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Single-Passband Single-Stopband
Narrow-Band Filters

H. Clark Bell, Fellow, IEEE

Abstract—Techniques are presented for obtaining an optimum $21(dBvs y=Inz)
filter response for narrow-band requirements of a single pass- 0 ——
band and a single stopband. For certain transformed equiripple T~ ":
passband responses, including Chebyshev and elliptic function -101~ AN '
responses and a new “doublen/2 poles” response, the min- -20f- |
imum number of resonators can be easily determined, resulting 30 !
in reduced size and weight relative to more conventional fre- a0k _
guency-symmetric bandpass or bandstop filters. 0
750— -
Index Terms—Bandpass filters, Chebyshev filters, circuit syn- sk ]
thesis, elliptic filters, passive filters, resonator filters. v
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|. INTRODUCTION —90 ) —
NARROW bandpass filter specification occasionally ap- -100 ~|0 3 0 O' 5

pears that requires only a single, relatively narrow stop- _
band. The most efficient filter response (lowest value: pthe — :g} translated
number of resonators) for this requirement will be an asym- -~ Specification
metric response with all reflection zeros in the specified pass-
band and alk loss poles in the specified stopband. Conventiongig. 1. Translation of. = 3 elliptic function response in = In z.
filters such as a bandpass filter with lower and upper stopbands,
ora bandstopfiltervyi'gh lower and upper passbands, will neceg;q passband maps ontd < 0, and the stopband maps into
sarily have aless efficient response (more resonators) in ordeftg

. . ; H'2 22 < 0. A further transformation of = In z maps the
meet this requirement. Rhodes [1] presented techniques to QRT band into-oo < ~ < 0.

tain single-stopband responses and low-pass or high-pass YP§J the normalized low-pass frequency domain, with passband
of passbands, based on Chebyshev and elliptic-function ProfSiners aty — +1, transformation (1) and its inverse are
types.

In this paper, stopbands of frequency-symmetric narrow w1
bandpass filters will be transfomed to contiguous bands below =\ oD Re(z) > 0 (2a)
or above the passband using the narrow-bandpass transformed
frequency variable. Transformations will be demonstrated for
the Chebyshev response, the elliptic function response (the

optimum response when an equiripple passband and a constarhe low-pass prototype circuit response functions [2] are ra-
level of minimum stopband loss are specified), and a responrgsal functions inw and =2, and therefore a bilinear transfor-

_1—i—z2
Tl 22

(2b)

of intermediate selectivity referred to as “doublf2 poles.”  mation inw or 22 will scale the frequencies but otherwise pre-
serve the filter response. Furthermore, the transformation in
Il. DEFINITIONS that maintains the passband edges£ ~c andz = 0) is the

simple linear transformation — az wherea is a positive, real

constant. This transformation preserves the passband cginers
For a narrow bandpass filter with an equiripple passband frqiﬂde and may be used to map the stopband into a contiguous

f1 to fo, it is convenient to perform synthesis (approximatiogegmem entirely below or above the passband.

of a specification and prototype realization) in the transformed |, the transformed variabte = In z, the stopband transfor-

frequency variable defined by [2] mation is a simple translation wheye— ~+1In a. Fig. 1 shows

the translation of the stopband loss poles of a degree three el-

A. Transformed Variable

y— I =/ Re(z) > 0 1) liptic function filter from a set which is symmetric about= 0
R O (2 =1 orw — o, i.e., a symmetric frequency response), to a
stopband for whichy > 0, clearly retaining the equal-minima
, _ , characteristics. The result is a stopband that has been shifted en-
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B. Degree Equations [ll. STOPBAND TRANSFORMATIONS

Chebyshev and elliptic function filters are specific types o&. Minimum Degree
general Chebyshev rational function filters, all of which exhibit For a specified passband from to p» and a specified
equal ripple passband responses, regardless of the diStribungbband froms;

of their loss poles. Another type, the “doublg2 poles™ filter, o4 ired for a transformed response can be calculated from

will also be described. _ (3)-(5). Using the specified passband corner frequencies as the
The “degree equation” of a symmetric-response lOW'paéﬁuiripple passband edges (i.¢.

. . .. Ly — P1 andf2 = pg), first
f||t_er relates the degree and th_e filter select|V|ty_ t_o the map the stopband corness ands, into the z-plane stopband
minimum passband return loss rippleL and the minimum

o cornersz; andz; using (1).
stopband loss5L. The selectivity is represented by the stop- 14 scale factor that will remag andz

band corners ab = +w, inthe normalized Iow—pass frequencysymmemC response is
domain. As presented here, the degree equations are not exact,

to s», the minimum number of resonators

into a frequency-

but have negligible error for values é{L and SL which are o= 1
greater than 15 dB each. ey

1) Chebyshev Filter:For a low-pass Chebyshev filter, ail The cornerg; andz, map into corresponding stopband corners

loss poles are at infinite frequency?(= 1). From any of several o, in the normalized low-pass frequency domain, where
formulas for the stopband loss of a Chebyshev filter, the degree
equation is _ZAtxn

° 22— 721

n - 20 log (ws + \/ﬁ) > RL+SL+6.02 (3) This value ofw, is then used to calculate the minimum number
of resonators.

with RL and S L in decibels.
2) Doublen/2 Poles Filter: Thisfilteris of even degree with ) . i
two loss poles, each of ordey2, at4w, and a minimum stop- Having chosen any value afthat is greater than that given by

band lossS L at infinite frequency. The loss poles and stopbari@)—(5); @ response may be optimized by maximizing the pass-
corners are given by band width for a specified stopband. Because of the one-sided

stopband, the highest values of passband delay and incidental
dissipation resulting from finite resonat6} will occur at p;
wp :1 <\/g_n+ 1 ) for a lower stopband or at; for an upper stopband. To min-
2 Vn imize these distortions, the equiripple passband edge opposite
the stopband is fixed at the corresponding specified passband
w :1 [gn +1/09n " 1 corner, and the equiripple passband edge adjacent to the stop-
*T 2 2 \/m band is adjusted to meet the stopband specification with no fre-
5 quency margin. This is accomplished by reversing the transfor-
_ RL/10 SL/10 1/n mations used to determine the minimum
gn = [4(107H10 = 1)(107E0 — 1)/, Let z andz, = 1/2; now refer to thez-plane stopband cor-
Jers in the initial frequency-symmetric low-pass prototype re-
ponse, which are transformswf= +w;. Thesez-plane stop-
and corners will be scaled to correspond to the desired stop-

and corners; ands, using the linear (in:?) transformation

B. Maximum Bandwidth

The double:/2 poles filter may be useful for applications wher
the multiple-ordered loss poles will mitigate the reduction i
skirt selectivity due to dissipation in low-Q resonators. The d
gree equation is

2 2281—f2_2282—f2

z - 7= i

2si—f1 2 sa—fi

1+u ©)
n - 10 log <—> >RL+SL+6.02
l—u Fixing one of the equiripple passband edges as described above,

uw=(1—1/w?)/*, (4) the other edge may be found by solving (6), resulting in

3) Elliptic Function Filter: Darlington’s degree equation-0Wer Stopband

[3] for a low-pass elliptic function filter, in which the loss f=5 - 23(s2 — p2) — s2 - 23(s1 — p2)
poles are distributed to obtain an optimum equal-minima 23(s2 — p2) — 23(s1 — p2)
stopband response, is [4], [5] fo=po
Upper Stopband
1 _
n - 10 log {—} > RL+ SL+12.04, k=1/ws. (5) fi=m ) )
Q(k) fo _ 51 '22(82—]71)—82'2’1(81 —Pl)
- 2 _ _ 2 _
Accurate methods of calculating the elliptic modulugrom #(s2 = p1) — 2 (s1 = p1)

the nomey andq from & are given by Orchard [5] and are notFor prototype realization [2], the initial (frequency-symmetric)
repeated here. stopband loss poles will be similarly scaled using (6).
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Fig. 2. Canonical asymmetric coupled resonator prototype. 1904 1000 1006 1012 1018 1024 1030 1036 1042 1048 1054
- S11
- 821
S11, 521 (dB vs MHz) -~ Specification

Fig. 4. Transformed = 4 doublen /2 poles response.
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Fig. 3. Transformed: = 4 Chebyshev response. 994 1000 1006 1012 1018 1024 1030 1036 1042 1048 1054
- Si1
— S21
C. Examples =~ Specification

Consider a requirement to stop fram= 1000 to s, = 1020 Fig. 5.
MHz, with S L = 40 dB minimum loss, and to pass from =
1028 to po = 1048 MHz, with RL = 26 dB minimum return
loss. Thery; = 1.309307, 2o = 1.870829, andw, = 5.663429. realized by the prototype coupling matrix in the matrix as shown

A canonical asymmetric coupled-resonator prototype [6] 81 (9) at the top of the following page.
the form shown in Fig. 2, wherB; = J; ; are the on-diagonal
elements of the coupling matrix, will be realized for each of
the transformed frequency-asymmetric responses.

1) Chebyshev Filter:From (3),n > 3.427291 — 4. For For the special filtering requirements of a single passband and
n = 4, the calculated lower passband equiripple edgg is-= a single stopband, a technique has been demonstrated for deter-
1025.38 MHz. The resulting lossless filter response is shown imining the minimum number of resonators required and max-
Fig. 3, and the prototype coupling matrix is as shown in (7) &nizing the equiripple bandwidth to achieve a minimum dis-

Transformedk = 3 elliptic function response.

IV. CONCLUSIONS

the top of the following page. tortion. This technique was demonstrated specifically for three
2) Doublen/2 Poles Filter: From (4),n > 2.997846 — 4, types of Chebyshev rational function responses.
since the degree of this filter must be even. ko 4, f; = By applying this technique to the elliptic function filter, one

1023.21 MHz, and the resulting lossless filter response is shownay determine the absolute minimum number of resonators re-
in Fig. 4; the prototype coupling matrix is as shown in (8) at thguired to meet a single-passband single-stopband specification
top of the following page. requiring a constant minimum stopband loss.

3) Elliptic Function Filter: The nome is calculated to he= Because of the asymmetric frequency response, a resulting
0.001979605, and from (5);n = 2.886712 — 3. Forn = 3, coupled-resonator prototype network may be more difficult to
the calculated lower passbhand equiripple edgg is 1027.07 implement than a conventional frequency-symmetric bandpass
MHz, resulting in the lossless filter response shown in Fig. By bandstop prototype, even though it requires fewer resonators.
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0 1.347654 0 0 0 0.117872
1.347654 —0.625757  1.02198 0 0.900809 —0.563946
J= 0 1.02198 0.668265 0.072487 —0.580546 0 )
0 0 0.072487 1.048528 0.400851 0
0 0.900809 —0.580546 0.400851 0.204333 1.223983
0.117872 —0.563946 0 0 1.223983 0
r 0 1.425723 0 0 0 0.208023
1.425723 —0.618009 0.867467 0 0.881508 —0.783768
J = 0 0.867467 0.875759 0.023997 —0.431939 0 ®)
0 0 0.023997  1.054242 0.269665 0
0 0.881508 —0.431959  0.269665 0.542226 1.190963
L 0.208023 —0.783768 0 0 1.190963 0
r 0 1.484015 0 0 —0.224269
1.484015 —0.591074 0.767753 —0.921961 0.890584
J= 0 0.767753 1.138276 0.383806 0 9
0 —0.921961 0.383806 0.792291 1.187081
L —0.224269 0.890584 0 1.187081 0
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