM, ., Cylindrical modes have first been derived for this purB.Sc. Engg. degree in electronics engineering from the Aligarh Muslim Univer-

pose. These equations have then been inverted using our @Fég.-A“ge."h' Inpha, in 1990, t_he M.E..degreem ele_ctron_lcs and communication
ngineering with specialization in microwave engineering from the Birla Insti-

posed technique. The method proposed here gives a uniqueusi®of Technology, Ranchi, India, in 1993, and is currently working toward the
lution and can be used to reconstruct profiles with higher coRh.D. degree in electrical engineering at the University of Magdeburg, Madge-

; ; : g, Germany. His doctoral research concerns the solution of electromagnetic
trasts as well. Several linear as well as nonlinear pI’OfI|eS h nverse scattering problems and its application to the field of remote sensing and

been considered for the validation of our technique and, in eagldrowave imaging.
case, a very good agreement was found between original aniefom 1993 to 1994, he was a Research Associate at the Central Electronics

reconstructed values. Finallv. the effect of noise has been 2 ineering Research Institute, Pilani, India, and since 1994, has been a Sci-
’ Y entist. His research interests include the design and development of microwave

considered and it was observed that the technique presented R@ES, the optical control of microwave devices, and numerical techniques ap-
is not very sensitive to the noise. This is especially advantage®iigd to the electromagnetic field problems.

: : : P r. Akhtar is a member of the Institution of Electronics and Telecommuni-
in the real-time measuring condition, where a few percent errc%llt\i/lon Engineers (IETE), India, the Indian Physics Association (IPA), and the

in the measurement data is unavoidable. Indo—French Technical Association (IFTA).
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