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Optimal Shape Design of Microwave Device Using
FDTD and Design Sensitivity Analysis
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Abstract—In this paper, a novel optimal shape design method is
proposed using the finite-difference time-domain (FDTD) method
and the design sensitivity analysis to obtain broad-band charac-
teristics of microwave devices. In shape design problem, the nodes
that describe the shape of geometry to be optimized are taken as de-
sign variables. The design sensitivity is evaluated using the adjoint
variable equation that is obtained from a terminal-value problem.
The adjoint equation can be solved by the FDTD technique with
the backward time scheme. With this method, a -band unilat-
eral fin line is tested to show validity.

Index Terms—Design sensitivity analysis, FDTD, optimal shape
design algorithm.

I. INTRODUCTION

SINCE the 1970’s, the concept of design sensitivity anal-
ysis (DSA) has been studied and presented in structural

engineering [1]. The DSA concerns the relationship between
the objective function and design variables, in which the ob-
jective function is represented in a form of the derivatives of
design variables. In the shape optimization problem, the objec-
tive function can be a performance or a response of the device
and the design variable is the shape of the device. There are
two procedures, i.e., the direct differentiation and adjoint vari-
able methods, to evaluate the design sensitivity. First, the direct
differentiation method is used to obtain the design sensitivity
from a direct differentiation of the system equation with respect
to design variables. The disadvantage of this method is that it
requires solving the system equation for each design variable.
Second, the adjoint variable method is used to introduce the ad-
joint variable vector and derive the adjoint variable equation.
Once this adjoint variable equation is solved, design sensitivi-
ties can be calculated, which requires only a moderate amount
of computation.

Recently, optimization methods for waveguide structures
based on vector finite-element method (FEM) and the DSA
in the frequency domain was proposed by Leeet al. [2]–[4].
The methods may be appropriate to obtain optimal shape of
device that gives proper performances in a narrow frequency
range, not in a wide frequency range. In this paper, in order
to design the optimal shape working in a wide frequency
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range, we propose a new shape design algorithm based on the
finite-difference time-domain (FDTD) technique that is one of
the popular time-domain analysis techniques [5].

When we use the FDTD technique in the optimizing process,
however, the design sensitivity cannot be obtained directly
because the adjoint variable equation in the FDTD algorithm
cannot be derived in a straightforward manner, while that in
FEM can be. Therefore, we employ an adjoint variable equation
that is derived from system matrices of finite-element time-do-
main (FETD) formulation. This adjoint variable equation is
then transformed as the coupled Maxwellian curl equations.
These curl equations are solved by the FDTD method and the
backward time scheme.

In an optimal shape design problem, since the shapes are al-
lowed to change at each design iteration, the structured grids
are not adequate to model the complex shapes. In this paper, the
unstructured quadrilateral meshes are used to model the com-
plex shape of problems. In order to deal with the general shape
problems, the discrete surface integral (DSI) method or planar
generalized Yee (PGY) algorithm [6], [7] has been employed in
the unstructured design space and the standard Yee algorithm in
the rest of space.

To demonstrate the validity of the method, we applied
the shape optimization method to a -band unilateral
fin-line structure to obtain broad-band transition between the
rectangular waveguide and the fin line with a quarter-wave
transformer. The objective function was defined as the trans-
mitted energy at the fin gap, which should be maximized, and
in order to reduce the computing time, the transparent field
source scheme [8] was introduced.

To reduce the computational domain, the Berenger’s per-
fectly matched layer (PML) technique [9] was adopted when
the electromagnetic fields and adjoint variables are analyzed.

II. DSA BASED ON THEFETD

From Maxwell’s equations, the vector wave equation is
written as

(1)

where denotes relative permeability, denotes relative per-
mittivity, denotes velocity of light, and denotes an im-
pressed electric current density. Using the edge elements and
Galerkin’s formula, one can discretize the vector wave equation
and construct the system equation with initial conditions as

(2a)

(2b)
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where denotes the time derivative andthe tangential electric
field along the edge. The elemental matrices and load vector of
(1) contain the integral of the following:

(3a)

(3b)

(3c)

where is a vector basis function that has a tangential compo-
nent only along theth edge.

In order to obtain a desired response and estimate the design
process, an objective function is defined as

(4)

where is a fixed final time and an arbitrary differentiable
function of and . In an optimal shape design problem, the de-
sign variable is defined as the position vector of the node of
the shape that is to be optimized. is a observation domain
where the objective function is evaluated. The DSA can be con-
sidered as an evaluation of the partial derivative values of the
objective function with respect to the design variables. The first
variation of is written as

(5)

and the sensitivity is represented as

(6)

where is the number of . In general, the field variablehas
an implicit relation with the design variables and can
be obtained using an indirect method. There are two methods
to calculate (6), which are the direct differentiation method and
the adjoint variable method. In this paper, the adjoint variable
method [10] is favorable due to its computational efficiency.

Premultiplying (2a) by the transpose of an adjoint variable
vector and integrating over the time interval ,
we obtain

(7)

Since this equation must hold for arbitrary, which is indepen-
dent of design variable, take the first variation of (7) to obtain
the relationship and rewrite, using the integration by parts

(8)

where is the transpose of . Since (8) must hold for
arbitrary , may be chosen so that using the optimal
control theory [11], [12], the coefficients of terms involving

and in (6) and (8), are
equal. To find such a requires that

(9a)

(9b)

where . Equation (9a) is an adjoint equation of (2a)
and (9b) is a terminal condition on for solving (9a). Thus,
the above equation is a terminal-value problem. The adjoint
equation (9a) has a same discretized form as (2a), except the
forcing term and terminal condition. The same boundary con-
ditions in (2b) must be applied to (8), except the absorbing
boundary condition (ABC). To deal with terminal conditions,
the backward time scheme is introduced. With this
variable, , , and the terminal
conditions of (9b) for the variable become initial conditions in

. Thus, the backward time initial boundary-value problem for
the is

(10a)

(10b)

where the superscript denotes a backward time variable and
. Thus, the adjoint equation is physically the same as

the original equation, but with a backward time step and a load
vector. Using (6), (8), and , we obtain the design sensitivity
as

(11)
where

(12)

The elemental matrices (3a)–(3c) are dependent on the geom-
etry of the problem. That is, they can be explicitly represented
as functions of geometry and material properties of the model.
Therefore, we can calculate a derivative of (3a)–(3c) with re-
spect to and obtain the sensitivity information.

III. DSA BASED ON THEFDTD

In above, the design sensitivity, which is a derivative of the
objective function with respect to the design variables, was able
to be derived using the FETD and the adjoint variable method.
In this section, we derive the design sensitivity using the FDTD
technique from the uniqueness theorem. The electric and mag-
netic fields can be calculated by applying the FDTD technique
to the Maxwell’s equations. Note that from the uniqueness the-
orem, the solutions that are obtained using the FDTD must theo-
retically be equal to the ones from the FETD. Therefore, the dis-
cretized matrices of (2a) can be considered as the corresponding
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operators to the FDTD scheme. Therefore, we can change (9a)
as the coupled Maxwellian curl equations as follows:

(13a)

(13b)

subject to

(13c)

where and are adjoint electric- and magnetic-field in-
tensity vector, and these adjoint variable vectors satisfy the con-
stitutive relation the same as the electromagnetic-field vectors.
That is, and . In (13b), is a pseu-
doelectric current density vector and can be obtained using the
relation of

(14)

Since is a function of , , and , the left-hand side of (14) is
known. Since the observation point is located at the edge of an
element, a pseudoelectric current density can be defined as

(15)

where ( ) is the center of the th edge, which is
defined as observation plane and is a delta function.
Then, if the only -directional fields are observed, the relation
on the left-hand side of (14) becomes

(16)

and using (14) and (16), a pseudoelectric current density is ob-
tained from

(17)

Note that is an infinitesimal pseudoelectric current ele-
ment. Thus, this pseudocurrent density is not an exact source of
the FDTD scheme. In order to apply to the FDTD solver,
the FDTD pseudocurrent density can be represented as follows
[13]:

(18)

Using the backward time scheme, (13a)–(13c) can be
rewritten as

(19a)

(19b)

subject to

(19c)

where is time reversed of (17) and .
Equations (19a) and (19b) have opposite signs from the orig-
inal Maxwell’s equations. These Maxwellian curl equations can
be discretized using the central-difference relation in time and
space as follows for the TE case:

(20a)

(20b)

(20c)

Since the FDTD pseudocurrent source is a known function,
and can be obtained. Note thatis

a backward time clock and, thus, the adjoint variables are time
reversed. Therefore, the real-time adjoint variables are

(21a)

(21b)

(21c)

In (21b) and (21c), and are defined at the center
of edge and can be considered to be the same as the solutions

of (9a). Inserting the field and adjoint variables into (11),
the sensitivity information can be calculated in the same way as
the FETD.

IV. OPTIMIZATION ALGORITHM

Using the sensitivity information (11), we can perform the
optimal shape design of a given geometry. However, since the
objective function is dependent on the design variables in an
implicit manner and the system equation is a nonlinear func-
tion of design variables, an iterative method is preferred to find
the optimum value of the objective function. Among many op-
timization schemes, the steepest descent method is employed in
this paper due to its simplicity. This method searches the optimal
point, iteratively changing the design variables. The iterative up-
dating process of the design variable is as follows:

(22)

where denotes the design variable at theth optimization it-
eration step, and is the change of the design variable, which
is defined as

(23)
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Fig. 1. Shape optimization algorithm using the FDTD technique. When
regeneration meshes, the quality of grids should be maintained as uniformly
as possible.

where means the normalized directional vector anddenotes
the length. Using (11) and (23)

(24)

(25)

where is the norm of the design variable vector.
Using (23)–(25), (22) is rewritten as

(26)

From the updated design variable vector, we can obtain the new
shape of the geometry to be optimized. Note that, in case of
maximization of the objective function, the sign of (24) is not
negative (i.e., ), but positive (i.e., ). This process is iteratively
performed when the objective function value is satisfied with a
given tolerance or converges. Fig. 1 shows the shape optimiza-
tion algorithm using the FDTD technique and design sensitivity.
At each optimization process, as the shape is changed, the grids
should be regenerated.

V. DSI AND ADJOINT VARIABLE EQUATIONS

In the optimal shape design process, the shape of geometry
is changed and may be more complex. Thus, the rectangular
or structured grids are not adequate and the unstructured ones
are needed. However, using the unstructured grids, the standard
Yee algorithm cannot be used. A general method to deal with the
unstructured grids was introduced by Madsen [14]. This method
is based on the integral forms of Maxwell’s equations and the
dual-grid concept, and the key idea is the projection scheme,
which projects the face normal components into the dual edge.
The electric fields are defined along each edge of primary grids,
and magnetic fields are located along each edge of secondary
grids. Similar to the electromagnetic fields, the DSI scheme has

to be applied to the adjoint variables in the unstructured grid
region. Rewriting (24a) and (24b) as integral forms

(27a)

(27b)

where and are the primary and secondary surfaces, re-
spectively, and and are the primary and secondary con-
tour over each face. The backward time derivative is approx-
imated using a central-difference scheme and then (27a) and
(27b) are discretized as follows:

(28a)

(28b)

where and are the normal vector to the primary and sec-
ondary face, and and are the area, and and are the
edge vector of the primary and secondary grids. Since the grid
is unstructured, there is a possibility that the edge vector is not
parallel to the normal vector. Therefore, it is necessary to project
the normal vector onto the edge vector, which is an interpolation
concept. Using the projection scheme, the adjoint magnetic flux
density vector is

(29)

where is the number of shared grids and is the number

of edges. is a local value with theth and the th corner
shared by the face. is a weighting factor and, in this paper,
we use . Finally, the adjoint magnetic flux density,
which is parallel to the secondary grid, is obtained as

(30)

The adjoint magnetic-field intensity is calculated using the
constitutive relation. Similarly, the adjoint electric-field inten-
sity is

(31)

However, if the above DSI scheme is not well posed, the
late-time oscillation may occur and be conditionally stable. In
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order to make it unconditionally stable, we use the symmetric
projection scheme [7].

VI. M ODIFIED PML FORADJOINT VARIABLE EQUATIONS

To solve the adjoint equation, the PML equations have to be
modified. Otherwise, the adjoint fields are divergent according
to the progress of the time step. This is due to the backward time
scheme. Substituting and for
and in the TE case, and using the backward time scheme,
the PML equations for the adjoint variables are

(32a)

(32b)

(32c)

(32d)

where . Applying the exponential time step-
ping to (32a)–(32d), however, we can find that the exponents
are positive, which means that the adjoint variables in the PML
region are exponentially divergent according to time stepping.
This phenomenon is not physical and one can easily prove that
the same ABC can be applied to the adjoint variable equation
with the backward time scheme [15]. Therefore, the lossy ma-
terials in the PML region of adjoint variable equation have to
absorb the outgoing adjoint waves. Thus, to absorb and decay
the adjoint variables, the electric conductivities and magnetic
losses have to be negative. That is,

(33a)

(33b)

where and are positive real constants. Inserting
(33a) and (33b) into (32a)–(32d), the modified PML equations
for adjoint variables can be represented as follows:

(34a)

(34b)

(34c)

(34d)

Actually, these modified PML equations are successful in ab-
sorbing the adjoint variables when solving the adjoint equations
by the FDTD. In three-dimensional problems, the adjoint vari-
able method can be extended in the same way as before.

VII. N UMERICAL EXAMPLES

The proposed optimization method was applied to the
-band unilateral fin line to obtain the broad-band transition

taper shape. Since it was first proposed by Meier [16], the fin
lines have been taken attention at millimeter wavelengths due to

Fig. 2. Structure of aKa-band unilateral waveguide to fin-line transition.
In this paper, a continuous quarter-wave dielectric transformer was used for
broad-band matching.

its large bandwidth, easy fabrication, and absence of radiation
loss. Fig. 2 shows a typical unilateral fin-line structure. In
order to minimize a dielectric discontinuity, the continuous
quarter-wave transformer is adopted as Fig. 2.

Since the fin line is located in the rectangular waveguide
(WR28 in our example), it cannot support the TEM wave.
Therefore, the impedance and propagation constant are de-
pendent on frequency and the shape of the fin line. In order
to reduce the reflection loss in a wide frequency range, the
impedance has to be smoothly changed in the propagation
direction, which results in a smooth taper shape. The impedance
technique [17] is an approximate method to obtain the smooth
transition based on the theory of small reflections.

When one solves the fin lines using the FDTD with an electric
current source, the fields propagate for a long time. Thus, it takes
many time iteration steps to require the fields below a tolerance.
In this paper, we adopt the transparent field sources [8], which
resemble the hard field sources without any scattering of energy.
Although the time for solving impulse responses is required, the
additional computational time is negligible compared with the
total solving time. In our case, the Ricker wavelet is used for the
driving transparent field source. The Ricker wavelet is defined
as

(35)

where GHz and . Fig. 3 shows the initial
shape of the straightly tapered fin line and the design variable
points. The observation plane was placed at the uniform fin gap.
During the optimization process, the design variable points are
allowed to move along the only-direction holding the sym-
metric constraints. The objective function in this example is de-
fined as

(36)

where is the total transmitted electric field at the obser-
vation plane. If the transmitted energy is maximized, the return
loss is minimized. Fig. 4 shows the values of the objective func-
tion normalized by the initial value as the iteration proceeds.
The design process stopped at the 18th iteration due to the con-
straint of fin-line position, which is a limitation to maintain uni-
form grids, and Fig. 5 shows the change of fin-line shapes as the
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Fig. 3. Initial fin-line shape with straight taper. The design variable points are
located on the edge of fin lines. The number of design variables is about 25.
The y-axis movements of the upper design variable points are limited to the
half-height of waveguidey .

Fig. 4. Objective function value normalized by initial value versus the design
iteration. Near the tenth iteration, the objective function is fluctuated. This is
probably due to the quality of grids.

Fig. 5. Shape variation according to design iteration. The design process
stopped at the eighteenth iteration to maintain the quality of grids as uniform
as possible.

design iteration proceeds. The transition is flared toward the uni-
form waveguide section, as is expected. Fig. 6(a) and (b) shows
the two-dimensional unstructured quadrilateral grids at the tenth
and eighteenth design iteration steps, respectively. At the eigh-
teenth grids, the number of elements is 697 and the number of
edges is 1436, and the number of vertical layers is 21. There-
fore, the number of unstructured brick elements is 14 637.

The number of total brick elements including the structured
and PML grids is 51 429. Fig. 7 shows the magnitude of trans-
mitted electric fields at the observation plane in the time domain.
As is expected, the intensity of the transmitted field of the eigh-
teenth step increases from that of the initial shape. Fig. 8 shows
the results in the frequency domain, which are obtained by the
Fourier transformation of Fig. 7. The transmitted energy of the
eighteenth designed model is significantly increased compared

(a)

(b)

Fig. 6. Two-dimensional unstructured grids in they–z-plane. The
unstructured brick elements are generated by cascading in the vertical
x-direction. (a) Tenth iteration. (b) Eighteenth iteration. As the last design
variable point approaches the top or bottom of the waveguide, the small size
grids are shown.

Fig. 7. Transmittedy-directional electric field in the time domain at the
observation plane. The dotted line is in the case of the initial shape and the
solid line is in the case of the eighteenth designed shape.

Fig. 8. Fourier transformation results of Fig. 7. The line with a square is in the
case of the initial shape and the solid line is in the case of the eighteenth design.

to that of the initial model over a broad band, and any fields
did not propagate below 21 GHz, which is the lowest cutoff fre-
quency. Fig. 9 shows the analytically designed transition model
using an exponential impedance taper. Fig. 10 shows the com-
parison of numerical simulations between the numerically de-
signed and analytically designed models in the frequency do-
main.
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Fig. 9. Analytic fin-line shape with the exponential taper. The impedance
function varies from 200 to 450 toward the waveguide section.

Fig. 10. Comparison of the Fourier transformation results between the
proposed design method and analytic design.

TABLE I
CPU TIMES FORONE DESIGN PROCESS

The result of the analytic model gives slightly better perfor-
mance than that of the numerically designed model. This is due
to the moving limitations in the design variable points.

Table I represents the computational time that is measured on
a 500-MHz Pentium III based on the Linux system. The CPU
time of mesh generation is sufficiently negligible compared with
that of field or adjoint analysis, and the CPU time of field anal-
ysis is equal to that of adjoint analysis.

VIII. C ONCLUSIONS

A new optimal design method for the shape design of
broad-band microwave devices based on the FDTD technique
and DSA has been presented in this paper. Using the adjoint
variable method, the design sensitivity was obtained by only
two simulations at each design process, which is regardless of
the number of design variables.

The proposed optimal shape design algorithm has been veri-
fied by designing a -band unilateral fin-line transition. The
final transition shape is similar to the exponential taper.

Lastly, it is obvious that the accurate evaluation of design
sensitivity is prerequisite to optimal design process. In the nu-
merical computation of design sensitivity, the reduction of dis-
cretization errors is very important. These errors are closely de-

pendent on the quality of the unstructured grids. Therefore, in
order to obtain more accurate design derivative and, thus, more
optimized shape, the design region should be discretized as uni-
formly as possible.
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