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Full-Wave Modeling of Electric Coupling Probes in
Comb-Line Resonators and Filters
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Abstract—An electric coupling probe in comb-line resonators
and filters is rigorously modeled by full-wave mode matching
method. The coupling structure is considered as a cascaded
network of the resonator and strip-line discontinuities and is
solved by cascading the generalized scattering matrices of all the
discontinuities. As a result, the electric probe couplings of both
rectangular and cylindrical combine resonators and filters can
be accurately determined. The validation and accuracy of the
method are verified by comparing the numerical results with the
measured data and are shown to be in good agreement.

Index Terms—Cascaded network, coupling, discontinuity,
probe, resonator, ridge waveguide, scattering matrix, strip-line.

I. INTRODUCTION

W IRELESS communications have undergone a revolution
since the 1980s. The demand for ubiquitous commu-

nications has led to the development of new wireless systems
like personal communication systems, wireless local-area
networks and cellular systems. On the other hand, tremendous
growth in wireless communications has greatly crowded the
frequency spectrum, which translates into a higher likelihood of
users’ interfering with one another. To prevent the interference
among channels, high-selectivity sharp rejection filters are
required for both transmitter and receiver applications. Coaxial
and comb-line filters [1], [4] with transmission zeros [2], [3]
satisfying such requirements are frequently requested by the
systems [10].

An electric probe is commonly used in the comb-line res-
onator filters to achieve the nonadjacent electric coupling for
obtaining the transmission zero at the lower side or both sides
of the stop band. Repeated machining and experimental adjust-
ments usually determine the physical dimension of the coupling
probe. Although pure numerical methods, such as finite-element
method, can compute the coupling coefficient of the probe, the
accuracy of the result depends on the computation time and
memory usage. An efficient numerical technique is needed to
determine the probe dimension in the comb-line filter design.

In this paper, rigorous mode matching method, one of the
most efficient numerical methods, has been applied for mod-
eling of the electric probe coupling structure in comb-line res-
onator filters for both rectangular and cylindrical resonator inner
conductors. The rectangular inner conductor of the resonator
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Fig. 1. Configuration of an electric coupling probe between two comb-line
resonator cavities. (a) Rectangular inner conductor resonator with rectangular
probe. (b) Cylindrical inner conductor comb-line resonator having cylindrical
probe with larger diameter ends.

is modeled as a piece of ridge waveguide, while the general-
ized scattering matrix of the cylindrical inner conductor res-
onator can be obtained using the modeling method described
in [10] or by stair-step approximation of the ridge waveguides.
The coupling structure is considered as a cascaded network of
the resonator and strip-line discontinuities and is solved by cas-
cading the generalized scattering matrices of all the discontinu-
ities. As a result, the electric coupling of the probe can be ac-
curately determined. The computed results are compared with
both measurement and the results by finite-element method, and
are shown to be in good agreement.

II. CONFIGURATION AND THEORY

Fig. 1 shows the configuration of the probe coupling res-
onator structure under consideration. The cross section of the
resonator’s inner conductor can be rectangular or cylindrical
in shape, while the coupling bar or probe sits in between the
two resonators through a smaller aperture in the common res-
onator wall. In the analysis, the rectangular inner conductor is
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Fig. 2. (a) Cross section of a shielded strip-line. (b) Configuration of a double
ridge waveguide.

considered as a piece of ridge waveguide, and the coupling bar
is modeled as a strip-line within a closed enclosure. The cou-
pling structure is symmetrical to two comb-line resonators and
both sides of the coupling probe. By putting a perfect electric
conductor (PEC) wall or a perfect magnetic conductor (PMC)
wall at the symmetrical plane, only half of the structure needs
to be considered.

A. Modeling of Strip-Line and Ridge Waveguides

The eigenmodes of the shielded strip-line and ridge wave-
guide are first obtained by mode matching method. Fig. 2 shows
the configuration of the shielded strip-line and double ridge
waveguide. The strip-line and ridge waveguide’s cross sections
are divided into several regions in accordance with their spa-
tial discontinuity boundaries to be able to be modeled by mode
matching method. TEM (with zero cutoff frequency), TE, and
TM modes exist in the shielded strip-line, while only pure TE
and TM modes exist in the ridge waveguide [6], [9].

A shielded strip-line is divided into region I, region II, and
region III, as shown in Fig. 2(a). The fields of the eigenmodes
are expanded by a potential function in each region for TEM
mode, which satisfies the Laplace equation (7), and by normal
electric or magnetic fields in each region for TE and TM mode,
which satisfy the wave equations (12) and (16), respectively.

Considering only the PMC boundary condition at the sym-
metrical plane for TEM mode, the potential function in each
region can be expressed as follows.

Region I

(1)

(2)

Region II

(3)

(4)

Region III

(5)

(6)

The static potential function satisfies the Laplace equation

(7)

The transverse fields of the TEM mode can be obtained in terms
of the potential function as

(8)

(9)

Matching the tangential electromagnetic fields at the
boundary of regions I, II, and III, a characteristic matrix for the
TEM mode’s field coefficients of the shielded strip-line can be
obtained. Solving the matrix, all the field coefficients of the
TEM mode can then be obtained.

Similarly, the longitudinal electric or magnetic field expres-
sions of the TE and TM modes of the shielded strip-line and
ridge waveguide can be obtained. The transverse fields of the
TE and TM modes can be obtained in terms of the longitudinal
components for TE mode and for TM modes as follows.

TE mode

(10)

(11)

with

(12)

(13)
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TM mode

(14)

(15)

with

(16)

(17)

For TE and TM modes, both PMC and PEC boundary con-
ditions at the symmetrical plane need to be considered in order
to obtain the complete set of eigenmodes. Forcing the tangen-
tial electric and magnetic field to be continuous at boundaries,
a characteristic equation for the cutoff frequency of the eigen-
modes can be obtained. The cutoff frequency and field coeffi-
cients of the eigenmodes can then be obtained by searching for
the zero determinant and solving the characteristic equation.

B. Strip-Line and Ridge Waveguide Discontinuities

Several kinds of discontinuities exist in the probe coupling
structure between two comb-line resonators. The ridge to empty
waveguide discontinuity is used to obtain the generalized scat-
tering matrix of the comb-line resonator inner conductor sec-
tion. The generalized scattering matrix of the coupling probe
and conducting wall between resonators is divided into several
shielded strip-line to strip-line discontinuities and strip-line to
empty waveguide discontinuities. These discontinuities need to
be solved to compute the probe coupling between comb-line res-
onators.

Fig. 3 shows the configurations of strip-line to strip-line and
empty waveguide to strip-line discontinuities used for modeling
of the coupling structure. Both the inner conductor and the en-
closure of the two shielded strip-lines can have different cross-
sections, but it requires that the strip-line with small cross sec-
tion of the inner conductor have larger enclosure. The empty
waveguide’s cross-section should be larger than or equal to the
enclosure of the shielded strip-line.

A full-wave mode-matching technique is used to obtain the
generalized scattering matrices of the shielded strip-line dis-
continuities. The fields in the strip-line and waveguide are ex-
pressed as the superposition of the incident and reflected waves
of all the eigenmodes.

The existence of TEM, TE, and TM modes in each shielded
strip-line requires the following kinds of inner products between
these modes:

TEM with TEM TE with TEM TM with TEM
TEM with TE TE with TE TM with TE
TEM with TM TE with TM TM with TM

Because of the complexity of the structure, each element of
the inner product matrix of the discontinuity problem involves
five integrations in different regions as

(18)

where ,
, .

Fig. 3. (a) Configuration of a strip-line to strip-line discontinuity. (b)
Configuration of empty waveguide to strip-line discontinuity.

Fig. 4. A: Configuration of a ridge waveguide to ridge waveguide
discontinuity. B: Configuration of empty waveguide to ridge waveguide
discontinuity.

By applying boundary conditions at the interface of the dis-
continuity and taking proper inner product, the generalized scat-
tering matrices of the strip-line to strip-line discontinuity can be
solved.

The configuration of the generalized double ridge waveguide
to empty waveguide discontinuity under consideration is shown
in Fig. 4. It is required that the cross-section of the empty wave-
guide be larger than or equal to that of the ridge waveguide.
Procedures similar to strip-line to strip-line discontinuity can
be applied to obtain the generalized scattering matrices of the
strip-line to empty waveguide and ridge waveguide to empty
waveguide discontinuities [11].

C. Efficiency Improvement

For the homogeneous structures, all the integrations in the
inner products are frequency independent, and only the attenu-
ation constant and frequency are the frequency-dependent
part. By separating the inner product of the discontinuity into
the product of frequency-dependent and frequency-independent
parts, the inner product of the discontinuities needs to be com-
puted only once for all frequency computations

(19)
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where is the frequency-dependent part and is the
geometry-dependent part inner products.

By inspecting the definition of the inner product, the fre-
quency-dependent part of the inner product can be defined
as

TEM, TE with TEM, TE:
TEM, TE with TM:
TM with TEM, TE:
TM with TM:

(20)

With the frequency-dependent part of the inner product ,
the frequency-independent part of the inner product can
then be readily obtained from as

(21)

By eliminating repeated computation of the double sum-
mation of the integrations, the computation of the strip-line
to strip-line discontinuity or ridge waveguide to ridge wave-
guide discontinuity can be as fast as that of empty waveguide
discontinuity problems, excluding the computation of the
frequency-independent part of the inner product.

D. Modeling of Probe Coupling of the Comb-Line Resonators

The probe coupling structures shown in Fig. 1 can be rig-
orously solved by considering them as cascaded structures of
a series of discontinuities. The cross-section of the comb-line
resonator inner conductor can be rectangular or circular in
shape. For the case of a rectangular inner conductor, the
inner conductor section can be considered as a piece of ridge
waveguide with empty waveguide discontinuities, as shown
in Fig. 5(a). The cylindrical inner conductor resonator can
be rigorously modeled using the modeling method described
in [10] or approximated by stair steps using a series of ridge
waveguide to ridge waveguide discontinuities. Fig. 5(b)
shows the -matrix network representation of the rectangular
resonator inner conductor, where and are
generalized scattering matrices of ridge and empty waveguide
discontinuities. represents the length of the rectangular rod.
Applying the generalized -matrix cascading procedure [7],
[8], the generalized scattering matrices of the whole resonator
rod can be obtained.

The shape of the coupling probe can be a straight rectan-
gular bar or have an additional larger cross-section piece at both
ends of the probe, in between the comb-line resonators and
through the common resonator wall of the two cavities. The
cylindrical shaped coupling bar can be approximated by the
square cross-section bar with same area. The half-probe cou-
pling structure is treated as a cascaded structure of an empty
waveguide to strip-line and strip-line to strip-line discontinu-
ities. An additional piece of strip-line and its discontinuity are
added for the modeling of the dumbbell shape coupling probes
shown in Fig. 6(a). The -matrix network representation of the
coupling probe is given in Fig. 6(b). Similar to the modeling
procedure of the resonator rod, the generalized scattering ma-
trices of the half-coupling probe can be obtained.

With generalized -matrices of the resonator rod and cou-
pling probe, the probe coupling structure can then be accurately

Fig. 5. Top view and network representation of a rectangular comb-line
resonator rod.

Fig. 6. Side view and network representation of a coupling probe with larger
diameter ends through the cavity wall.

modeled. Fig. 7 shows the network representation of the cou-
pling structures shown in Fig. 1. By cascading the generalized
scattering matrices of all the discontinuities of the half-cou-
pling structure, and applying PEC and PMC boundary condi-
tions, the coupling coefficient of the probe coupling can be ac-
curately determined from the resonant frequenciesand
obtained from applying the terminating conditions at the sym-
metrical plane [10].

III. N UMERICAL RESULTS

Computer programs have been developed to compute the
electric probe couplings between comb-line resonators with
either rectangular or cylindrical resonator inner conductor.
Convergence tests on the numerical results were first performed
by analyzing the eigenmode’s parameters of the strip-line.
Fig. 8 shows the convergence of the dominant mode’s charac-
teristic impedance and the cutoff wave numberof the first
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Fig. 7. Network representation of the coupling structure.

Fig. 8. The convergence of the results. (a) Convergence of the characteristic
impedance of the TEM mode. (b) Convergence of the cutoff wave number of
the first TE mode.

high-order mode in the shielded strip-line with ,
, , , and versus

the number of eigenmodes used in region I, while the number
of eigenmodes used in region II and III is taken by ratio. It is
shown that convergent results can be obtained when the number
of basis functions in region I is greater than 16.

Fig. 9 shows the normalized cutoff frequency versus2 for
different TE modes in the shielded strip-line of zero thickness

Fig. 9. Normalized cutoff frequency versusw=2a for different TE modes in
shielded strip-lines.

Fig. 10. Computed electric probe (0.25� 0.25 in ) coupling between two
comb-line resonators with 0.50� 0.50� 1.40 in (H) rectangular inner
conductors in a 2.0� 2.0� 1.50 in (H) enclosure versus the length of the
probe bar in the center of 0.50� 0.50 in aperture.

and compared with the results by Weilet al. [5]. The numerical
results by two methods are in excellent agreement. It is observed
that the TE mode cutoff remains unaltered by the presence of
the zero-thickness strip conductor and continues to be governed
by the criterion . Furthermore, the characteristics for
TE mode cutoff cross the TE mode cutoff characteristics
for all values of . For , the TE mode
cutoffs are below those of the TEmode.

Fig. 10 presents the computed electric probe coupling be-
tween two comb-line resonators with rectangular inner conduc-
tors versus the length of the probe. Fig. 11 shows the computed
coupling values of the probe between two resonators with cylin-
drical inner conductors. It is seen that the electric coupling in-
creases at a faster rate as the probe moves closer to the inner
conductor of the resonator. The computed results are compared
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Fig. 11. Computed electric probe (0.25� 0.25 in ) coupling between
two comb-line resonators with 0.50-in DIA� 1.40-in (H) cylindrical inner
conductors in a 2.0� 2.0� 1.50 in (H) enclosure versus the length of the
probe bar in the center of 0.50� 0.50 in aperture.

with that computed by finite-element method and from measure-
ment and are shown to be in good agreement. The measured re-
sults also show that an electric probe with a square or cylindrical
cross-section of same area can achieve almost the same coupling
value because two probes have almost the same capacitance be-
tween the resonator inner conductor and the probe. Therefore,
a cylindrical probe can be approximated by a rectangular one
with the same area.

IV. CONCLUSIONS

The electric coupling probes of the comb-line resonators were
rigorously modeled by full-wave mode matching method. The
probe coupling structures were solved by cascading the gen-
eralized scattering matrices of the resonator’s inner conductor
and probe discontinuities. The electric probe couplings between
comb-line resonators with both rectangular and cylindrical inner
conductor can be obtained by computing the resonant frequen-
cies of the coupling structure. The accuracy of the method was
verified by comparing the numerical results with the measured
data and finite-element method and was shown to be in good
agreement.
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