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Abstract—Signal integrity analysis has become imperative for
high-speed designs. In this paper, we present a new technique to
advance Krylov-space-based passive model-reduction algorithms
to include distributed interconnects described by telegrapher’s
equations. Interconnects can be lossy, coupled, and can include
frequency-dependent parameters. In the proposed scheme, trans-
mission-line subnetworks are treated with closed-form stamps
obtained using matrix-exponential Padé, where the coefficients
describing the model are computeda priori and analytically. In
addition, a technique is given to guarantee that the contribution
of these stamps to the modified nodal analysis formulation leads
to a passive macromodel.

Index Terms—Circuit simulation, distributed networks,
frequency-dependent parameters, high-speed interconnects,
Krylov-subspace techniques, model reduction, transmission lines.

I. INTRODUCTION

RECENT trends in the very large scale integration (VLSI)
industry toward higher operating speeds, sharper rise

times, and smaller devices has made the signal integrity anal-
ysis a challenging task. The high-speed interconnect effects
such as ringing, delay, distortion, crosstalk, attenuation, and
reflections, if not predicted accurately at early design stages,
can severely degrade the system performance. Interconnects
can be found at various levels of design hierarchy, such as
on-chip, packaging, multichip modules (MCMs), and printed
circuit boards (PCBs). With increasing frequencies, lumped
models become inaccurate and distributed quasi-TEM models
based on telegrapher’s equations become necessary. At even
higher frequencies, distributed models with frequency-depen-
dentRLCGparameters become necessary. Simulation of such
models using SPICE-like nonlinear simulators suffers from
mixed frequency/time difficulty as well as CPU inefficiency
[1]–[19].

In [17], an efficient transmission-line model based on
closed-form Padé approximation of exponential matrices is
described. It computes an analytical stamp for general trans-
mission lines based on the knowledge of itsRLCGparameters
matrices only. Extension of the same to include frequency-de-
pendent parameters can be found in [18] and [19].

Manuscript received March 4, 2000; revised August 21, 2000. This work was
supported in part by the Natural Sciences and Engineering Research Council
of Canada, in part by Micronet, a Canadian Networks of Centers of Excellence
on Microelectronics, in part by Communications and Information Technology
Ontario, and in part by the Gennum Corporation.

The authors are with the Department of Electronics, Carleton University, Ot-
tawa, BC, Canada K1S 5B6.

Publisher Item Identifier S 0018-9480(00)10726-4.

In this paper, we present an efficient model-reduction algo-
rithm for simulation of networks including transmission-line
equations. The proposed technique uses closed-form Padé ap-
proximation of exponential matrices described in [17]–[19]. The
new technique guarantees the passivity of the reduced-order
macromodel. Also, the proposed algorithm can include trans-
mission lines described by frequency-dependentRLCGparam-
eters.

The paper is organized as follows. Section II gives a back-
ground on the modified nodal analysis (MNA) formulation of
networks including distributed transmission lines. Section III re-
views the closed-form model for general transmission lines and
derives its MNA stamp. Section IV presents the proposed reduc-
tion algorithm and the passivity preservation proof. Sections V
and VI present numerical examples and the conclusion, respec-
tively.

II. FORMULATION OF NETWORK EQUATIONS

A multiport linear subnetwork consisting of lumpedRLC
elements anddistributed componentscan be described in the
Laplace domain as

(1)

where
Laplace transform of the vector of
node voltages appended by independent
voltage source currents, linear inductor
currents, and port currents;
constant matrices describing the lumped
memoryless and memory elements of the
network, respectively;
port voltages and currents, respectively,

is the number of ports;
selector matrix

that maps the port voltages into the
node space of the network, where

, , is
the total number of variables in the
MNA formulation;

with a maximum of
one nonzero in each row or column, is
a selector matrix that maps the vector
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of currents entering the interconnect sub-
network , into the node space of
the network where ,

, and is the number of
coupled conductors in the linear subnet-
work ;
admittance parameters for the intercon-
nect subnetwork and is the number
of interconnects.

The first and second terms in (1) cover the network’s lumped
components and the third term describes currents at subnetwork
terminals and then maps them into rest of the network through
the matrix . As is evident, (1) does not have a direct repre-
sentation in the time domain, which makes it difficult to include
with nonlinear simulators.

In this paper, we describe a new algorithm to overcome
the above difficulty. The proposed method is based on the
closed-form Padé model [17]–[19] for reduction of (1) to obtain
a passive macromodel of the form

(2)

It is to be noted that the advantages of obtaining the macro-
model (2) are twofold: 1) it is in the form of ordinary differ-
ential equations and, hence, can be easily included in nonlinear
simulators along with nonlinear components for the purpose of
transient simulation and 2) the order of the macromodel in (2)
is significantly smaller than that of the equations represented by
the original system (1), thereby resulting in significant speed up
during transient simulations.

III. REVIEW OF CLOSED-FORM TRANSMISSION-LINE STAMP

Consider an -conductor coupled transmission line de-
scribed by telegrapher’s equations

(3)

where , , , and are the per-unit-length pa-
rameter matrices and are nonnegative definite symmetric ma-
trices [1]. The coefficients and represent
the voltage and current vectors as a function of positionand
time . Equation (3) can be written in the Laplace domain using
the exponential function as

(4)

where

(5)

and is the length of the line. The exponential matrixcan be
written as

(6)

where and arepolynomial matricesthat
can be expressed in terms of a closed-form Padé rational func-
tion [18]. For , the Padé rational function of (6)
can be represented as

(7)

for even values of and

(8)

for odd values of . Here, represents the unity matrix,
are complex roots for , and is a real root.

The symbol represents the complex conjugate operation. It
is to be noted that and are strict Hurwitz
polynomials [21]. This means that the real parts of coefficients

and in (7) and (8) are positive. The matrices and
are expressed as

(9)

for the subsections consisting of complex pole-zero pairs where
and

(10)

for the subsection consisting of a real pole-zero pair.
It can be shown [18], [19] that a -port subnetwork whose

hybrid parameters are given by the Padé rational function of
(7), (8) can be described in the frequency domain by a set of
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equations in the form , which relate the
voltages at the ports. These equations can be used as a stamp
representing the whole transmission line in the unified MNA
formulation. The matrices and are given by

(11)

where and represent the stamps of each subsection, as
shown in (12), at the bottom of this page, for the subsections
described by (9) and

(13)

for the subsection described by (10). The matricesare se-
lector matrices that map the block stamps and to the
rest of the network variables space , where is the total
number of variables in the network including the extra state vari-
ables augmented by the stamps of transmission lines.

For the case of interconnects with frequency-dependent pa-
rameters, the -parameters of each subsection can also be ex-

pressed as in (11)–(13). A technique to model interconnects with
frequency-dependent parameters while preserving the passivity
of the Padé macromodel is described in [18] and [19].

Using the proposed stamp of the interconnect, the system of
(1) can be put in the following form:

(14)

where

(15)

Here, the matrices , , and are obtained from , ,
and by appending them by rows (and/or) columns that contain
zeros to account for the extra state variables required for the
stamp of the transmission line. Thus, , , and can be
expressed in the following block form:

(16)

The indexes and represent theth subsection of theth in-
terconnect.

It should be noted that the MNA matrices described by (12)
and (13) are obtained analytically in terms of per-unit-length pa-
rameters and predetermined constants given by the Padé approx-
imation. An error criterion for selecting the order of the Padé
approximation is described in [17]–[19]. In Section IV, we de-

(12)
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scribe the model reduction algorithm for reducing the system
described by (14).

IV. M ODEL REDUCTION AND PASSIVITY PRESERVATION

In this section, we describe a reduction algorithm for dis-
tributed interconnects based on the congruent transformation.
We will also show how to include transmission lines with
frequency-dependent parameters in the proposed reduction
scheme. In addition, we will prove the passivity of the re-
duced-order macromodel.

A. Model Reduction

An orthonormal matrix is constructed using itera-
tions of the block Arnoldi algorithm, such that [13]

(17)

where

(18)

(19)

and is the identity matrix.
Next, the matrix is used to reduce the augmented system

matrices of (14) using the congruence transform

(20)

The admittance matrix for the reduced system is given by

(21)

It can be shown that the reduced-order system described by (20)
and (21) preserves the first block moments. The proof
of the preservation of moments is identical to the one given in
[13], where the matrices and contain stamps of lumped
components only. However, a new approach is needed here to
prove that the reduced system is passive since the matrices
and of the original system contains the stamps (11)–(13) of
transmission lines.

B. Passivity Preservation

In this section, we prove that the reduced-model represented
by (21) is passive. The sufficient and necessary conditions
required for the reduced system of (21) to be passive are:
1) and 2) , is a positive real matrix,
i.e., for all complex values of
satisfying that and any arbitrary complex vector.
The first condition is automatically satisfied since the reduced
matrices , , and are all real. To show that the second
condition is also satisfied, we set

and then handle the quadratic form by some vector
algebra to obtain

(22)

Setting and yields

(23)

where . Substituting from (15) for the matrices and
in (23) and using the fact that is symmetric yields

(24)

Thus, to prove that the second condition is satisfied, we need to
show that each one of the four quadratic forms in (24) is non-
negative. Firstly, we consider the first two quadratic forms. The
matrices and can be formulated to be nonnegative
definite [13]. Hence,

(25)

On the other hand, proving that the last two quadratic forms
in (24) are nonnegative requires showing that matrices

and are
nonnegative definite. These matrices are described in the
form of a congruence transform of the matrices
and , respectively, where is used as the
transformation matrix. Hence,
and are nonnegative definite if

and are nonnegative definite [22].
Thus, to complete the proof of passivity, we need to show
that and are nonnegative definite.
This proof is given in the following subsection through the
establishment of the basic properties of the matricesand

.
1) Properties of and Matrices: For ease of presen-

tation, we omitted the superscriptin and . We only
consider the case where these matrices represent a complex
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pole-zero subsection, as in (12), since similar arguments can be
used to treat the real pole-zero subsection of (13). Using (12),

and can be represented as

(26)

and (27), shown at the bottom of this page.
Clearly, is symmetric nonnegative definite since it is block

diagonal with symmetric nonnegative definite diagonal blocks
[22]. The next two theorems are developed to show thatand

are nonnegative definite.
Theorem 1: Let be a block structured matrix that has only

four nonzero block matrices located at the block entries ,
, , and . Assume that these four blocks are equal

to , i.e.,

...
... (28)

where is a nonnegative definite matrix. is then
nonnegative definite.

Proof: To simplify the proof considerably, we consider a
permutated version of , i.e., , where

(29)

and is some suitable permutation matrix chosen such that

...
...

...
...

(30)

can be expressed in terms of congruence transform as

(31)

where

...
...

...
...

(32)

and is the unity matrix. From (29)–(32), the matrixcan be
written in the form of the congruence transform

(33)

Since is nonnegative definite, then is
also nonnegative definite. Hence, the matrixis nonnegative
definite since it is defined as a congruence transform of

using as the transformation operator
[22].

(27)
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Theorem 2: Let be a matrix that has the same structure
as , except that the blocks at the entries and are
negated, i.e.,

...
... (34)

where is a nonnegative definite matrix. is then
nonnegative definite.

Proof: The proof of this theorem follows similar lines to
the proof of the above theorem where, in this case, we consider
the permutated matrix to put in the form of the congru-
ence transform

(35)

where is some suitable permutation matrix such that

...
...

...
...

(36)

can be expressed in the form

(37)

where

...
...

...
...

(38)

From (35)–(38), can be written in terms of congruence trans-
form

(39)

Since is nonnegative definite, the matrix
is also nonnegative definite. Hence,is nonnegative definite
since it is defined as congruence transform of
using and as the transformation operator.

Corollary (1): The matrices and in (27) are sym-
metric nonnegative definite.

Proof: and can be written as

(40)

where

(41)

Since the constants and are positive and the per-unit-length
parameter matrices , , , and are nonnegative definite,
then using theorems (1) and (2), all the block matrices in (41) are
nonnegative definite. This means that and are the sum-
mation of symmetric nonnegative definite matrices and, hence,
they are symmetric nonnegative definite [22].

Corollary (2): The matrices and
are symmetric nonnegative definite.

Proof: This result can be easily deduced by noting that
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Fig. 1. Linear subnetwork circuit with nonlinear termination.

Fig. 2. Magnitude ofY of linear subnetwork for example 1.

Fig. 3. Magnitude ofY of linear subnetwork for example 1.

(42)

which means that and are block di-
agonals with symmetric nonnegative definite diagonal blocks.

This concludes the proof of passivity. Next, we will briefly
outline the extension of the proposed passivity preservation al-
gorithm for reduction of interconnects with frequency-indepen-
dent parameters.

Fig. 4. Magnitude ofY of linear subnetwork for example 1.

Fig. 5. Time response at output portV for example 1.

Fig. 6. Time-domain response at output nodeV for example 1.

TABLE I
CPU COMPARISON OFTIME RESPONSE FOREXAMPLE 1
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Fig. 7. R andL versus frequency for example 2.

Fig. 8. Magnitude ofY of linear subnetwork for example 2.

2) Interconnects with Frequency-Dependent Parameters:In
order to preserve the passivity of the reduced-order macro-
model, the functions used to model the frequency-dependent
parameters must be positive real. A technique to realize the
frequency-dependent parameters in terms ofpositive-real
functionsdescribed byRL components and ideal transformers
can be found in [18]. The matrices and including trans-
mission lines with frequency-dependent parameters can also be
represented in a form similar to (26) [18]. Hence, the matrices

and for the case of frequency-dependent parameters can
also be shown to be nonnegative definite using similar proof to
the one presented in Section IV-B.

V. COMPUTATIONAL RESULTS

Two examples are presented in this section to demonstrate
the validity and efficiency of the proposed method. The second
example includes interconnects with frequency-dependent pa-
rameters. The results given by the proposed method are com-
pared with SPICE analysis. Within the context of this section,
SPICE analysis refers to solving the transmission-line equations
to obtain the network’s frequency response or using the conven-

Fig. 9. Magnitude ofY of linear subnetwork for example 2.

Fig. 10. Magnitude ofY of linear subnetwork for example 2.

tional lumped segmentation model [8] to obtain the network’s
time-domain response.

Example 1: A two-port linear subnetwork consisting of
1516 linear components (including 30 transmission lines) with
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Fig. 11. Time response at output portV for example 2.

Fig. 12. Time-domain response at output nodeV for example 2.

nonlinear terminations has been considered for this example
(Fig. 1). A stamp representing a rational approximation of
order (5/5) was used for the transmission lines. The original set
of MNA equations contained a total of 1682 variables. Using
a multipoint version of the reduction algorithm of Section IV
[14], the size of the reduced system obtained was 6666.
Figs. 2–4 show a comparison of-parameters of the linear
subnetwork, which are obtained using SPICE analysis and the
proposed method. Figs. 5 and 6 compares the time responses
at two output nodes of the circuit ( and ), respectively.
The input pulse used for this example has a rise/fall time of
0.1 ns and pulsewidth of 5 ns. The transient simulation of the
reduced-order system on a Sun Ultra 20 machine required 30 s
of CPU time, while the conventional lumped system required
817 s on the same machine (Table I).

Example 2: A two-port linear subnetwork consisting of 2203
linear components (including 35 interconnects with frequency-
dependent parameters) with nonlinear terminations is consid-
ered. Fig. 7 shows the per-unit-length resistance and inductance
as function of frequency. A Padé approximation (order 8/8) is
used to model each interconnect. The total size of the MNA
equations including the Padé interconnect stamps is 4352 vari-

TABLE II
CPU COMPARISON OFTIME RESPONSE FOREXAMPLE 2

ables. Performing the passive reduction scheme, a macromodel
containing 184 variables is obtained. Figs. 8–10 show a com-
parison of -parameters of the linear subnetwork, which are
obtained using SPICE analysis and the proposed macromodel.
Figs. 11 and 12 present a comparison of time responses at output
nodes and , respectively. The input pulse used for this
example has a rise/fall time of 0.1 ns and pulsewidth of 5 ns.
On a Sun Ultra 5 computer it takes 1.7 min to obtain the tran-
sient response with the reduced model, while the conventional
lumped system requires 80.5 min (Table II).

VI. CONCLUSION

A new algorithm has been presented in this paper to include
transmission lines in passive model-reduction techniques.
The transmission lines can be lossy, coupled, and can include
frequency-dependent parameters. The proposed scheme uses a
closed-form Padé approximation to model each transmission
line. In addition, the contribution of the transmission-line stamp
to the MNA equations guarantees the passivity of the reduced
system.
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