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Novel Closed-Form Green’s Function in Shielded
Planar Layered Media

Andreas C. Cangellari$ellow, IEEE,and Vladimir I. OkhmatovskiMember, IEEE

Abstract—A new method is proposed for the construction of of complex exponentials using either the generalized pencil of
closed-form Green’s function in planar, stratified media between fynction [16] or Prony’s method [17]. Subsequently, the Som-

two conducting planes. The new approach does not require the a o te14 jdentity [3] is applied to reduce the Sommerfeld inte-
priori extraction of the guided-wave poles and the quasi-static part

from the Green function spectrum. The proposed methodology 9rals toa set.of Com'pl.ex images. The first stage of the DCIM,
can be easily applied to arbitrary planar media without any associated with the fitting of the spectrum of the Green'’s func-
restriction on the number of layers and their thickness. Based tion by exponentials, turns out to be its most sensitive part. The
on the discrete solution of one-dimensional ordinary differential o250 for this is that for such complex exponential fitting to

equations for the spectral-domain expressions of the appropriate - - -
vector potential components, the proposed method leads to the be effective, the function needs to be smooth and fast decaying

simultaneous extraction of all Green’s function values associated for large values of the spectral variable. This implies that all
with a given set of source and observation points. Krylov subspace poles associated with the propagating waves and the quasi-static
model’order rgduction is useq to express the gengrated c'losed.-form part must be extracted from the spectrum prior to fitting. Such
grseniglIsrfﬂ%ngnoﬁeﬁ;ski?tfm%% (;r:];e?;]sé c\’;ﬂé'ig'/tgfstﬁ? I;?ggg’;g% an egtra(.:tion is relatively simple to perform when thg stratified
methodology and the accuracy of the generated closed-form Mediumis composed of one or two layers. However, it becomes
Green'’s functions are demonstrated through a series of numerical cumbersome for the case of multilayered media. In this case,
experiments involving both vertical and horizontal dipoles. one must make use of some iterative schemes for locating the
Index Terms—Green’s function, layered media. poles in the complex plane and calculating the corresponding
residues [18]. There have been some attempts to avoid the ex-
traction of propagating waves. The approach proposed in [5]
proved to be very efficient and robust, but only for the case of
NTEGRAL equation methods constitute one of the mosiin layers where the propagating wave contribution is insignif-
popular classes of methods used for the electromagnetignt. Further investigations [19] showed that for thick layers, a
analysis of integrated circuits and printed antennas [1], [2]. Therge error occurs in the far field if the propagating modes are
computational efficiency and the versatility of such methodsot extracted. The physical explanation is that use of complex
is strongly dependent on the ease with which the Greenrfiages is in fact an attempt to approximate the cylindrical na-
functions associated with the background layered medium aige of propagating waves in terms of spherical ones. In [14],
calculated. Consequently, a significant amount of researgfis difficulty was overcome by implementing Hankel functions
work has been dedicated to the development of Green’s fumgorder to describe propagating modes and complex images for
tions in stratified media over the years [3]-[5]. In particulathe decaying part of the field.
various techniques have been proposed to overcome the highh this paper, an alternative to DCIM is presented. The
computational cost associated with the numerical evaluatinew approach is based on the replacement of the analytic
of the so-called Sommerfeld integrals in terms of which thigrms of the spectral-domain Green’s function with discrete
Green’s function appears [6]. Among these methods, the mesles, obtained from a finite-difference solution of the gov-
popular are interpolation and tabulation schemes [7]-[9]; fasining differential equations for the pertinent vector potential
Hankel transform methods [10], [11]; the steepest descent padimponents. This formulation is then combined with a com-
approach [12]; and the discrete complex image method (DCl)tationally efficient eigenvalue analysis of the resulting
[13]-{15]. Since the latter seems to have received significaiiite-difference sparse matrix to represent the vector potential
attention in recent years, we choose to highlight some of gmponents as a sum of pole-residue terms, reminiscent of
attributes and will use it as the reference solution approach te extracted propagating wave contributions in DCIM. This
our investigation. pole-residue form of the Green’s function spectrum allows
The main advantage of DCIM is that it casts the Green's funghe analytic evaluation of the Sommerfeld integrals, thus
tion in a simple closed form. To achieve this, first the spegielding a finite sum of Hankel functions as the spatial form
tral-domain form of the Green'’s function is fitted by a finite sunior the Green’s function. Further model order reduction [20]
truncates this sum to one involving a small number of terms
Manuscript received March 2, 2000; revised August 21, 2000. corresponding to the dominating eigenvalues. For the purposes
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) z From (2) and (3), the appropriate boundary conditions for the
source point .
VED, HED, spectra at an interface located-atre
VMD, HMD ~
’ dAE™
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Fig. 1. Geometry of a layered dielectric medium shielded by two conducting 2=z — z=z;+
lanes. i
planes AT _, =0 (10)
z=d
Il. THE CASE OFVERTICAL DIPOLE EXCITATION AT = AT . (11)
=z Z=Z;
The boundary value problem of interest is shown in Fig. 1, dA™ dA™
where either a vertical electric dipole (VED) or a vertical mag- d; = d; (12)
netic dipole (VMD) is present at the source point It is as- o le=z— P

sumed that the medium can be lossy, with permeability of freeNext, a discrete approximation of (6) is developed using the
space and complex permittivity varying in the vertical directiofinite difference method. For this purpose, the interval [0, d]
only,z(x, y, z) = #(z). A z-directed electric or magnetic dipoleis divided intoN —1 elements so that a grid point with index O is
excites only transverse magnetict¢IM.) or transverse elec- located at the bottom ground plane and a grid point with index
tric to z (TE.) modes, respectively. In both cases, theompo- N—1 atthe top plane. Use of a central difference approximation
nent of either the electric or the magnetic vector pote[ﬁ?ﬂ" of the second-order derivative y|6|dS the fO”OWing discrete form
suffices to satisfy the boundary conditions. For the purposesaf(6) for thegth grid point that does not coincide with a media
this paper, the time dependence is assumed é&band is sup- interface: . .
pressed for simplicitys = /—1 ). The governing equation for AS™ (z4+1) — 2A5™ (2) + AS™ (24-1)
the z-component of the vector potential is the scalar Helmholtz h? ;

Jem

equation 2 \2\ dem _ ,
+ (kje — A2)AZ™(z,) 5k 8g.0 (13)

V2ZAS™ 4 J2AS™ = —jom (1) Whereé, o is Kroneker's deltag’ is the grid point, at which a
source is present? = w?ugeo, € is the relative permittivity
wherek? = w?u0g(z). The electromagnetic fields are given byof the layer, in which the grid node resides, ands the grid
[3] size in the finite-difference grid. Without loss of generality, a
uniform finite difference discretization is assumed for the sake
of simplicity of the mathematical formulation.

1

_ - . e 2 A€\ m N
E= TWE (VV AT+ AT =V x A @) Boundary conditions (7) at the conducting planesA¢rare

_ 1 CAm | L2Am . imposed by replacing the finite difference terms in (13) for the
H_iwuo (VV- AT+ EA™) +V x A" 3) edge elementg = 1 andg = N — 2 by

~ ~

Al(zg41) — Al(zy)

Since the material properties are independent ahdy, AS™ 12 (14)
may be written in terms of their Fourier-Bessel transforms, Ut'ci(nd
lizing the following transform pair: _Ae,(7 )+Ae(7 1)

=\ EAN (15)

(a9} h?

AN 2, 7)) = / AS™(p, 2,2V Jo(Ap)p dp  (4a) respectively.
0 The boundary conditions (8) and (9) at layer interfaces where

AS™(p, 2, 2) = / Ai,nl()\7 2,2 )Jo(Ap)A d\  (4b) the p(_err_nittivity is discontinuous require. some care. The reason
0 for this is that the homogeneous equation

2 fe
where) is the spectral variable. Substitution of (4b) into (1) and d°A7

use of the result _ _ _dZQ _ _ o
is not valid at the interface node since the first derivativelof

1 1 too is discontinuous and the second derivative produces unbalanced
” 6(r)éle) = o /0 Jo(Ar)A dA () s-function in the left-hand side. To handle this discontinuity,
only the boundary condition (9) is enforced at the interface node.
reduces the Helmholtz equation (1) to an ordinary second-ordéere specifically, a discrete form of (9) is used to express the

+ (K= XHA =0 (16)

equation for the spectrums™ value at the interface node in terms of the values of the two ad-
jacent nodes, and the interface node is thus excluded from the
dQAQm Jem] discrete problem. To illustrate, let= z, be the interface point

2T (K = AH)AZ™ = 5 07 = #). (6) petween layers with relative permittivities ands_ above and
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below the interface, respectively. Using a finite difference af=M,, case,Aj; is nonzero at = 0, d, and the vector of un-

proximation of the boundary condition (9) knownsx contains the values of the spectral-domain Green’s
Ae fe Qe Qe function at these points.
1 AS(z,) — AS(z,— 1 A¢(~ — A¢(~ . . . .
= (20) h (2am1) = a2 q+1)h () (7) As far as the right-hand side of (24) is concerned, its form
o . ot _ reflects the fact that it accounts for all planes in the domain
the following expression for<(z,) is obtained: where (source) dipoles are placed. To elaboratelebe the
N E_ ~ £ ~ . . .
Ac(z,) = A (zg41) + + A(z,-1). (18) numb_er ofz planes in the domain wh_ere _dlpoles are present.
e t+eq E— +e4 A typical method-of-moments approximation of the boundary
Use of (18) in (13) for the two nodes above and below the interalue problem requires the calculation of the spectral Green’s
face pointz = z, yields, respectively function at@» planes due to each of thgs sources. In other

e A(zgr1)  erAl(zy 1) quds, aQpr x Qs m_atrix of _spectral Green’_s fun(_:ti(_)ns is re-
A Rl quired. The vectom in (24) is of length@s, identifying the
£-+ey £-+ eyt Qs source planes. The matrR is an N x Qg matrix, with

h? only one nonzero element per column. More specifically, for

+ (k264 — A2)AS(2,41) =0  thegth source plane, a nonzero element of value 1 exists at the
(19) gth column of the matri¥' and at the row corresponding to the
node number in the finite-difference grid assigned to the spe-

AZ(Z(I'F?) - 21212 (2g+1) +

and A A cific source plane vectat is obtained formally from (24) as
E;Af:“) EzAéfgfl) — 248 (2 1) + ALz 2) x = (A + \*T)"'Fu. (25)
- _ +h2 Using the eigen-decomposition [22] of the matAx
N _ —1
+ (k- = X)AL(z1) =0, A=T8T (26)

(20) Where the columns dT" are the eigenvectors of andS is a

o . . - . diagonal matrix of the eigenvalues 4&f, x may be cast in the
Clearly, continuity of potential (8) is satisfied automatlcalbfonowing form:

when (9) is written in discrete form (17). 1 e v 1
Application of the boundary condition (10) is straightforward X = (A + A"I) "Fu = (T(S + A"DT"")""Fu

by simply setting to zero the terms in the finite-difference ap- =T(S+ \I)~'T 'Fu. (27)

proximation of the second derivative in (13) corresponding 'ﬁnally, the matrixX containing the) » x Qs spectral Green’s

the end nodes. This yields the modified finite-difference equasnctions is obtained from the last equation as

tions for the second-order derivatives in the discrete equations

for nodesg = 1 andg = N — 2, respectively X=L'T(S+N)~'T'F (28)
A (zp1) — 249 (2,) where the matrid.? is aQp x N matrix that selects the finite-
2 (21) difference grid nodes at the planes at which the spectral Green’s
—2A€(z )+ fle(z ) function is needed. Sincg is diagonal, it follows immediately
At 2 A (22) from (28) that each element X is of the form
The continuity of A7 at dielectric interfaces yields the fol- Aem(\, 2,y = Xy = 1\221 Pinttn; (29)
lowing modified form of the discrete equation for a nagee- s+ A
S|Ad|ng atthe |ntfzrface A whereP,,, = [L¥' T);, andR,,; = [T~ Fl,;. In (29), the
AT (Zy1) — 2AT(Z,) + AT (Z,—1) constants,, are dependent only on the properties of the layered
h? medium and the finite-difference grid size. The coefficiefis
+(k2 ) Ei+E_ )\Q)Am(z _g) = =11 5 andR,; depend on both the layered medium properties and the
? 2 = 27h 7" position of the source planes. This step completes the develop-

(23) ment of the spectral Green’s function matrix.

It is important to point out that in (23) boundary condition (12) The final step in the construction of the closed-form spatial
was also enforced since the continuity of the derivativeipf Green'’s function involves the calculation of the inverse Fourier-

is needed for (23) to be valid. Bessel transform of (29). The relevant integral has the form
The resulting system of discrete equations for all nodes in the [
finite-difference grid may be cast in the compact form Int(s, p) = , st A2 Jo(Ap)A dA (30)
(A + XI)x = Fu (24) wheres represents one of the eigenvalues of the matridsing

where the matrixA is a tridiagonal matrix of dimensiotV well-known properties of Bessel and Hankel functions [21], the

equal to the number of discrete unknowns at the grid palniss, above integral may be Ciit in the form

the identity matrix, and the vecter contains the values of the Int(s, p) = 1 ! HP (\p)A dA (31)
_ H . 2, 1M nitea-di ’ 2 s+ )\2 0 ’

spectral-domain vector potentias™ at the finite-difference —o0

nodes. For th&'E, case A7 is zero on the perfectly conductingConsidering this last integral on the compleyplane, and rec-

walls, and these values are not included in the vextdétor the ognizing that the integrand goes to zerofar{ A} — —cc, the
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residue theorem can be used for its calculation. More specifitroducing the auxiliary potential¢(p, », ') such that
cally, a closed contour that includes the real axis and a circular O (p, 2, 2')

arc of radiusk — oo in the lower half of the complex plane A(p,z,2) = T EHE)

is used. Since for the case of lossless media the poles corre- Jz
sponding to the guided modes in the structure appear on &l its Fourier-Bessel transform, the system of (35) and (36)
real axis, the contour needs to be indented properly (i.e., itesumes the following form in the spectral domain:

the first quadrant foRe{A} > 0 and the third quadrant for

(38)

Re{A} < 0). The result of the integration is d;fii (k- )\Q)Ae _ 1l (7= 2') (39)
. z * 27
_ _71'_'[, (2) : g QAe R
(s, p) = =5 H” (V] Bin(e/2) — icos(p/2)lp)  (32) dd S L2 - )k <o, @0
4

wherey = arg(s) is the argument of the eigenvalyewhich
is complex for the case of lossy media. Finally, in view of (32)The relevant boundary conditions at the conducting planes and

the inverse Fourier-Bessel transform of (29) is media interfaces are given below
. N—1 ~
e, m _ _ 7t Ae N = 0 41
ATMpy iy 2) = Xij == D Pt "l “
n=0 ~ ~
. . A = 45 (42)
~Hé2) (\/ |sn| [sin(e/2) — zcos(<p/2)]p) . s He=sit
(33) dAS _ dAS (43)
dz dz
For the case wherg, is real positive¢ = 0), the relationship S S P
i dA¢
e . z _
Ko (v/5up) = =5 HE (=iv/lsulp) (34) | =0 (44)
z=d
is used to rewrite the relevant terms in (31) in terms of the mod- Ac _ A 45
ified Bessel functionky. This completes the development of G P P (45)
the closed-form expression for the vector potentiélor A”. e Ae
. : g s ~e  dAS 1 |~ dAS
Once expressions for the potentials are available, the field com-— AL+ 4 = = — |4Z 7 =
ponents can be obtained using (2) and (3). Herewith, derivatives® z =zi— & & Z=zi4

with respect taz are calculated numerically, while the deriva- (46)

tives with respect ta: andy can be carried out analytically. » ) o )
Condition (46) is the one providing coupling betweéf and

A¢ due to the presence of the discontinuity in the dielectric prop-
erties of adjacent layers.

The development of the Green’s function due to a horizontal The development of the discrete approximation of (39) and
electric dipole (HED) or a horizontal magnetic dipole (HMD)40) follows closely that presented earlier for the vertical dipole.
located at: = 2’ inside a layered medium is more complicatedthe primary difference is that due to the coupling of the two
than that for the vertical dipole. Without lose of generality, theomponents of the vector potential, the vector of unknowns con-
dipole with moment/*™! is located att = y = 0 and ori- tains the discrete values of bottf and A¢. Boundary condi-
ented in thec-direction. As it was pointed out by Sommerfeldtions (41)—(45) get incorporated into the scheme in the same
for the field boundary conditions at the planar media interfacegy as for the case of the vertical dipole [see (7)—(12)].
to be met, both the- andz-components of the vector potential From (46), it is apparent that the first derivative &; is
are required. This choice is not unique, and other vector potefiscontinuous at the interface. Consequently, (40) is satisfied
tial function selections are possible [2]. For the purposes of thigerywhere except for the points at the interfaces. Thus, these
paper, Sommerfeld’s traditional approach of working with thgoints will be excluded from the vector of unknowns(z,).

x andz components of the vector potential is chosen. The deollowing the same procedure used for the enforcement of
velopment is for the case of an HED. A similar approach casbundary condition (9) for the vertical dipole, a discrete form
be followed for the case of an HMD. The relevant Helmholtaf boundary condition (46) is used to derive finite-difference

lll. THE CASE OF THEHORIZONTAL DIPOLE EXCITATION

equations ford; and AZ are equations for the points just above and below the media
V2AC 4 k2AS = ¢ (35) interface pointz,
VZAS + K2 A = 0. (36) A (2g12) — 28 (2411)
Once again, the following Bessel-Fourier transform pair is used R R h?
for A° and A°: e-AL(2g41) | e4AL(zg—1) E4—e- 4,
T z + h Am(zq)
A o0 E_+ey E_+ey E_+eq
L.0aA) = [T Ao e (78) T 2
0

+ (kjeq — )\2)[\2(75(&1) =

Aoty = [ A e 00NN @7 )
0
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and closed-form expressions for the potentials and AS in the
spatial domain

. N—v-—5
h2 , , e
A N A;(pv Zi,Z,') = "5 Py
e-Af(zg41) | e4AL(zg-1) [ A2 (z,) ’ 2 nz::() !
— _ _ v\ 2 . :
T e HE (VIsulline/2) — icos(o/2)p)
0<¢,j<N-3 52
(e — M)A (741) = 0 Shs (52)
(48) and
)
The resulting system of discrete equations assumes the {0, zi, 25) = Y Z Pin Lty
lowing matrix form: 5
A o Lo o 5 Ho” (¢|s;| sin(p/2) — icos(o/2]p)
i Xac ..
{[Ach AZJJFAQ{O I”'[sz{o} (49) N-2<ij<2N-v-5. (53)

This step completes the development of closed-form expres-
where the (coupling) block..,. contains nonzero entries onlysions for the magnetic vector potentials generated by horizontal
for grid points adjacent to material interfaces. The maktils  dipoles in layered media bounded above and below by a pair
defined in exactly the same manner as was done for the c@seonducting planes. Expressions for the electric and magnetic
of the vertical dipole to account for all sources for which thgelds may be derived from the above expressions using (2) and
Green’s function must be generated. A compact form of (49)8). In doing so, derivatives with respectiare to be taken nu-

merically, while transverse derivatives with respecttandy

(B + MI)x = Gu (50) are calculated analytically.

Before we proceed with the numerical validation of the
wherex” = [xI xT]. Matrix B is not tridiagonal anymore be- method, it is appropriate to consider the computational cost
cause of the coupling between the two vector potential compassociated with the calculation of the closed-form expressions
nents. Nevertheless, following the same procedure as for the v@&t{33), (52), and (53). From these expressions, it is clear that
tical dipole, the eigen-decompositionBfis used in the formal the number of terms involved in the associated sums is equal
matrix solution of (50) to yield pole-residue representations fé® the number of discrete unknowns in the finite-difference
the spectral domain forms of the vector potential componentsagaproximation. However, in the numerical implementation of
the nodes of the finite-difference grid. Thus, using the notatidhe proposed method, model order reduction is used to reduce
for the vertical dipole [see (28) and (29) and the relevant discubis number. Such model order reduction is prompted by the
sion], the potentials at a given node in the finite-difference griect that only a subset of the calculated discrete eigenvalues

due to a source at nogeare given by of the finite-difference matriceA (for the case of the vertical
. dipole) andB (for the case of the horizontal dipole) is calcu-
AL(N 2, 25), F0<i4,j<N-3 lated accurately, and it is only this subset of eigenvalues that
[\2()\, Zi z;»), if N-2<4,j<2N—v } contributes significantly to the solution. Consequently, a Krylov

-5
ON—p—5 subspace method based on the Arnoldi algorithm is used to
PR, : :
= Z 2 (51) reduce the number of terms in the closed-form expressions of
= SntA (33), (52), and (53) [24].

The details of the associated eigenvalue order reduction al-
wherer is the number of dielectric interfaces present in the lagorithm can be found in [20], [23], and [24] and will not be re-
ered medium. The indexindicates the row position of the ob-peated here. We only make the following comments. First, given
served quantity in the vector of unknowns. The fifst-2 quan-  the grid sizeh, the properties of the media, and the frequency of
tities are the values of the component of the vector potentialinterest, error estimates for the eigenvalues of the discrete eigen-
at the interior nodes of the finite-difference grid (recall that thigalue problem can be used to guide the selection of the number
component of the potential is zero at the two conducting planeg).terms in the reduced sums for the closed-form expressions
The remaining quantities are the values of the auxiliary potenttgl (33), (52), and (53) [25]. Second, our numerical experiments

AL(A, z, #;) atthe interior nodes of the finite-difference grid. lindicate that very accurate results are obtained using reduced
is noted that the values of the auxiliary potentgl(), z;, ;) sums with a number of terms on the order of one-fifth of the
at thew dielectric interfaces are not present in the vector of umumber of unknowns in the discrete finite-difference problem
knowns since they can be restored from the boundary conifithe radial distance between dipole and point of observation
tions and the value ak® <(A, %, #;) at adjacent grid points. This is larger than 0.2y, where), is wavelength in free space. For
is also true for the values of the auxiliary potential at the twsmaller distances, a robust criterion for the number of terms in
conducting planes (see (44)). the reduced model that suffice for acceptable accuracy has not

Substitution of (51) into (37b), followed by an inversebeen derived yet. Thus, at this point, model order reduction is
Fourier-Bessel transform operation, yields the desirewt performed for the calculation of the Green's functions for
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Fig. 3. Magnitude of the-component of the magnetic vector potential versus

. . . radial distance from the dipole along the plane of the dipole. The homogeneous
Fig. 2. Magnitude of the spectrum of thecomponent of the magnetic vector medium enables comparison with the analytic solution.

potential versus distance along the media cross section.

4 T | T
distances less than &\ from the source. This issue is currently

under investigation, and ways to reduce the computational c« o

of the calculation of the Green’s function at short distances fro 2 e1=ez=1

the sources will be reported in a forthcoming paper. d=0.60
arg(A;)

i] —

IV. NUMERICAL ANALYSIS AND VALIDATION OF RESULTS

The following numerical studies involve the application of
the proposed methodology for the calculation of the Green
function for a vertical magnetic dipole and a horizontal elec
tric dipole located in a shielded layered substrate. Validation -2
effected through comparisons of the results obtained using t
proposed methodology with those obtained either analytical
for the spectra of the potentials or from the calculation of th -4 i ' '
Sommerfeld integrals for the space-domain forms of the pote
tial using DCIM.

The first StUdy '”VO'YGS a VMD inside a Mo-layer SUbStratEig. 4. Argument of the-component of the magnetic vector potential versus
between two conducting plates set at a dista#ice 0.2)o, radial distance from the dipole along the plane of the dipole. The homogeneous
where )\ is the wavelength in free space. The bottom layer igedium enables comparison with the analytic result.
of thickness 0.1, with relative permittivity of 2.5. The rela-
tive permittivity of the top layer is 1. The magnetic momenspatial vector potential in magnitude and phase, respectively,
of the dipole is such that™{/k, = 1 [V - m?]. The dipole is versus the distance from the dipole on the plane that contains
placed at- = 0.12,. Fig. 2 depicts the magnitude of the specthe dipole. The results are in very good agreement with those
trum of the magnetic vector potentidl™ (A, z, '), calculated obtained from the analytic expression (54).

Exact
e OO This method -

p/Ao

for different values of the spectral variableversusz. Excel- Next, the case of an HED is considered. The dipole is placed
lent agreement is observed between the results obtained usirgide a two-layer medium, each of thicknessXg,land rela-
the proposed method and analytical methods. tive permittivities ofe,.; = 1 for the top layer and,.; = 12.6

For the case of a homogeneous dielectric, an analytic solutitmn the bottom layer. The separation between the top and bottom
is also available for the vector potential in the spatial domainconducting plates was taken to Be= 0.2)o. The dipole was
m & iz o placed at the interface between the two dielectrics, and its mo-
Al(p, z,7') = ;d nz_:l sin dv sin

!
TZKO(/B,,,p) (54) ment was assumed to be such thgfVoki = 1 [V/m], where

Wy is the intrinsic impedance of free space. Figs. 5 and 6 com-
where K, is the modified Bessel function of zeroth order angare the spectrumdg and A¢ obtained by the proposed and
Bn = /(nm/d)? — kie. The second example considered deatnalytic methods. Very good accuracy is observed. The accu-
with such a case of a homogeneously filled, parallel-plate guidecy in this case is strongly dependent on the grid size. This
The plate separation is taken to be X}, &vith the relative per- is attributed to the way the coupling between the two potential
mittivity of the medium set equal to one. The plate separationéemponents occurs, namely, through the enforcement of the tan-
such thatthe modgE. is excited. The magnetic dipole momengential field continuity at the media interfaces. Our experiments
was taken/*(kol) = 1 [V]. Figs. 3 and 4 depict the calculatedhave shown that use of a fine grid leads to very good accuracy
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Fig. 6. Magnitude of the spectrum of tkecomponent of the electric vector
potential versus for different values of the spectral variable V. CONCLUSIONS

This paper has proposed a new approach for the direct
in the approximation of the spectra of the potentials. For tlirevelopment of closed-form spatial Green’s functions for
specific case considered in this example, 300 grid points wegkectromagnetic problems in shielded, planar, multilayered
used in the finite-difference grid. Clearly, it is for such cases thatedia. The closed-form expression is in terms of a finite sum
model order reduction is necessary to keep the number of terofisiankel functions of the second type and zeroth order. Unlike
in the finite sums of (52) and (53) small. the discrete complex image method, the proposed methodology

Figs. 7 and 8 depict the comparison of the results obtainddes not require the extraction of the poles of the spectra
using the proposed method for the electric field in space withi the Green’s functions. Once the source and observation
the results obtained from the application of DCIM. Morglanes have been identified, all required Green'’s functions are
specifically, the magnitude and phase of theomponent of generated simultaneously. Theplane location of the source
the electric field along the plane of the horizontal dipole iand observation points is embedded in the coefficients of the
examined. The DCIM calculation was based on the formulatioasulting finite sums, while the radial dependence appears in
of [6] and the calculation of the Sommerfeld integral usinthe argument of the Hankel functions in the fofsy,)Y/?p,
the modified path described in [5]. Once again, very gooalhere the constants, depend on the properties of the layered
agreement is observed. Further experimentation with the proedium.
posed methodology, using source and observation position andhe proposed methodology is applicable to both vertical and
layered substrate properties as parameters, proved the methadizontal dipoles. For the horizontal dipole case, the Sommer-
to be robust and accurate. feld choice of the vector potentials was used. Samples of our
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preliminary numerical experiments were presented to demornie] T. K. Sarkar and O. Pereira, “Using the matrix pencil method to esti-
strate the validity and accuracy of the proposed methodology. mate the parameters of a sum of complex exponentil&E Antennas

Propagat. Mag.vol. 37, pp. 48-55, Feb. 1995.

Further studies are currently in progress, aimed at better Uryr7; wm. 1. van Blaricum and R. Mittra, “A technique for extracting the poles
derstanding of the impact of the finite-difference grid size on ~ and residues of a system directly from its transient resporB&E

the accuracy of the generated closed-form expressions for t

e Trans. Antennas Propagauol. AP-23, pp. 777-781, Nov. 1975.
18] B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm

Green’s functlon_s. The finer the grid size, the larger the numb for electromagnetic solutions in layered medium structures—2D case,”
of terms presentin the closed-form expression. Currently, model  Radio Sci. vol. 35, no. 1, 2000.
order reduction is used to reduce the number of terms in thg® F. Ling, “Fast electromagnetic modeling of multilayer microstrip an-

tennas and circuits,” Ph.D. dissertation, Univ. of lllinois , Urbana-Cham-

closed-form expressions by keeping only the significant eigen- paign, 2000.
values in the finite-difference approximation of the differential [20] E. J. Grimme, “Krylov projection methods for model reduction,” Ph.D.
equations of the spectra of the vector potentials. Our prelimi-_  dissertation, Univ. of lllinois, Urbana-Champaign, 1997.

M. Abramovitz and |. StegunHandbook of Mathematical Func-

; . [21]

nary studies have shown that for distances from the source pmhzt tions Dover, U.K., 1965,

greater than one-fifth of the free-space wavelength, a reduceel] w. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanniity,
model of order equal to one-fifth of the number of discrete un- ~ merical Recipies in Fortran 77 Cambridge, U.K.: Cambridge Univ.

Press, 1992.

knowns is sufficient for excellent accuracy. However, this is no?zs] R. Freund, “Reduced-order modeling techniques based on Krylov sub-
the case for shorter distances. Thus, our ongoing studies are also spaces and their use in circut simulation, Namer. Anal. Manuscript

aimed at methodologies alternative to model order reduction fo

98-3-02 Murray Hill, NJ: Bell Laboratories, Feb. 1998.
[I'24] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-

expedmng_ the calculation of the finite sum of Hankel_functlons order interconnect macromodeling algorithrtEEE Trans. Computer-
that constitutes the closed form of the Green’s function. Aided Designvol. 17, pp. 645-654, Aug. 1998.
Even though the proposed methodology was presented for tHid] G. D. Smith,Numerical Solution of Partial Differential Equations: Fi-

case of shielded, planar, multilayered substrates, its extension to

nite Difference Methods New York: Oxford Univ. Press, 1985.

the unshielded case is possible and will be the topic of a forth-
coming paper.
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