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Single-Passband Single-Stopband
Narrow-Band Filters

H. Clark Bell, Fellow, IEEE

Abstract—Techniques are presented for obtaining an optimum
filter response for narrow-band requirements of a single pass-
band and a single stopband. For certain transformed equiripple
passband responses, including Chebyshev and elliptic function
responses and a new “double 2 poles” response, the min-
imum number of resonators can be easily determined, resulting
in reduced size and weight relative to more conventional fre-
quency-symmetric bandpass or bandstop filters.

Index Terms—Bandpass filters, Chebyshev filters, circuit syn-
thesis, elliptic filters, passive filters, resonator filters.

I. INTRODUCTION

A NARROW bandpass filter specification occasionally ap-
pears that requires only a single, relatively narrow stop-

band. The most efficient filter response (lowest value of, the
number of resonators) for this requirement will be an asym-
metric response with all reflection zeros in the specified pass-
band and all loss poles in the specified stopband. Conventional
filters such as a bandpass filter with lower and upper stopbands,
or a bandstop filter with lower and upper passbands, will neces-
sarily have a less efficient response (more resonators) in order to
meet this requirement. Rhodes [1] presented techniques to ob-
tain single-stopband responses and low-pass or high-pass types
of passbands, based on Chebyshev and elliptic-function proto-
types.

In this paper, stopbands of frequency-symmetric narrow
bandpass filters will be transfomed to contiguous bands below
or above the passband using the narrow-bandpass transformed
frequency variable. Transformations will be demonstrated for
the Chebyshev response, the elliptic function response (the
optimum response when an equiripple passband and a constant
level of minimum stopband loss are specified), and a response
of intermediate selectivity referred to as “double poles.”

II. DEFINITIONS

A. Transformed Variable

For a narrow bandpass filter with an equiripple passband from
to , it is convenient to perform synthesis (approximation

of a specification and prototype realization) in the transformed
frequency variable defined by [2]

(1)
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Fig. 1. Translation ofn = 3 elliptic function response in
 = ln z.

The passband maps onto , and the stopband maps into
. A further transformation of maps the

stopband into .
In the normalized low-pass frequency domain, with passband

corners at , transformation (1) and its inverse are

(2a)

(2b)

The low-pass prototype circuit response functions [2] are ra-
tional functions in and , and therefore a bilinear transfor-
mation in or will scale the frequencies but otherwise pre-
serve the filter response. Furthermore, the transformation in
that maintains the passband edges ( and ) is the
simple linear transformation where is a positive, real
constant. This transformation preserves the passband corners
and and may be used to map the stopband into a contiguous
segment entirely below or above the passband.

In the transformed variable , the stopband transfor-
mation is a simple translation where . Fig. 1 shows
the translation of the stopband loss poles of a degree three el-
liptic function filter from a set which is symmetric about
( or , i.e., a symmetric frequency response), to a
stopband for which , clearly retaining the equal-minima
characteristics. The result is a stopband that has been shifted en-
tirely to the lower side of the passband ( ), as
will be shown in Section III.
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B. Degree Equations

Chebyshev and elliptic function filters are specific types of
general Chebyshev rational function filters, all of which exhibit
equal ripple passband responses, regardless of the distribution
of their loss poles. Another type, the “double poles” filter,
will also be described.

The “degree equation” of a symmetric-response low-pass
filter relates the degree and the filter selectivity to the
minimum passband return loss ripple and the minimum
stopband loss . The selectivity is represented by the stop-
band corners at in the normalized low-pass frequency
domain. As presented here, the degree equations are not exact,
but have negligible error for values of and which are
greater than 15 dB each.

1) Chebyshev Filter:For a low-pass Chebyshev filter, all
loss poles are at infinite frequency ( ). From any of several
formulas for the stopband loss of a Chebyshev filter, the degree
equation is

(3)

with and in decibels.
2) Double Poles Filter: This filter is of even degree with

two loss poles, each of order , at and a minimum stop-
band loss at infinite frequency. The loss poles and stopband
corners are given by

The double poles filter may be useful for applications where
the multiple-ordered loss poles will mitigate the reduction in
skirt selectivity due to dissipation in low-Q resonators. The de-
gree equation is

(4)

3) Elliptic Function Filter: Darlington’s degree equation
[3] for a low-pass elliptic function filter, in which the loss
poles are distributed to obtain an optimum equal-minima
stopband response, is [4], [5]

(5)

Accurate methods of calculating the elliptic modulusfrom
the nome and from are given by Orchard [5] and are not
repeated here.

III. STOPBAND TRANSFORMATIONS

A. Minimum Degree

For a specified passband from to and a specified
stopband from to , the minimum number of resonators
required for a transformed response can be calculated from
(3)–(5). Using the specified passband corner frequencies as the
equiripple passband edges (i.e., and ), first
map the stopband corners and into the -plane stopband
corners and using (1).

The scale factor that will remap and into a frequency-
symmetric response is

The corners and map into corresponding stopband corners
in the normalized low-pass frequency domain, where

This value of is then used to calculate the minimum number
of resonators.

B. Maximum Bandwidth

Having chosen any value ofthat is greater than that given by
(3)–(5), a response may be optimized by maximizing the pass-
band width for a specified stopband. Because of the one-sided
stopband, the highest values of passband delay and incidental
dissipation resulting from finite resonator will occur at
for a lower stopband or at for an upper stopband. To min-
imize these distortions, the equiripple passband edge opposite
the stopband is fixed at the corresponding specified passband
corner, and the equiripple passband edge adjacent to the stop-
band is adjusted to meet the stopband specification with no fre-
quency margin. This is accomplished by reversing the transfor-
mations used to determine the minimum.

Let and now refer to the -plane stopband cor-
ners in the initial frequency-symmetric low-pass prototype re-
sponse, which are transforms of . These -plane stop-
band corners will be scaled to correspond to the desired stop-
band corners and using the linear (in ) transformation

(6)

Fixing one of the equiripple passband edges as described above,
the other edge may be found by solving (6), resulting in

Lower Stopband

Upper Stopband

For prototype realization [2], the initial (frequency-symmetric)
stopband loss poles will be similarly scaled using (6).
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Fig. 2. Canonical asymmetric coupled resonator prototype.

Fig. 3. Transformedn = 4 Chebyshev response.

C. Examples

Consider a requirement to stop from to
MHz, with dB minimum loss, and to pass from

to MHz, with dB minimum return
loss. Then , , and .

A canonical asymmetric coupled-resonator prototype [6] of
the form shown in Fig. 2, where are the on-diagonal
elements of the coupling matrix, will be realized for each of
the transformed frequency-asymmetric responses.

1) Chebyshev Filter:From (3), . For
, the calculated lower passband equiripple edge is

MHz. The resulting lossless filter response is shown in
Fig. 3, and the prototype coupling matrix is as shown in (7) at
the top of the following page.

2) Double Poles Filter: From (4), ,
since the degree of this filter must be even. For ,

MHz, and the resulting lossless filter response is shown
in Fig. 4; the prototype coupling matrix is as shown in (8) at the
top of the following page.

3) Elliptic Function Filter: The nome is calculated to be
, and from (5), . For ,

the calculated lower passband equiripple edge is
MHz, resulting in the lossless filter response shown in Fig. 5,

Fig. 4. Transformedn = 4 doublen=2 poles response.

Fig. 5. Transformedn = 3 elliptic function response.

realized by the prototype coupling matrix in the matrix as shown
in (9) at the top of the following page.

IV. CONCLUSIONS

For the special filtering requirements of a single passband and
a single stopband, a technique has been demonstrated for deter-
mining the minimum number of resonators required and max-
imizing the equiripple bandwidth to achieve a minimum dis-
tortion. This technique was demonstrated specifically for three
types of Chebyshev rational function responses.

By applying this technique to the elliptic function filter, one
may determine the absolute minimum number of resonators re-
quired to meet a single-passband single-stopband specification
requiring a constant minimum stopband loss.

Because of the asymmetric frequency response, a resulting
coupled-resonator prototype network may be more difficult to
implement than a conventional frequency-symmetric bandpass
or bandstop prototype, even though it requires fewer resonators.
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