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Planar Layered Media

Andreas C. Cangellaris, Fellow, IEEE,and Vladimir I. Okhmatovski, Member, IEEE

Abstract—A new method is proposed for the construction of
closed-form Green’s function in planar, stratified media between
two conducting planes. The new approach does not require the a
priori extraction of the guided-wave poles and the quasi-static part
from the Green function spectrum. The proposed methodology
can be easily applied to arbitrary planar media without any
restriction on the number of layers and their thickness. Based
on the discrete solution of one-dimensional ordinary differential
equations for the spectral-domain expressions of the appropriate
vector potential components, the proposed method leads to the
simultaneous extraction of all Green’s function values associated
with a given set of source and observation points. Krylov subspace
model order reduction is used to express the generated closed-form
Green’s function representation in terms of a finite sum involving
a small number of Hankel functions. The validity of the proposed
methodology and the accuracy of the generated closed-form
Green’s functions are demonstrated through a series of numerical
experiments involving both vertical and horizontal dipoles.

Index Terms—Green’s function, layered media.

I. INTRODUCTION

I NTEGRAL equation methods constitute one of the most
popular classes of methods used for the electromagnetic

analysis of integrated circuits and printed antennas [1], [2]. The
computational efficiency and the versatility of such methods
is strongly dependent on the ease with which the Green’s
functions associated with the background layered medium are
calculated. Consequently, a significant amount of research
work has been dedicated to the development of Green’s func-
tions in stratified media over the years [3]–[5]. In particular,
various techniques have been proposed to overcome the high
computational cost associated with the numerical evaluation
of the so-called Sommerfeld integrals in terms of which the
Green’s function appears [6]. Among these methods, the most
popular are interpolation and tabulation schemes [7]–[9]; fast
Hankel transform methods [10], [11]; the steepest descent path
approach [12]; and the discrete complex image method (DCIM)
[13]–[15]. Since the latter seems to have received significant
attention in recent years, we choose to highlight some of its
attributes and will use it as the reference solution approach for
our investigation.

The main advantage of DCIM is that it casts the Green’s func-
tion in a simple closed form. To achieve this, first the spec-
tral-domain form of the Green’s function is fitted by a finite sum
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of complex exponentials using either the generalized pencil of
function [16] or Prony’s method [17]. Subsequently, the Som-
merfeld identity [3] is applied to reduce the Sommerfeld inte-
grals to a set of complex images. The first stage of the DCIM,
associated with the fitting of the spectrum of the Green’s func-
tion by exponentials, turns out to be its most sensitive part. The
reason for this is that for such complex exponential fitting to
be effective, the function needs to be smooth and fast decaying
for large values of the spectral variable. This implies that all
poles associated with the propagating waves and the quasi-static
part must be extracted from the spectrum prior to fitting. Such
an extraction is relatively simple to perform when the stratified
medium is composed of one or two layers. However, it becomes
cumbersome for the case of multilayered media. In this case,
one must make use of some iterative schemes for locating the
poles in the complex plane and calculating the corresponding
residues [18]. There have been some attempts to avoid the ex-
traction of propagating waves. The approach proposed in [5]
proved to be very efficient and robust, but only for the case of
thin layers where the propagating wave contribution is insignif-
icant. Further investigations [19] showed that for thick layers, a
large error occurs in the far field if the propagating modes are
not extracted. The physical explanation is that use of complex
images is in fact an attempt to approximate the cylindrical na-
ture of propagating waves in terms of spherical ones. In [14],
this difficulty was overcome by implementing Hankel functions
in order to describe propagating modes and complex images for
the decaying part of the field.

In this paper, an alternative to DCIM is presented. The
new approach is based on the replacement of the analytic
forms of the spectral-domain Green’s function with discrete
ones, obtained from a finite-difference solution of the gov-
erning differential equations for the pertinent vector potential
components. This formulation is then combined with a com-
putationally efficient eigenvalue analysis of the resulting
finite-difference sparse matrix to represent the vector potential
components as a sum of pole-residue terms, reminiscent of
the extracted propagating wave contributions in DCIM. This
pole-residue form of the Green’s function spectrum allows
the analytic evaluation of the Sommerfeld integrals, thus
yielding a finite sum of Hankel functions as the spatial form
for the Green’s function. Further model order reduction [20]
truncates this sum to one involving a small number of terms
corresponding to the dominating eigenvalues. For the purposes
of this paper, the new methodology is presented for the shielded
stripline configuration of Fig. 1. The case of unshielded
stratified media will be discussed in a forthcoming paper.

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Geometry of a layered dielectric medium shielded by two conducting
planes.

II. THE CASE OFVERTICAL DIPOLE EXCITATION

The boundary value problem of interest is shown in Fig. 1,
where either a vertical electric dipole (VED) or a vertical mag-
netic dipole (VMD) is present at the source point. It is as-
sumed that the medium can be lossy, with permeability of free
space and complex permittivity varying in the vertical direction
only, . A -directed electric or magnetic dipole
excites only transverse magnetic to( ) or transverse elec-
tric to ( ) modes, respectively. In both cases, the-compo-
nent of either the electric or the magnetic vector potential
suffices to satisfy the boundary conditions. For the purposes of
this paper, the time dependence is assumed to beand is sup-
pressed for simplicity . The governing equation for
the -component of the vector potential is the scalar Helmholtz
equation

(1)

where . The electromagnetic fields are given by
[3]

(2)

(3)

Since the material properties are independent ofand ,
may be written in terms of their Fourier-Bessel transforms, uti-
lizing the following transform pair:

(4a)

(4b)

where is the spectral variable. Substitution of (4b) into (1) and
use of the result

(5)

reduces the Helmholtz equation (1) to an ordinary second-order
equation for the spectrum

(6)

From (2) and (3), the appropriate boundary conditions for the
spectra at an interface located atare

(7)

(8)

(9)

(10)

(11)

(12)

Next, a discrete approximation of (6) is developed using the
finite difference method. For this purpose, the interval
is divided into 1 elements so that a grid point with index 0 is
located at the bottom ground plane and a grid point with index

1 at the top plane. Use of a central difference approximation
of the second-order derivative yields the following discrete form
of (6) for the th grid point that does not coincide with a media
interface:

(13)

where is Kroneker’s delta, is the grid point, at which a
source is present, , is the relative permittivity
of the layer, in which the grid node resides, andis the grid
size in the finite-difference grid. Without loss of generality, a
uniform finite difference discretization is assumed for the sake
of simplicity of the mathematical formulation.

Boundary conditions (7) at the conducting planes forare
imposed by replacing the finite difference terms in (13) for the
edge elements and by

(14)

and

(15)

respectively.
The boundary conditions (8) and (9) at layer interfaces where

the permittivity is discontinuous require some care. The reason
for this is that the homogeneous equation

(16)

is not valid at the interface node since the first derivative of
is discontinuous and the second derivative produces unbalanced
-function in the left-hand side. To handle this discontinuity,

only the boundary condition (9) is enforced at the interface node.
More specifically, a discrete form of (9) is used to express the
value at the interface node in terms of the values of the two ad-
jacent nodes, and the interface node is thus excluded from the
discrete problem. To illustrate, let be the interface point
between layers with relative permittivities and above and
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below the interface, respectively. Using a finite difference ap-
proximation of the boundary condition (9)

(17)

the following expression for is obtained:

(18)

Use of (18) in (13) for the two nodes above and below the inter-
face point yields, respectively

(19)

and

(20)

Clearly, continuity of potential (8) is satisfied automatically
when (9) is written in discrete form (17).

Application of the boundary condition (10) is straightforward
by simply setting to zero the terms in the finite-difference ap-
proximation of the second derivative in (13) corresponding to
the end nodes. This yields the modified finite-difference equa-
tions for the second-order derivatives in the discrete equations
for nodes and , respectively

(21)

(22)

The continuity of at dielectric interfaces yields the fol-
lowing modified form of the discrete equation for a nodere-
siding at the interface

(23)

It is important to point out that in (23) boundary condition (12)
was also enforced since the continuity of the derivative of
is needed for (23) to be valid.

The resulting system of discrete equations for all nodes in the
finite-difference grid may be cast in the compact form

(24)

where the matrix is a tridiagonal matrix of dimension
equal to the number of discrete unknowns at the grid points,is
the identity matrix, and the vector contains the values of the
spectral-domain vector potentials at the finite-difference
nodes. For the case, is zero on the perfectly conducting
walls, and these values are not included in the vector. For the

case, is nonzero at , , and the vector of un-
knowns contains the values of the spectral-domain Green’s
function at these points.

As far as the right-hand side of (24) is concerned, its form
reflects the fact that it accounts for all planes in the domain
where (source) dipoles are placed. To elaborate, letbe the
number of planes in the domain where dipoles are present.
A typical method-of-moments approximation of the boundary
value problem requires the calculation of the spectral Green’s
function at planes due to each of the sources. In other
words, a matrix of spectral Green’s functions is re-
quired. The vector in (24) is of length , identifying the

source planes. The matrix is an matrix, with
only one nonzero element per column. More specifically, for
the th source plane, a nonzero element of value 1 exists at the
th column of the matrix and at the row corresponding to the

node number in the finite-difference grid assigned to the spe-
cific source plane vector is obtained formally from (24) as

(25)

Using the eigen-decomposition [22] of the matrix

(26)

where the columns of are the eigenvectors of and is a
diagonal matrix of the eigenvalues of, may be cast in the
following form:

(27)

Finally, the matrix containing the spectral Green’s
functions is obtained from the last equation as

(28)

where the matrix is a matrix that selects the finite-
difference grid nodes at the planes at which the spectral Green’s
function is needed. Since is diagonal, it follows immediately
from (28) that each element in is of the form

(29)

where and . In (29), the
constants are dependent only on the properties of the layered
medium and the finite-difference grid size. The coefficients
and depend on both the layered medium properties and the
position of the source planes. This step completes the develop-
ment of the spectral Green’s function matrix.

The final step in the construction of the closed-form spatial
Green’s function involves the calculation of the inverse Fourier-
Bessel transform of (29). The relevant integral has the form

(30)

where represents one of the eigenvalues of the matrix. Using
well-known properties of Bessel and Hankel functions [21], the
above integral may be cast in the form

(31)

Considering this last integral on the complexplane, and rec-
ognizing that the integrand goes to zero for , the
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residue theorem can be used for its calculation. More specifi-
cally, a closed contour that includes the real axis and a circular
arc of radius in the lower half of the complex plane
is used. Since for the case of lossless media the poles corre-
sponding to the guided modes in the structure appear on the
real axis, the contour needs to be indented properly (i.e., into
the first quadrant for and the third quadrant for

). The result of the integration is

(32)

where is the argument of the eigenvalue, which
is complex for the case of lossy media. Finally, in view of (32),
the inverse Fourier-Bessel transform of (29) is

(33)

For the case where is real positive , the relationship

(34)

is used to rewrite the relevant terms in (31) in terms of the mod-
ified Bessel function . This completes the development of
the closed-form expression for the vector potentialor .
Once expressions for the potentials are available, the field com-
ponents can be obtained using (2) and (3). Herewith, derivatives
with respect to are calculated numerically, while the deriva-
tives with respect to and can be carried out analytically.

III. T HE CASE OF THEHORIZONTAL DIPOLE EXCITATION

The development of the Green’s function due to a horizontal
electric dipole (HED) or a horizontal magnetic dipole (HMD)
located at inside a layered medium is more complicated
than that for the vertical dipole. Without lose of generality, the
dipole with moment is located at and ori-
ented in the -direction. As it was pointed out by Sommerfeld,
for the field boundary conditions at the planar media interfaces
to be met, both the- and -components of the vector potential
are required. This choice is not unique, and other vector poten-
tial function selections are possible [2]. For the purposes of this
paper, Sommerfeld’s traditional approach of working with the

and components of the vector potential is chosen. The de-
velopment is for the case of an HED. A similar approach can
be followed for the case of an HMD. The relevant Helmholtz
equations for and are

(35)

(36)

Once again, the following Bessel-Fourier transform pair is used
for and :

(37a)

(37b)

Introducing the auxiliary potential such that

(38)

and its Fourier-Bessel transform, the system of (35) and (36)
assumes the following form in the spectral domain:

(39)

(40)

The relevant boundary conditions at the conducting planes and
media interfaces are given below

(41)

(42)

(43)

(44)

(45)

(46)

Condition (46) is the one providing coupling between and
due to the presence of the discontinuity in the dielectric prop-

erties of adjacent layers.
The development of the discrete approximation of (39) and

(40) follows closely that presented earlier for the vertical dipole.
The primary difference is that due to the coupling of the two
components of the vector potential, the vector of unknowns con-
tains the discrete values of both and . Boundary condi-
tions (41)–(45) get incorporated into the scheme in the same
way as for the case of the vertical dipole [see (7)–(12)].

From (46), it is apparent that the first derivative of is
discontinuous at the interface. Consequently, (40) is satisfied
everywhere except for the points at the interfaces. Thus, these
points will be excluded from the vector of unknowns .
Following the same procedure used for the enforcement of
boundary condition (9) for the vertical dipole, a discrete form
of boundary condition (46) is used to derive finite-difference
equations for the points just above and below the media
interface point

(47)
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and

(48)

The resulting system of discrete equations assumes the fol-
lowing matrix form:

(49)

where the (coupling) block contains nonzero entries only
for grid points adjacent to material interfaces. The matrixis
defined in exactly the same manner as was done for the case
of the vertical dipole to account for all sources for which the
Green’s function must be generated. A compact form of (49) is

(50)

where . Matrix is not tridiagonal anymore be-
cause of the coupling between the two vector potential compo-
nents. Nevertheless, following the same procedure as for the ver-
tical dipole, the eigen-decomposition ofis used in the formal
matrix solution of (50) to yield pole-residue representations for
the spectral domain forms of the vector potential components at
the nodes of the finite-difference grid. Thus, using the notation
for the vertical dipole [see (28) and (29) and the relevant discus-
sion], the potentials at a given node in the finite-difference grid
due to a source at nodeare given by

if

if

(51)

where is the number of dielectric interfaces present in the lay-
ered medium. The indexindicates the row position of the ob-
served quantity in the vector of unknowns. The first 2 quan-
tities are the values of the component of the vector potential
at the interior nodes of the finite-difference grid (recall that this
component of the potential is zero at the two conducting planes).
The remaining quantities are the values of the auxiliary potential

at the interior nodes of the finite-difference grid. It
is noted that the values of the auxiliary potential
at the dielectric interfaces are not present in the vector of un-
knowns since they can be restored from the boundary condi-
tions and the value of at adjacent grid points. This
is also true for the values of the auxiliary potential at the two
conducting planes (see (44)).

Substitution of (51) into (37b), followed by an inverse
Fourier-Bessel transform operation, yields the desired

closed-form expressions for the potentials and in the
spatial domain

(52)

and

(53)

This step completes the development of closed-form expres-
sions for the magnetic vector potentials generated by horizontal
dipoles in layered media bounded above and below by a pair
of conducting planes. Expressions for the electric and magnetic
fields may be derived from the above expressions using (2) and
(3). In doing so, derivatives with respect toare to be taken nu-
merically, while transverse derivatives with respect toand
are calculated analytically.

Before we proceed with the numerical validation of the
method, it is appropriate to consider the computational cost
associated with the calculation of the closed-form expressions
of (33), (52), and (53). From these expressions, it is clear that
the number of terms involved in the associated sums is equal
to the number of discrete unknowns in the finite-difference
approximation. However, in the numerical implementation of
the proposed method, model order reduction is used to reduce
this number. Such model order reduction is prompted by the
fact that only a subset of the calculated discrete eigenvalues
of the finite-difference matrices (for the case of the vertical
dipole) and (for the case of the horizontal dipole) is calcu-
lated accurately, and it is only this subset of eigenvalues that
contributes significantly to the solution. Consequently, a Krylov
subspace method based on the Arnoldi algorithm is used to
reduce the number of terms in the closed-form expressions of
(33), (52), and (53) [24].

The details of the associated eigenvalue order reduction al-
gorithm can be found in [20], [23], and [24] and will not be re-
peated here. We only make the following comments. First, given
the grid size , the properties of the media, and the frequency of
interest, error estimates for the eigenvalues of the discrete eigen-
value problem can be used to guide the selection of the number
of terms in the reduced sums for the closed-form expressions
of (33), (52), and (53) [25]. Second, our numerical experiments
indicate that very accurate results are obtained using reduced
sums with a number of terms on the order of one-fifth of the
number of unknowns in the discrete finite-difference problem
if the radial distance between dipole and point of observation
is larger than 0.2 , where is wavelength in free space. For
smaller distances, a robust criterion for the number of terms in
the reduced model that suffice for acceptable accuracy has not
been derived yet. Thus, at this point, model order reduction is
not performed for the calculation of the Green’s functions for
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Fig. 2. Magnitude of the spectrum of thez-component of the magnetic vector
potential versus distance along the media cross section.

distances less than 0.2from the source. This issue is currently
under investigation, and ways to reduce the computational cost
of the calculation of the Green’s function at short distances from
the sources will be reported in a forthcoming paper.

IV. NUMERICAL ANALYSIS AND VALIDATION OF RESULTS

The following numerical studies involve the application of
the proposed methodology for the calculation of the Green’s
function for a vertical magnetic dipole and a horizontal elec-
tric dipole located in a shielded layered substrate. Validation is
effected through comparisons of the results obtained using the
proposed methodology with those obtained either analytically
for the spectra of the potentials or from the calculation of the
Sommerfeld integrals for the space-domain forms of the poten-
tial using DCIM.

The first study involves a VMD inside a two-layer substrate
between two conducting plates set at a distance ,
where is the wavelength in free space. The bottom layer is
of thickness 0.1 with relative permittivity of 2.5. The rela-
tive permittivity of the top layer is 1. The magnetic moment
of the dipole is such that [V m ]. The dipole is
placed at . Fig. 2 depicts the magnitude of the spec-
trum of the magnetic vector potential , calculated
for different values of the spectral variableversus . Excel-
lent agreement is observed between the results obtained using
the proposed method and analytical methods.

For the case of a homogeneous dielectric, an analytic solution
is also available for the vector potential in the spatial domain

(54)

where is the modified Bessel function of zeroth order and
. The second example considered deals

with such a case of a homogeneously filled, parallel-plate guide.
The plate separation is taken to be 0.6with the relative per-
mittivity of the medium set equal to one. The plate separation is
such that the mode is excited. The magnetic dipole moment
was taken [V]. Figs. 3 and 4 depict the calculated

Fig. 3. Magnitude of thez-component of the magnetic vector potential versus
radial distance from the dipole along the plane of the dipole. The homogeneous
medium enables comparison with the analytic solution.

Fig. 4. Argument of thez-component of the magnetic vector potential versus
radial distance from the dipole along the plane of the dipole. The homogeneous
medium enables comparison with the analytic result.

spatial vector potential in magnitude and phase, respectively,
versus the distance from the dipole on the plane that contains
the dipole. The results are in very good agreement with those
obtained from the analytic expression (54).

Next, the case of an HED is considered. The dipole is placed
inside a two-layer medium, each of thickness 0.1, and rela-
tive permittivities of for the top layer and
for the bottom layer. The separation between the top and bottom
conducting plates was taken to be . The dipole was
placed at the interface between the two dielectrics, and its mo-
ment was assumed to be such that [V/m], where

is the intrinsic impedance of free space. Figs. 5 and 6 com-
pare the spectrums and obtained by the proposed and
analytic methods. Very good accuracy is observed. The accu-
racy in this case is strongly dependent on the grid size. This
is attributed to the way the coupling between the two potential
components occurs, namely, through the enforcement of the tan-
gential field continuity at the media interfaces. Our experiments
have shown that use of a fine grid leads to very good accuracy
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Fig. 5. Magnitude of the spectrum of thex-component of the electric vector
potential versusz for different values of the spectral variable�.

Fig. 6. Magnitude of the spectrum of thez-component of the electric vector
potential versusz for different values of the spectral variable�.

in the approximation of the spectra of the potentials. For the
specific case considered in this example, 300 grid points were
used in the finite-difference grid. Clearly, it is for such cases that
model order reduction is necessary to keep the number of terms
in the finite sums of (52) and (53) small.

Figs. 7 and 8 depict the comparison of the results obtained
using the proposed method for the electric field in space with
the results obtained from the application of DCIM. More
specifically, the magnitude and phase of the-component of
the electric field along the plane of the horizontal dipole is
examined. The DCIM calculation was based on the formulation
of [6] and the calculation of the Sommerfeld integral using
the modified path described in [5]. Once again, very good
agreement is observed. Further experimentation with the pro-
posed methodology, using source and observation position and
layered substrate properties as parameters, proved the method
to be robust and accurate.

Fig. 7. Magnitude of thex-component of the electric field due to anx-oriented
electric dipole. The field is calculated along the plane of the dipole.

Fig. 8. Argument of thex-component of the electric field due to anx-oriented
electric dipole. The field is calculated along the plane of the dipole.

V. CONCLUSIONS

This paper has proposed a new approach for the direct
development of closed-form spatial Green’s functions for
electromagnetic problems in shielded, planar, multilayered
media. The closed-form expression is in terms of a finite sum
of Hankel functions of the second type and zeroth order. Unlike
the discrete complex image method, the proposed methodology
does not require the extraction of the poles of the spectra
of the Green’s functions. Once the source and observation
planes have been identified, all required Green’s functions are
generated simultaneously. The-plane location of the source
and observation points is embedded in the coefficients of the
resulting finite sums, while the radial dependence appears in
the argument of the Hankel functions in the form ,
where the constants depend on the properties of the layered
medium.

The proposed methodology is applicable to both vertical and
horizontal dipoles. For the horizontal dipole case, the Sommer-
feld choice of the vector potentials was used. Samples of our



2232 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

preliminary numerical experiments were presented to demon-
strate the validity and accuracy of the proposed methodology.
Further studies are currently in progress, aimed at better un-
derstanding of the impact of the finite-difference grid size on
the accuracy of the generated closed-form expressions for the
Green’s functions. The finer the grid size, the larger the number
of terms present in the closed-form expression. Currently, model
order reduction is used to reduce the number of terms in the
closed-form expressions by keeping only the significant eigen-
values in the finite-difference approximation of the differential
equations of the spectra of the vector potentials. Our prelimi-
nary studies have shown that for distances from the source point
greater than one-fifth of the free-space wavelength, a reduced
model of order equal to one-fifth of the number of discrete un-
knowns is sufficient for excellent accuracy. However, this is not
the case for shorter distances. Thus, our ongoing studies are also
aimed at methodologies alternative to model order reduction for
expediting the calculation of the finite sum of Hankel functions
that constitutes the closed form of the Green’s function.

Even though the proposed methodology was presented for the
case of shielded, planar, multilayered substrates, its extension to
the unshielded case is possible and will be the topic of a forth-
coming paper.
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