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An Efficient Analysis of Planar Microwave Circuits
Using A DWT-Based HAAR MRTD Scheme

Guillaume Carat, Raphaél Gillard, Jacques CiteMember, IEEEand Joe WiartMember, IEEE

Abstract—A new wavelet-based technique to generate multires- formalism. New MRTD update equations are then obtained
olution time-domain schemes is presented in this paper. By using for every level of multiresolution. This procedure has the
symbolic calculus, a rigorous and general formulation of subgrid- 44y antage to rely on a very general formulation. It is applicable
dlng_ atevery Ie\_/el of_multlr(_asolutlon is obtalned_. As itis rigorously t level of multi uti Itd t . ticul
equivalent to afiner finite-difference time-domain (FDTD) scheme, 0 any level or muiuresolution. .Qes no rgqUIre any particuiar
it does not require any particular treatments for boundary condi- ~ treatment when boundary conditions are involved because the
tions. This technique has been successfully applied to the study of MRTD update equations are automatically constructed from a
microstrip structures. The near- and the far-field computation can  classical FDTD description of the studied structure at a finer
?nea'i:’n(i::r']rirr‘]gr&‘fg;gfggfﬁ;gj;;;maec?ggszgzlr‘?:‘yStgg?gs&gt‘i'c')en level (in which all boundary conditions are described as usual).

" As aresult, the obtained MRTD scheme is strictly equivalent to

Index Terms—Far-field computation, FDTD methods, Haar that fine FDTD scheme. The subgridding process can also be
transforms, microstrip antennas, microstrip circuits, multiresolu- o1y ded in the symbolic calculus phase: practically, the update
tion analysis, subgridding, wavelet transforms. .

equations for wavelet components to be neglected can be
priori removed from the set of equations generated by symbolic
|. INTRODUCTION calculus. The whole procedure permits to automatically obtain
?Q_MRTD scheme whose update equations are matched to any
sired structure with any desired level of multiresolution and
y desired subgridding. This technique was first initiated in
using a one-dimensional (1-D) multiresolution.

HE use of wavelets has already been demonstrated to
T duce the computer requirements (CPU time and memo(il
storage) when performing the electromagnetic analysis %
large structures [1], [2]. Recently, multiresolution time-domai . . .
(MRTD) schemes have been introduced [3], [4] by using the To sum up, we describe a more general formulation that is

Galerkin's formalism. The main interest of the MRTD schemts-)Uitable for b‘?th 1-D and two.-dimensional (2-D) multiresolu-
is the new repartition of the information held by a field comgon schemes in three-dimensional (3-D) FDTD codes. It could

BS easily extended to 3-D MRTD schemes if required. We also

(scale component) and details values (wavelets compone pose a new way of using wavelets to reduce computer re-

The point is now the possibility to neglect wavelet componen |rer_nenrt]s n Inea;— tg far-ﬁgltd.trangorm_atlons. ggih a ICICDJ\TVT
that naturally leads to a coarser finite-difference time-domalfj €SS1on has aiready been obtained by using an adaitiona

(FDTD) scheme. That thresholding is done at particular kp_rocedure in the classical FDTD method [9]. Nevertheless, the

>(%Iear field calculation could not be improved by this procedure.
i

cations in the computation volume, which naturally define lidati lied th d method to the study of
a subgridding process. Nevertheless, due to the comple avalidation, we applied the proposed method lo the study o
icrostrip filter and to the near- and far-field calculation for a

of its usual formulation (lots of different basis functions), thé' .
construction of MRTD schemes cannot be generalized easil)ﬂ& rostrip antenna.
any level of multiresolution. Moreover, as shown in [5] and [6],
MRTD boundary conditions usually need particular treatments.
This can be related to the fact that the schemes are not equi%a- General Update Equation for the FDTD Field Computation

lent to finer FDTD schemes. As a result, MRTD schemes seeMy e e e introduce a general formulation for the updating of

to be difficult to obtain for every level of multiresolution. the field components in the classical FDTD scheme. This for-

In this paper, we propose a new way to deriye a MRT%ulation is shown to be suitable for any point in the computation
scheme from a classical FDTD scheme by using symbo

X X lume whatever the particular conditions at this point.

calculus with a discrete wavelet transform (DWT) based on As an example, let us consider the proposed update equation
the Haar Wavelet [7]. A wavelet transform is directly applie?iOr the £, -field component

on the FDTD update equations without using the Galerkin's *

n—+1
Tit(1/2),4:k

Il. PRINCIPLE OF THE1-D MRTD SCHEME
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TABLE |
COEFFICIENTS IN THEFDTD SCHEME

: E E E E
oefficient ” e ’ e S Ze
© S Xit1.jk ﬁl+%a,k Yitd gk 61+%J.k
Homogeneous medium 1 At At 0
(e,140) €, Ay T Az
»Ho itdk itd.k
Lumped resistive 1— g —otle At —at T e
I p 2R,si+%'jykA1Ay e‘.+%‘j)kAy s',+%vjykAz Roci 1 ;007580
voltage generator r Y3 i+ AiAT 1T AiAw T 7.9
(Rs7Vs) ZR, ¢ +% ]ykAsz 2Hse¢ +% JykAsz 3R, +%,j RIZY IR L PEEEY
dielectric interface 1 2AL 2AL 0
1 2 T - z
(€'5p0) (€°,0) T AT i T e TE T i

where the coefficients;, 3, v, andé are structure dependent, Practically, this general formulation permits to use a single
andv; /2 s representing a possible source term [10].  equation for updating al’,, components in the FDTD volume.
For a regular point in an homogeneous medium, we assuméy introducing theH»+(/2) vector defined by
that
HrHA/2)

_ 2i(1/2),5—(1/2) .k
Xig(1/2).5k = 1 n+(1/2)
At Hn+(1/2) _ HZi+(1/2>,j+(1/2>vk
—— /2
fi+(1/2),j,kAy Yit(1/2),5.k—(1/2)
At Hn+(l/2)

Yit(1/2),5,k+(1/2)

Bit/2),ik =

T T kA
® 20K ~
§=0 and theD vector defined by

and (1) reduces to the classical FDTD update equation [11]. D —

On the other hand, if we let (—/3i+(1/2),j,k Bit(1/2).5.k —Yit(1/2).5.k %‘+(1/2),j,k)

1— AtAz the update equation (1) can be rewritten as
ity in = 2Rs¢i4(1/2),5,kA2AY
+(1/2),5,k — — AItAT
1 n+1 — oF- _E™ DH>TA/2)
+ 2Rs€i+(1/2),j,kAZAy Tit(1/2),5.k i (1/2),4,k 7% (17205, - o 1))
At T8 2505 .
3 — 6i+(1/2)7j7kAy (2)
Bit(1/2),5,0 = ALAL
1+ 2R, €4(1/2),5,k D20y Similar equations can be obtained to update the five other
At fields components.
.. A Only the , 3, v, §) coefficients differ from one cell to the
_ Cit(1/2),5,k 27
Yit(1/2),5,k = — AtAT other and from one component to the other.
1+
2Rscit(1/2),5,kAZAY B. DWT-Based MRTD Formulation
At .
7 A We now propose to use a DWT transform to obtain a new
Sint1/2). i = s€it(1/2),5,kAF Y MRTD scheme. We first recall that the classical FDTD scheme
w 1+ AtAz can be seen as a decomposition of the fields components using
2Rs€i1(1)2),5,6 D20y pulse basis functions [3]. From the multiresolution viewpoint,

tHFse functions correspond to the scale functions of the Haar
%asis [7]. As a consequence, a DWT transform can be used to
convert those fields components and to obtain a decomposition
with both scale and wavelet functions at a coarser level. We pro-
pose to apply this DWT transform directly to the classical FDTD
update equations (2) and not to numerical computed values. This
directly yields to the corresponding MRTD update equations. As

Indeed, we see that any particular treatment can be obtainat be shown later, the main interest of this new approach is the
by a judicious choice of the four coefficient 3, v, andé in-  possibility of taking advantage of symbolic calculus to generate
troduced in (1). automatically MRTD schemes for complex structures.

Table | sums up the values of the coefficients for the most For the sake of simplicity, we first restrict the presentation to
usual treatments required in the modeling of planar microwasel-D DWT transform. This means that although we use a 3-D
circuits. FDTD scheme, multiresolution is just applied in one particular

we have the possibility to account for a lumped source elem
at that point, as given in [10], [12].

We can also vanish,, (which is required if the field compo-
nent is located on a perfect conductor) by choosing

it (1/2),5,k = Bit(1/2),5,k = Vit (1/2),5,k = Oir(1/2),5,6 = 0
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direction ¢-direction in the following). Practicaliyy/ E, con- where

secutive fields components in thedirection are used to define gt
anM component vector (with/ = 2! and! the level of wavelet Bl 4
transform) g

Ewl,o

Tit(1/2) 5y .k
_— G

T (1/2),5,k -0
n+1 Lt (1/2), 5wk

FDTD? L _ Tid(1/2),5+1,k Yt
Es - : ; ®) El‘z‘+(1/2>,jw,k
el e

Lit(1/2),5+M -1,k
| n+1
Ei\cIRTD — I EEREE M

- . . . . . . . wlii’o
(For simplicity, indexeg¢ + 1/2, j, k) will not be written B oy

in the following explanation if they add no significant infor- w,nﬂ'

H H H 1—¢,20 -1
mation). The Haar DWT can be expressed as a simple matrix B (ot
product

MRTD™ FDTD™
EY = WgEL . (4) g
Ewl,o

Wg is a squaréV! x M orthogonal matrix representing the

1-D Haar wavelet transform in one direction aB§'®™™" is Ew'_l,zzfl,_l
the vector formed by the wavelet components obtained after the Fi QD dw ok
DWT, at timen. and
Using relation (2), théEPT™P™"™ can be written in the fol- [T
lowing way: nH(1/2)
Bir(1/2),j—(1/2).k
nt(1/2)
EFDTD“+1 _ DIEFDTDn + D2HFDTDn+(1/2) Zi+(l/2).,j+(l/2),k M 1
x x
n+(1/2) .
+ D3V, ) /)
Zi(1/2) G4 (M- 1/2).k
whereD; (D, respectively) is a diagonal matrix of sizé x M Hﬂfll//;),j,k_u e
composed by the: (6 coefficients, respectively) given by = . 3M+1 M
/) '
ai+(1/2) ik 0 0 Yit(1/2),5+M—1,—(1/2)
- ' Ty SRRRREE
D = 0 Qi (1/2),+1,6 : Hy oy ik
1 . M
: 0 .
e . . n+(1/2
0 0 y(1/2)54mM—1.k Hy7-+<(1//2>),j+n/r71,A»+<1/2>

) ) ) where we use index notatighy for numerotation in the MRTD
and D, is a nonsquaré/ x (3M + 1) matrix defined by the scheme, defined by

equation shown at the bottom of this page. .
Combining (4) and (5), we obtain o _E <J + 1)
Jw = M

MRTD®T' _ FDTD" FDTD™ (/%) I
E = WeD.E, +WeD:H with E(z) the integer part of. E,."""" are the wavelets compo-

+ WD, VEPTD ™ gy nents {'is the index of dilatatior” is the index of translation),
—3; B; 0 0 —; 0 0 v 0 --- 0
Dy=| © —Bit1 Bt 5 0 —v41 O 0 vt1

0 0 —Biym—1 Bjrm—1 O 0 —vyim—1 0 -+ 0 7vyym—1
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andE2 is the scale component (functiotts ¢ are defined as MY MRTD#+(1/2)
in [7]) + Z Yi+(1/2),jw,k—(1/2))p
The vectoV2T Y/ is defined in the same way as the vector p=0
EFDTD™ M-1
We also have ' Z Py, Vit 1/2) j+a. k1)
EFDTD“ — WﬁlEMRTDn (7) M—1 -
x B Tx 1 Z MRTD+(1/2) )
and . Vit (1/2).dw kt+1/2) /P
p:
HFDTD"+<1/2> _ WleMRTD“*(l/” 8) M-1
" : Z (hp,aYi+(1/2),.5+a.k) (10)
where ¢=0
MRTD® (/2 ,
( zi+(1/2>,jwfu/2>,k) where(h;, ;)p.g=0....p—1 iS the general term of the Haar ma-
MRTD?+(1/2) trix Wg, and(A),, is thep component from thed vector (with
IRTTH(1/2) (H,, ; ) E P P p
HMED = I\,IE(TI]/;M’Y/Z%IMK) M A equals toE or H). It should be noticed that the generated
Vit (1/2).dyy k—(1/2) scheme is a coupled scheme betwéeand ¢ components of
(HMRID™ /2 electromagnetic fields
Yit(1/2).dw  k+(1/2) 9 T .
1. _ i The second term of this expression
andW = is a block(3M + 1) x (4M') matrix defined by
Wé“ 0 B 0 11 MRTD®+(1/2)
W=l 0 Wit o0 0 ( Zi4(1/2), sy —(1/2), WIM—1
" 0 0 Wpt 0 3M L
0 0 0 Wit ~
E Z (har—1,4Bi4(1/2) jfqa—M—1k)
whereW?, is the last row of théV ;' matrix. 9=0
This matrix expresses the inverse DWT for the
HMETD™ " yvector. It is different from W' because comes from the fact that thgZt(/» . FDTD compo-
the vector dimension and arrangement are not the sament is inside thé:, jw — 1, k) MRTD cell, and not inside the
Wzt = W}, thanks to the property of orthogonality of the;, jy, k) MRTD cell like otherH’ti’((f//Zi)J © (12 COMpONENts
WEg matrix. (see Fig. 1). As shown above, (9) provides a compact form for
By using relation (7) and (8) in (6), we then obtain the funthe whole MRTD scheme.
damental equation It can be seen that these update equations are general and that

the particular physical conditions associated with a given point

MRTD™ ' _ —1pMRTD?
Ex = WeDiWy By (dielectric interface, . .) are included in theD; matrix thanks

+ WDy W - HMRID™ /2 to (4).
+ WED?’WElngTD“W/”_ 9) As a consequence, no particular treatments have to be added
to account for specific boundary conditions. Perfectly matched
This matrix equation provides the update scheme for eaglyer (PML) conditions can be obtained directly by this tech-
MRTD E, component. nigue. Nevertheless, as Mur first-order absorbing boundary con-
For example, the update equation obtained for thitions (ABCs) were directly available in our FDTD code, cor-
E‘?b};o(lm 1. COMpONEN is responding MRTD conditions were derived, by solving a linear

system of ordef/ (that system comes from the semiimplicit

@ _ formulation of those conditions).

e Yt One must also keep in mind that, by construction, such an
MRTD") MRTD scheme is completely equivalent to a classical FDTD

=3 (3 i) el eq

¢7z+1

El 4,0

scheme at a finer level. This property was not verified in previ-

p=0 = ously published MRTD schemes [3], [4].
+ <( MRTD"(/2) M1 This equivalence can be released when wavelet components
Hik (/2w = (/) k are neglected in the MRTD scheme. This usually permits to
Mo reduce the computer requirements without sacrificing the ac-
Z (hat 1,085 (1/2) jg—ti—1 k)> curacy. Indeed, although this scheme seems to be more com-
=0 ’ plicated than the FDTD one&{/ different update equations
M— against six update equations), it has the great property to con-
Z < HMRID* /2 ) centrate most of information on the scale component (indexed
= /2w /2 by ¢1,0). It subsequently gives a rigorous formulation of sub-
I—1 gridding.
. Z (hp,q/371+(1/2),j+q,k)> To illustrate, we consider the example with a levet 2 of
7=0 multiresolution (4 = 4).
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LI+2.K LI+3.K LJ+4,]

1+172,J+4.K

E
X

1+1/2J-1,K

Fig. 1. Example of 1-D y-coarse grid supported by the fine grid.

In this case, the Haar matri¥'g is given by C. Numerical Implementation
(1/2) (1/2) (1/2) (1/2) A last remark concerns the practical implementation of this
(1/2) (1/2) —(1/2) —(1/2) new MRTD scheme. Although general, (10) would be very time
Wy = 11 0 0 (11) and memory consuming if programmed directly (a lot of matrix
V2 V2 coefficients would be required at each time step and at each field
0 0 1 1 component). In practice, it is much more efficient to replace this
V2 V2 formal coefficients by their numerical values (this drastically

and the update equation (10), in an homogeneous case, redgégglifies the equations as many zero coefficients are usually
to involved). To do so, symbolic calculus is used to automatically
- construct a specific implementation for each new structure. This
Emfﬁl/mww preprocessing step is very rapid and permits to largely improve
s At the simulation process. Practically, we first use a classical FDTD
= Eal oy gy interface to describe the studied structure. This permits to ob-
/2) /) tain all the«, 3, 6, and~ coefficients that are required in the
sz-+’<1/2>,jw+<1/z>,k - sz-+’<1/2>,m»7<1/2>,k D, matrices. We then construct the update equations for each
4Ay field components in the FDTD volume using (10). Indeed, sets
2 B of fields components with similar update equations are used to
greo _gPo reduce the total amount of update equations. (For example, all
B (1/2) 5w +(1/2).k Fit(1/2), 5w —(1/2),k ; . i
- 1Ay the £, components in an homogeneous medium will have the
(L2 (L2 same update equations and will be grouped in the same set).
HZ;;I/ZM.WHUM — H;fi(ll/zmw ik This construction of the MRTD scheme is done using symbolic
2W2Ay calculus. When subgridding is involved, it must be directly dealt
b (1/2) with during this process. The obtained source code is then com-
O H s Hy 2y i e 1y2) piled, linked, and executed.

Az

€

et (1/2)
2.0

(12) Il. PRINCIPLE OF A2-D MRTD SCHEME

By neglecting all wavelet functions in this update equation The 2-D MRTD scheme is derived like the 1-D MRTD
(%2,0, %1,1), a four times coarser FDTD scheme in theirec- scheme.

tion is obtained as follows: The first step of the derivation is the same as explained before,
it with the use of structure-dependent coefficiefats3, v, andé.
B2 e The second step now implies a 2-D DWT on the classical
_ Eﬁ?,o o At FDTD update equation,, (,, respectively) is the level of mul-
OsRRIwok e tiresolution in ther(y-direction, respectively).
g gt A matrix EFPTD™ of size M, x M,M, is defined by
S Q2w (/2 k T2 gy (/20 k taking E,, consecutive fields component in the andy-direc-
44y tions (with M, = 2= andM, = 2W).
H nta/2) H nt0/2) By noting
_ Yit(1/2), vy . k+(1/2) Yit(1/2) 5y k—(1/2)
Az E;‘/L:(Ll/zw,k
n+1
This scheme reduces to a classical FDTD scheme with a space Vit = B

step in they-direction equal td Ay. Such an approximation can

be used to define a local coarse FDTD grid in thdirection. el

Tit(1/2),5+My—1,k
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we define and M, M, update equations obtained for tlt#& component
are
Vi 0 0
N . 1
FDTD+1 0 Vigax O : e
Ex = . v . (13) El‘gw,+(1/2),jw,,k
0 . 0 e L At
0 . 0 Vi-l—]\lw—l,k T T +(1/2) G ok €
7 LD 7 LD
The Haar 2-D DWT can now be expressed by ' Ziy (D LDk i (17254 —(1/2)
/ n n —1 2A
EMRTD® _ W}Qg?):E)I-:DTD Wéﬁ (14) Y
’ gy T gy T
where E}C’IRTD" is a matrix of sizeM, x M,M,, W7 _ Rwrmawra/ae T T Fay (/) aw = (1/2) &
. . 2A
w E( , » respectively) expresses the DWT in thedi- 12 4 )
; : ; " ¥ e
rection (z-direction, respectively). MatncesWE() and N Ol /A
WF( . are block matrices built from théVg Haar ma- Az
trix. We take hereW 2P o = Wg (size M, x M,) and (19)
Wil = (Wg Wg,...,Wg) (matrix of sizeM; x M,). We gt
y y - -
also have 2wk
_ ¢I¢9n At
HFDTD"+<1/2> W2D 1Hl\iRTD*‘+<1/2>VV (15) T T/ 2) g ok + e
€ Ey- H¢$¢yn+(1/2> H¢$¢y71+(1/2>
This last relation implieV 2P andW 2P because of the par- : Z"W“””‘jw’“”z”"ZA Tw £/ dw — (/) k
. nu+(172) . . .
ticular form of theHF TP matrix. The relation (5) is now 4
v g H(/2) (/)
FDTD#+! FDTD" FDTD*+(1/2) 3H? ¥ + H?
E; = DB, + D:H 4 TR/ e T ) g /2
4+ D3V ui1/2y  (16) 2Ay
2yt (/2) w o mH(1/2)
FDTD*T(/2) . . . ;5 v ) — HZS vy .
whereH is a matrix of sizeM, x M,(3M, + 1) 4 Lw Q2w b /2) fw +(1/2) Jw - (1/2)
obtained by the same way as BEPTP" matrix andV“+(1/2) Az
is aM, x M,.M, matrix. (20)
MatricesD, DQ, and Ds are block diagonal matrices built E;v E#)y( .
i +(1/2 k
from the D1, D2, and D3 matrices used in the 1-D MRTD % e At
oy
scheme. o =FEY ¢+<1/2>j =
. . n4(1/2) . W IR
The dimension ofHFPTP is M, x M,(3M, + 1) e ) ¢ o g )
) e "
because the update equation forE]Lecomeonent involves the . Zigp(1/2), 5y +(1/2) i 1(1/2) vy —(1/2) &
y- andz-components off. [The HFPTP matrix for the 20y
E. update equation has the s{@df, +1) x (3M,+1) (3M, +
o T (1/2) a oy (1/2)
Dl v — HY"
. . i H(1/2),5m +(1/2),k s +(1/2) 50w —(1/2),k
By applying a2D wavelet transform to relation (16), we then w L0/ I 12 22y w HU/2) w72
obtain ¢U7z+(1/2) . wn,¢y71+(1/2>
E)]:TRTD““ _ WI%DDIWQD— El\cmTDn + Jw +(1/2), 5w k+(1/2>A Yig +(1/2), 5w k—(1/2)
2D 2P~ g yMRTD®H(/2) %
1N nt(1/2) "
+ WEPD;W3EP™ vy MRTD (17) e
Tiyy +(1/2), 5y &
that is exactly the same equation as (9), but with matrices and _ z=y¢" + ﬁ
not only vectors. Fiy +(1/2) 5wk €
Similar matricial equations are obtained for the other electro- ) L T
magnetic components. The new 2-D MRTD scheme obtained is - ”W“”””W“””’;A Tl /2 g (/)
more complicated than the 1-D MRTD or&\{.. M, equations y
againsitM,). Nevertheless, it leads to a 2-D subgridding. waynmm Hw%ynmm
As an example, fot =1, =1, = 1, theWg matrix is given 4 HwrO/2) w2k T iy /) sw — (/) k
by 2Ay
Loy H(1/2) oy (1/2)
1 1 PP _ ¥y
- L Y a/2)w kr/2) Yigy +(1/2)5vy b —(1/2)
we= |V a8) =
V2 V2 (22)
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fine grid
\

Fig. 2. Low-pass filter (all lengths in millimeters).

*fine_fded”

60 1 1 1
0

frequency (GHz)

*fine_fdtd’ T

(dB_)25 F ;" 'MRTD_I' '+ J
230 F 'MRTD_2’ |
350 y |
40 - B
_45 1 1 I3 1 1 Il 1

1 1.1 1.2 13 14 L5 1.6 1.7 1.8
frequency (GHz)
(b)
Fig. 3. (a)—(b) Simulations details in the area of the cut off frequency.

coarse grid

fine grid

Fig. 4. Fine and coarse grids around the thin line.

& oAk
ay}_ -
—l - 8dy
Y
fine grid coarsest grid

Fig. 5. Difference between fine and coarsest grids in the air.

fine grid : Ax , Ay
coarse grid: 4Ax , 4Ay
Z

.

y

.
T
s
coarsest grid: 4Ax , 8Ay
LA

substrate

(Wherey = 11 g and¢g = ¢y o, and for simplicity, indexes were rig 6. 4 andB slices from the low-pass filter (see Fig. 2).

omitted)

A. Numerical Results

To validate the new MRTD scheme, two different structures
have been tested: a low-pass filter and a patch antenna with

notches.

1) First Validation: Low-Pass Filter: The first studied struc-
ture is a microstrip stepped impedance low-pass filter (Fig. 2).

TABLE I
CALCULATION TIME FOR SEVERAL SUBGRIDDINGS

Simulation | Calculation time
fine_fdtd 13h
MRTD_1 1h15
MRTD_2 57min
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Huygens’ surface 1.84

RREIRRITTTRREST

Fig. 7. Tested microstrip antenna.

Simulated results are given in Fig. 3 for thg -parameter. The L ' e rT D
analysis of such a structure using a uniform FDTD is highly 8 ~ . 'COARSE_FDTD’ " MRTD.2 = =+
consuming both in memory storage and in simulation time be- )

cause the cell size is imposed by the smallest dimension, whict (jé)l or
is the width of the narrow inductive lines. The resulting mesh a2
size in thex dimension isd, = 0.1 mm ()\o/750 at the cutoff ul
frequencyf. = 1.5 GHz).

The 2-D MRTD scheme permits to restrict this fine discretiza- ~ °[

tion in the vicinity of the inductive lines, as shown in Fig. 2. BEYS

In the remaining computation volume, a coarser mesh is ob- , , , , ,

tained by neglecting the wavelets components. The referenci 86 8.65 87 875 88 8385 89
fine mesh uses 18@ 600 x 12 cells. For theMRTD; simu- frequency (GHz)

lation, the coarse grid is 45 150 x 12 (as shown in Fig. 4),
with d,, ~ A\g/175, d, =~ Xo/75. For theMRTD, simulation,
the precedent coarse grid is also used and a coarsest gnid (45

Fig. 8. Examples of several subgridding.

75 x 12) is used (as shown in Figs. 5 and 6), with~ Xq/37. I ‘ ' '

Results show a great decrease in calculation time foragoodac  °f ]

curacy (Fig. 3). They are presented in Table II. 2y ]
2) Second Validation: Patch Antenna with Notch&his 4t 1

second example shows how the coarse MRTD grid defined ' |
above can be used both in near- and far-field computations @B |
Moreover, the far-field computation is drastically reduced by
the use of subgridding.

Classically, for the FDTD scheme, a Huygens’ surface is de-
fined in the FDTD volume on which equivalent electric and .
magnetic currents are calculated [13]. Thus, the tangentialcom ™ s s 40 2 o 0 40 60 80
ponents of the electric and magnetic fields first have to be storec angle (degree)
foreach FDTD cell on the Huygens’ surface and at any time step
(or at a multiple of time step thanks to Shannon’s theorem). F19- 9. E-plane copolar.

A fast Fourier transform is then required to convert each of
these field components in the frequency domain. Finally, a near-3) Numerical Results:Simulations are performed for the
to far-field computation is performed in the frequency domaimicrostrip structure described in Fig. 7; itis fed with a Gaussian
which involves a numerical integration on the Huygens'’ surfacpulse, the fine grid is 7« 100 x 15 cells, and the cell size

It is obvious that the whole post treatment is both memoig about)y/65 (fine grid) at the resonant frequency (9 GHz).
and time consuming. This is due to the large number of celResults for the input return loss are presented in Fig. 8.
on the Huygens’ surface that leads to a large number of fieldFor theMRTD; simulation, the vicinity of the metallizations
components to take into account. However, such a fine gridissmeshed with the fine grid, and the rest of the volume with the
not required for the far-field computation. As a consequence, tbearse grid. The point here is the possibility to get a correct de-
coarse grid can be used to reduce the cost of this post treatmtrtnination of the resonant frequency even with a partial coarse
which explains the improvement of memory storage and CRid. Results show a good agreement between the coarse com-
time. Thisis equivalentto only account for the scale componemistation and the fine reference one.
of the equivalent radiating electric and magnetic currents on theln the MRTD- simulation, almost all the volume of calculus
Huygens’ surface. is coarse, except the vicinity of the radiating edges of the patch.

64x64_GRID
8x8_GRID "
4x4_GRID

10
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0 T T
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4 F B
IEI 64x64_GRID
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4x4_GRID -~~~
3 * (1]
-10
(2]
-12 - b
_14 1 | | 1] 1 " | 1 |
-80 -60 -40 -20 0 20 40 60 80 [3]
angle (degree)
Fig. 10. H-plane copolar. [4]
Results for a coarse FDTD simulation are also given %780 [5]

x 15 grid).

The resonant frequency is well determined for all MRTD sim-
ulations.

MRTDs is not so good, which means subgridding must be [6]
used carefully. Nevertheless, all MRTD results are much better
than the coarse FDTD ones. For the structure, the CPU time for
MRTD:s is divided by two in comparison with the fine FDTD
simulation.

In addition to the near-field computation, it is possible to take
more advantage of that coarse grid to compute the far fields. Th? !
Huygens surface chosen on the fine grid is 684 FDTD cells
grid. Then coarse grid induced by the MRTD scheme is used to
calculate the far fields. (10]

Results are compared with the one using the whole @&#
fine grid (the Huygens surface). Figs. 9 and 10 show the corrg11)
sponding radiating patterns for the- and H-plane. It should
be noticed that no major difference is observed, except for thﬁZ]
4 x 4 grid. (The 32x 32 and 16x 16 grids are not presented
for clarity, as they give exactly the same results as the @4t
one). The 4x 4 grid exhibits a larger discrepancy that results
from an unacceptable level of subgridding. As a consequence, a
better compromise is obtained for the<88 grid, which corre-
sponds to a reduction factor of 64 in both memory storage a4
CPU time. Memory storage has decreased from 94 to 1.5 M,
and the execution time from 8 min to 8 s.

The equivalent grid size is abod /8, which would not be
acceptable in the FDTD volume to compute the near field (§
would particularly not be enough to describe the structure a
its notches).

(8]

[13]

IV. CONCLUSION

A general formulation to obtain MRTD schemes using the
DWT has been presented in this paper. Its association with sy
bolic calculus permits to automatically construct update equ
tions and subgriddings for the study of planar structures. No sj
cific treatments are needed to account for particular bounds
conditions and the equivalence with a finer FDTD scheme i
rigorous.

This new method has been successfully applied to study r
crostrip circuits and antennas. Its numerical efficiency is o

2269

, The method has also been extended in order to benefit from
multiresolution in far-field computations. This largely reduces
the computation of radiation patterns in antenna simulation.
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