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Abstract—A new wavelet-based technique to generate multires-
olution time-domain schemes is presented in this paper. By using
symbolic calculus, a rigorous and general formulation of subgrid-
ding at every level of multiresolution is obtained. As it is rigorously
equivalent to a finer finite-difference time-domain (FDTD) scheme,
it does not require any particular treatments for boundary condi-
tions. This technique has been successfully applied to the study of
microstrip structures. The near- and the far-field computation can
be both improved in terms of CPU time and memory storage, while
maintaining the same accuracy as the classical FDTD computation.

Index Terms—Far-field computation, FDTD methods, Haar
transforms, microstrip antennas, microstrip circuits, multiresolu-
tion analysis, subgridding, wavelet transforms.

I. INTRODUCTION

T HE use of wavelets has already been demonstrated to re-
duce the computer requirements (CPU time and memory

storage) when performing the electromagnetic analysis of
large structures [1], [2]. Recently, multiresolution time-domain
(MRTD) schemes have been introduced [3], [4] by using the
Galerkin’s formalism. The main interest of the MRTD scheme
is the new repartition of the information held by a field com-
ponent. The information is now split between an average value
(scale component) and details values (wavelets components).
The point is now the possibility to neglect wavelet components
that naturally leads to a coarser finite-difference time-domain
(FDTD) scheme. That thresholding is done at particular lo-
cations in the computation volume, which naturally defines
a subgridding process. Nevertheless, due to the complexity
of its usual formulation (lots of different basis functions), the
construction of MRTD schemes cannot be generalized easily at
any level of multiresolution. Moreover, as shown in [5] and [6],
MRTD boundary conditions usually need particular treatments.
This can be related to the fact that the schemes are not equiva-
lent to finer FDTD schemes. As a result, MRTD schemes seem
to be difficult to obtain for every level of multiresolution.

In this paper, we propose a new way to derive a MRTD
scheme from a classical FDTD scheme by using symbolic
calculus with a discrete wavelet transform (DWT) based on
the Haar Wavelet [7]. A wavelet transform is directly applied
on the FDTD update equations without using the Galerkin’s
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formalism. New MRTD update equations are then obtained
for every level of multiresolution. This procedure has the
advantage to rely on a very general formulation. It is applicable
to any level of multiresolution. It does not require any particular
treatment when boundary conditions are involved because the
MRTD update equations are automatically constructed from a
classical FDTD description of the studied structure at a finer
level (in which all boundary conditions are described as usual).
As a result, the obtained MRTD scheme is strictly equivalent to
that fine FDTD scheme. The subgridding process can also be
included in the symbolic calculus phase: practically, the update
equations for wavelet components to be neglected can bea
priori removed from the set of equations generated by symbolic
calculus. The whole procedure permits to automatically obtain
an MRTD scheme whose update equations are matched to any
desired structure with any desired level of multiresolution and
any desired subgridding. This technique was first initiated in
[8] using a one-dimensional (1-D) multiresolution.

To sum up, we describe a more general formulation that is
suitable for both 1-D and two-dimensional (2-D) multiresolu-
tion schemes in three-dimensional (3-D) FDTD codes. It could
be easily extended to 3-D MRTD schemes if required. We also
propose a new way of using wavelets to reduce computer re-
quirements in near- to far-field transformations. Such a com-
pression has already been obtained by using an additional DWT
procedure in the classical FDTD method [9]. Nevertheless, the
near field calculation could not be improved by this procedure.
As a validation, we applied the proposed method to the study of
a microstrip filter and to the near- and far-field calculation for a
microstrip antenna.

II. PRINCIPLE OF THE1-D MRTD SCHEME

A. General Update Equation for the FDTD Field Computation

Here, we introduce a general formulation for the updating of
the field components in the classical FDTD scheme. This for-
mulation is shown to be suitable for any point in the computation
volume whatever the particular conditions at this point.

As an example, let us consider the proposed update equation
for the -field component

(1)
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TABLE I
COEFFICIENTS IN THEFDTD SCHEME

where the coefficients , , , and are structure dependent,
and is representing a possible source term [10].

For a regular point in an homogeneous medium, we assume
that

and (1) reduces to the classical FDTD update equation [11].
On the other hand, if we let

we have the possibility to account for a lumped source element
at that point, as given in [10], [12].

We can also vanish (which is required if the field compo-
nent is located on a perfect conductor) by choosing

Indeed, we see that any particular treatment can be obtained
by a judicious choice of the four coefficient, , , and in-
troduced in (1).

Table I sums up the values of the coefficients for the most
usual treatments required in the modeling of planar microwave
circuits.

Practically, this general formulation permits to use a single
equation for updating all components in the FDTD volume.

By introducing the vector defined by

and the vector defined by

the update equation (1) can be rewritten as

(2)

Similar equations can be obtained to update the five other
fields components.

Only the ( , , , ) coefficients differ from one cell to the
other and from one component to the other.

B. DWT-Based MRTD Formulation

We now propose to use a DWT transform to obtain a new
MRTD scheme. We first recall that the classical FDTD scheme
can be seen as a decomposition of the fields components using
pulse basis functions [3]. From the multiresolution viewpoint,
these functions correspond to the scale functions of the Haar
basis [7]. As a consequence, a DWT transform can be used to
convert those fields components and to obtain a decomposition
with both scale and wavelet functions at a coarser level. We pro-
pose to apply this DWT transform directly to the classical FDTD
update equations (2) and not to numerical computed values. This
directly yields to the corresponding MRTD update equations. As
will be shown later, the main interest of this new approach is the
possibility of taking advantage of symbolic calculus to generate
automatically MRTD schemes for complex structures.

For the sake of simplicity, we first restrict the presentation to
a 1-D DWT transform. This means that although we use a 3-D
FDTD scheme, multiresolution is just applied in one particular
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direction ( -direction in the following). Practically, con-
secutive fields components in the-direction are used to define
an component vector (with and the level of wavelet
transform)

...
(3)

(For simplicity, indexes will not be written
in the following explanation if they add no significant infor-
mation). The Haar DWT can be expressed as a simple matrix
product

(4)

is a square orthogonal matrix representing the
1-D Haar wavelet transform in one direction and is
the vector formed by the wavelet components obtained after the
DWT, at time .

Using relation (2), the can be written in the fol-
lowing way:

(5)

where ( , respectively) is a diagonal matrix of size
composed by the ( coefficients, respectively) given by

...
...

...
. . .

. . .

and is a nonsquare matrix defined by the
equation shown at the bottom of this page.

Combining (4) and (5), we obtain

(6)

where

and

where we use index notation for numerotation in the MRTD
scheme, defined by

with the integer part of . are the wavelets compo-
nents ( is the index of dilatation, is the index of translation),

...
...

. . .
. . .

...
...

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .
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and is the scale component (functions, are defined as
in [7]).

The vector is defined in the same way as the vector
.

We also have

(7)

and

(8)

where

and is a block matrix defined by

where is the last row of the matrix.
This matrix expresses the inverse DWT for the

vector. It is different from because
the vector dimension and arrangement are not the same.

, thanks to the property of orthogonality of the
matrix.

By using relation (7) and (8) in (6), we then obtain the fun-
damental equation

(9)

This matrix equation provides the update scheme for each
MRTD component.

For example, the update equation obtained for the

component is

(10)

where is the general term of the Haar ma-
trix , and is the component from the vector (with

equals to or ). It should be noticed that the generated
scheme is a coupled scheme betweenand components of
electromagnetic fields.

The second term of this expression

comes from the fact that the FDTD compo-
nent is inside the MRTD cell, and not inside the

MRTD cell like other components
(see Fig. 1). As shown above, (9) provides a compact form for
the whole MRTD scheme.

It can be seen that these update equations are general and that
the particular physical conditions associated with a given point
(dielectric interface, ) are included in the matrix thanks
to (4).

As a consequence, no particular treatments have to be added
to account for specific boundary conditions. Perfectly matched
layer (PML) conditions can be obtained directly by this tech-
nique. Nevertheless, as Mur first-order absorbing boundary con-
ditions (ABCs) were directly available in our FDTD code, cor-
responding MRTD conditions were derived, by solving a linear
system of order (that system comes from the semiimplicit
formulation of those conditions).

One must also keep in mind that, by construction, such an
MRTD scheme is completely equivalent to a classical FDTD
scheme at a finer level. This property was not verified in previ-
ously published MRTD schemes [3], [4].

This equivalence can be released when wavelet components
are neglected in the MRTD scheme. This usually permits to
reduce the computer requirements without sacrificing the ac-
curacy. Indeed, although this scheme seems to be more com-
plicated than the FDTD one ( different update equations
against six update equations), it has the great property to con-
centrate most of information on the scale component (indexed
by ). It subsequently gives a rigorous formulation of sub-
gridding.

To illustrate, we consider the example with a level of
multiresolution ( ).
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Fig. 1. Example of 1-D y-coarse grid supported by the fine grid.

In this case, the Haar matrix is given by

(11)

and the update equation (10), in an homogeneous case, reduces
to

(12)

By neglecting all wavelet functions in this update equation
( , ), a four times coarser FDTD scheme in the-direc-
tion is obtained as follows:

This scheme reduces to a classical FDTD scheme with a space
step in the -direction equal to . Such an approximation can
be used to define a local coarse FDTD grid in the-direction.

C. Numerical Implementation

A last remark concerns the practical implementation of this
new MRTD scheme. Although general, (10) would be very time
and memory consuming if programmed directly (a lot of matrix
coefficients would be required at each time step and at each field
component). In practice, it is much more efficient to replace this
formal coefficients by their numerical values (this drastically
simplifies the equations as many zero coefficients are usually
involved). To do so, symbolic calculus is used to automatically
construct a specific implementation for each new structure. This
preprocessing step is very rapid and permits to largely improve
the simulation process. Practically, we first use a classical FDTD
interface to describe the studied structure. This permits to ob-
tain all the , , , and coefficients that are required in the

matrices. We then construct the update equations for each
field components in the FDTD volume using (10). Indeed, sets
of fields components with similar update equations are used to
reduce the total amount of update equations. (For example, all
the components in an homogeneous medium will have the
same update equations and will be grouped in the same set).
This construction of the MRTD scheme is done using symbolic
calculus. When subgridding is involved, it must be directly dealt
with during this process. The obtained source code is then com-
piled, linked, and executed.

III. PRINCIPLE OF A 2-D MRTD SCHEME

The 2-D MRTD scheme is derived like the 1-D MRTD
scheme.

The first step of the derivation is the same as explained before,
with the use of structure-dependent coefficients, , , and .

The second step now implies a 2-D DWT on the classical
FDTD update equation. ( , respectively) is the level of mul-
tiresolution in the ( -direction, respectively).

A matrix of size is defined by
taking consecutive fields component in the- and -direc-
tions (with and ).

By noting

...
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we define

...
...

...
(13)

The Haar 2-D DWT can now be expressed by

(14)

where is a matrix of size ,

( , respectively) expresses the DWT in the-di-
rection ( -direction, respectively). Matrices and

are block matrices built from the Haar ma-
trix. We take here (size ) and

) (matrix of size ). We
also have

(15)

This last relation implies and because of the par-
ticular form of the matrix. The relation (5) is now

(16)

where is a matrix of size
obtained by the same way as the matrix and
is a matrix.

Matrices , , and are block diagonal matrices built
from the , , and matrices used in the 1-D MRTD
scheme.

The dimension of is
because the update equation for thecomponent involves the
- and -components of . [The matrix for the

update equation has the size
].
By applying a wavelet transform to relation (16), we then

obtain

(17)

that is exactly the same equation as (9), but with matrices and
not only vectors.

Similar matricial equations are obtained for the other electro-
magnetic components. The new 2-D MRTD scheme obtained is
more complicated than the 1-D MRTD one ( equations
against ). Nevertheless, it leads to a 2-D subgridding.

As an example, for , the matrix is given
by

(18)

and update equations obtained for the component
are

(19)

(20)

(21)

(22)
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Fig. 2. Low-pass filter (all lengths in millimeters).

(a)

(b)

Fig. 3. (a)–(b) Simulations details in the area of the cut off frequency.

(where and , and for simplicity, indexes were
omitted)

A. Numerical Results

To validate the new MRTD scheme, two different structures
have been tested: a low-pass filter and a patch antenna with
notches.

1) First Validation: Low-Pass Filter:The first studied struc-
ture is a microstrip stepped impedance low-pass filter (Fig. 2).

Fig. 4. Fine and coarse grids around the thin line.

Fig. 5. Difference between fine and coarsest grids in the air.

Fig. 6. A andB slices from the low-pass filter (see Fig. 2).

TABLE II
CALCULATION TIME FOR SEVERAL SUBGRIDDINGS



2268 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

Fig. 7. Tested microstrip antenna.

Simulated results are given in Fig. 3 for the -parameter. The
analysis of such a structure using a uniform FDTD is highly
consuming both in memory storage and in simulation time be-
cause the cell size is imposed by the smallest dimension, which
is the width of the narrow inductive lines. The resulting mesh
size in the dimension is mm ( at the cutoff
frequency GHz).

The 2-D MRTD scheme permits to restrict this fine discretiza-
tion in the vicinity of the inductive lines, as shown in Fig. 2.
In the remaining computation volume, a coarser mesh is ob-
tained by neglecting the wavelets components. The reference
fine mesh uses 180 600 12 cells. For the simu-
lation, the coarse grid is 45 150 12 (as shown in Fig. 4),
with , . For the simulation,
the precedent coarse grid is also used and a coarsest grid (45
75 12) is used (as shown in Figs. 5 and 6), with .
Results show a great decrease in calculation time for a good ac-
curacy (Fig. 3). They are presented in Table II.

2) Second Validation: Patch Antenna with Notches:This
second example shows how the coarse MRTD grid defined
above can be used both in near- and far-field computations.
Moreover, the far-field computation is drastically reduced by
the use of subgridding.

Classically, for the FDTD scheme, a Huygens’ surface is de-
fined in the FDTD volume on which equivalent electric and
magnetic currents are calculated [13]. Thus, the tangential com-
ponents of the electric and magnetic fields first have to be stored
for each FDTD cell on the Huygens’ surface and at any time step
(or at a multiple of time step thanks to Shannon’s theorem).

A fast Fourier transform is then required to convert each of
these field components in the frequency domain. Finally, a near-
to far-field computation is performed in the frequency domain,
which involves a numerical integration on the Huygens’ surface.

It is obvious that the whole post treatment is both memory
and time consuming. This is due to the large number of cells
on the Huygens’ surface that leads to a large number of field
components to take into account. However, such a fine grid is
not required for the far-field computation. As a consequence, the
coarse grid can be used to reduce the cost of this post treatment,
which explains the improvement of memory storage and CPU
time. This is equivalent to only account for the scale components
of the equivalent radiating electric and magnetic currents on the
Huygens’ surface.

Fig. 8. Examples of several subgridding.

Fig. 9. E-plane copolar.

3) Numerical Results:Simulations are performed for the
microstrip structure described in Fig. 7; it is fed with a Gaussian
pulse, the fine grid is 70 100 15 cells, and the cell size
is about (fine grid) at the resonant frequency (9 GHz).
Results for the input return loss are presented in Fig. 8.

For the simulation, the vicinity of the metallizations
is meshed with the fine grid, and the rest of the volume with the
coarse grid. The point here is the possibility to get a correct de-
termination of the resonant frequency even with a partial coarse
grid. Results show a good agreement between the coarse com-
putation and the fine reference one.

In the simulation, almost all the volume of calculus
is coarse, except the vicinity of the radiating edges of the patch.
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Fig. 10. H-plane copolar.

Results for a coarse FDTD simulation are also given (7050
15 grid).
The resonant frequency is well determined for all MRTD sim-

ulations.
is not so good, which means subgridding must be

used carefully. Nevertheless, all MRTD results are much better
than the coarse FDTD ones. For the structure, the CPU time for

is divided by two in comparison with the fine FDTD
simulation.

In addition to the near-field computation, it is possible to take
more advantage of that coarse grid to compute the far fields. The
Huygens surface chosen on the fine grid is a 6464 FDTD cells
grid. Then coarse grid induced by the MRTD scheme is used to
calculate the far fields.

Results are compared with the one using the whole 6464
fine grid (the Huygens surface). Figs. 9 and 10 show the corre-
sponding radiating patterns for the- and -plane. It should
be noticed that no major difference is observed, except for the
4 4 grid. (The 32 32 and 16 16 grids are not presented
for clarity, as they give exactly the same results as the 6464
one). The 4 4 grid exhibits a larger discrepancy that results
from an unacceptable level of subgridding. As a consequence, a
better compromise is obtained for the 88 grid, which corre-
sponds to a reduction factor of 64 in both memory storage and
CPU time. Memory storage has decreased from 94 to 1.5 Mb,
and the execution time from 8 min to 8 s.

The equivalent grid size is about , which would not be
acceptable in the FDTD volume to compute the near field (it
would particularly not be enough to describe the structure and
its notches).

IV. CONCLUSION

A general formulation to obtain MRTD schemes using the
DWT has been presented in this paper. Its association with sym-
bolic calculus permits to automatically construct update equa-
tions and subgriddings for the study of planar structures. No spe-
cific treatments are needed to account for particular boundary
conditions and the equivalence with a finer FDTD scheme is
rigorous.

This new method has been successfully applied to study mi-
crostrip circuits and antennas. Its numerical efficiency is ob-
vious for structures in which geometrical details require a local
fine mesh.

The method has also been extended in order to benefit from
multiresolution in far-field computations. This largely reduces
the computation of radiation patterns in antenna simulation.
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