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Abstract—In this paper, a new macromodeling approach is
developed in which a recurrent neural network (RNN) is trained
to learn the dynamic responses of nonlinear microwave circuits.
Input and output waveforms of the original circuit are used as
training data. A training algorithm based on back propagation
through time is developed. Once trained, the RNN macromodel
provides fast prediction of the full analog behavior of the original
circuit, which can be useful for high-level simulation and opti-
mization. Three practical examples of macromodeling a power
amplifier, mixer, and MOSFET are used to demonstrate the
validity of the proposed macromodeling approach.

Index Terms—Computer-aided design, macromodeling, neural
networks, nonlinear circuits, optimization, simulation.

I. INTRODUCTION

RECENTLY, a new computer-aided design (CAD) ap-
proach based on a neural-networks model has been

introduced for microwave modeling, simulation, and opti-
mization [1]–[4]. After being trained with microwave data,
the neural model can be used in microwave design, providing
fast answers to the task it has learned. Significant progress
in applying the neural network to the modeling of passive
electromagnetic (EM) structures [5], [6] and active devices [7],
[8] has been made. This paper presents a further advance in this
direction. For the first time, a recurrent neural network (RNN)
methodology is presented here for macromodeling of general
dynamic behavior of nonlinear microwave circuits.

A nonlinear macromodel aims to represent the input–output
behavior of a nonlinear circuit in a form that is faster and simpler
to evaluate than original nonlinear circuit simulation. It becomes
very important due to the need for simulation and optimization
of analog behavior at higher level design involving many subcir-
cuits such as amplifiers and mixers [9]. Several approaches have
been developed such as the behavioral model approaches [10],
where frequency-domain information [11], [12] or time-domain
information based on scattering function [13] is used to develop
a nonlinear model, the equivalent-circuit-based approach [14],
which involves the development of a simpler circuit topology
and related nonlinear component expressions, and the model re-
duction approach [15], which uses original circuit equations as
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the starting point for deriving a reduced set of nonlinear dif-
ferential equations. However, the task of developing more au-
tomatic and generic model structures with full analog behavior
still remains very open. In this paper, we propose a novel alterna-
tive approach for macromodeling nonlinear microwave circuits
based on RNNs.

An RNN is a special type of neural network having the
capability of learning and then representing dynamic system
behavior. It has been used in areas such as signal processing,
speech recognition [16], system identification, and control
[17]–[21]. The motivation for using RNNs in macromod-
eling nonlinear microwave circuits is threefold. Firstly, the
neural-network learning capability can be used to learn the
input–output behavior directly from measured or simulated
input–output data of the original circuit, avoiding otherwise
manual effort of developing equivalent-circuit topology.
Secondly, the universal approximation property of full RNN
confirms that the model has a theoretical base of representing
the full analog behavior of the circuit with good accuracy.
Thirdly, the evaluation of the RNN from input to output is very
fast. With these motivations, we propose a new macromodeling
approach using a buffered input–output RNN. The model is
completely formulated in time domain since nonlinear dynamic
behavior is best described in the time domain. Input and
output waveforms of original circuits are used as training data.
A training method based on back propagation through time
(BPTT) is introduced for model development. Three practical
examples of macromodeling a power amplifier, mixer, and
MOSFET are used to confirm the validity of the proposed
approach.

This paper is organized as follows. In Section II, we first state
the dynamic representation of nonlinear circuits and the pur-
pose of macromodeling. A new macromodeling method is pro-
posed and the modeling structure with an RNN is presented.
Model development procedure and a training method based on
BPTT is described. In Section III, three examples are shown
to demonstrate our approach. A conclusion is then presented in
Section IV.

II. M ACROMODELING NONLINEAR CIRCUITS WITH RNN
STRUCTURE AND TRAINING

A. Formulation of Circuit Dynamics

Let and be the total number of input and output sig-
nals in the nonlinear circuit, respectively, and be the total
number of circuit parameters. Let ,
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Fig. 1. Proposed RNN-based macromodel structure.

, and be vectors of the
output signals, input signals, and circuit parameters of the non-
linear circuit, respectively, where denotes transposition. The
characteristics of the original nonlinear circuit can be generally
described as a nonlinear system in state variable form as

(1)

where is the vector of state variables
and is the number of states. In a modified nodal formulation
[22], the state vector includes nodal voltages, currents of
inductors, currents of voltage sources, and charge of capacitors.
However, solving this original nonlinear differential equation is
computationally intensive when the nonlinear circuit becomes
large. For higher level design and optimization, where this cir-
cuit is used as a sub-module and repetitive evaluations for dif-
ferent circuit inputs are needed, a more simplified and conve-
nient computational form should be used.

B. Statements of Macromodeling

The purpose of macromodeling is to develop a model that
has a similar input–output relationship as the original complex
circuit within an acceptance error range. At the same time, the
evaluation of the macromodel should be much faster than that of
the original circuit. Suppose the candidate macromodel is repre-
sented by , which is a functional on the space
of input waveforms . Suppose represents the time
sampling range of interest for the input and output signals. Let

and represent the upper and lower boundary of input
signal . For each input

, the quality of the macromodel can be represented by
the difference between the output of the macromodel and that
of the original circuit in a norm

(2)

C. Proposed Macromodel Structure Based on RNN

In order to derive a macromodel, we first reformulate the orig-
inal problem in the discrete-time domain with a specific sam-
pling rate into an input–output formulation as [19]

(3)

where is the time index in the discrete time domain, and
are the total number of delays of and , respectively,

and is a set of nonlinear functions. and also
represent the order of the original nonlinear circuit dynamics.
This model can be used as an alternative representation of the
dynamics in the original circuit of (1).

In practice, it is often difficult to derive (3) analytically
for a large-scale nonlinear circuit. Neural networks are well
known to identify nonlinear relationships between input and
output parameters, and have achieved success in solving prac-
tical modeling problems [16]. In this paper, we employ an
RNN to learn the dynamic characteristics of nonlinear circuits
and determine their macromodels. RNNs are neural networks
with feedback from output to input. The proposed macro-
model structure based on RNN is shown in Fig. 1. The input
layer includes a time varying input part and time-invariant
part . The output layer is time varying signal. For ex-
ample, if the macromodel is used to represent an amplifier,
then will represent the amplifier input signal, will rep-
resent the circuit parameters related to the amplifier, and
will be the output signal from amplifier.

The first hidden layer of the RNN, labeledlayer, contains
buffered history of circuit output signal, which is fed back
from the output of the RNN, buffered history of the circuit input
signal , and the circuit parameter. Let the time sample index
be . Let and be the number of buffers for outputand
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input parameter , respectively. Then neurons in thelayer is
defined as

for

for

for

(4)

Let be the total number of neurons in thelayer; we have
.

The next hidden layer is called the layer. The neurons
in this layer contain sigmoid activation functions. Let
be the total number of hidden neurons in thelayer. The
vector of weights between the and layers is denoted as

, and
denotes the bias vector of neurons in thelayer. For a given
set of values in the layer, the responses of hidden neurons in
layer can be computed from delayed input and output signals
as

(5)

where is a sigmoid function, , and
is the weight between theth neuron in the layer and the th
neuron in the layer.

The last layer is the output layer called thelayer. The layer
outputs are linear functions of the responses of hidden neurons
in the -hidden layer. Let be the
vector of weights between the layer and layer and

be the bias vector of output neurons in the
layer. The output of the overall macromodel is computed as

(6)

where is the weight between theth neuron in the layer
and the th neuron in the layer.

Let the parameters of the RNN be denoted as
. The part in the macromodel structure from the

layer, layer, to the layer is a feed forward neural network
(FFNN) denoted as . The overall neural network
realizes a nonlinear relationship

(7)

Here, the number of delay buffers and represent the
order of dynamics in the RNN macromodel.

D. Model Development and RNN Training

The RNN macromodel will not represent the nonlinear mi-
crowave circuit behavior unless it is trained by training data.
Following the requirement described in Section II-B, the macro-
model should be trained to match the output of the original cir-
cuit under various input excitations in the interval . In
our approach, training data is a set of input and output wave-
forms of the original nonlinear circuit. They can be collected
through simulation and/or measurements. A second set of wave-
form data, called “testing data,” should also be generated from
the original circuit for model verification. The excitations used
for generating testing waveforms should be different from those
for generating training waveforms.

Let represent the output response of the RNN, and
represent the output waveform of original nonlinear circuit, i.e.,
the simulation and/or measurements. Let training data be rep-
resented by input–output waveforms

, where and are the th input and
output waveforms and is the total number of sample wave-
forms.

Each dynamic response from the RNN macromodel over
the time interval is also called an RNN output trajectory.
The process of training is to minimize the difference between
the RNN trajectory and circuit waveform data under
various input signals . Let be the number of time samples
in , and be the th output signal at th time sample
in the th trajectory of the RNN and be the corresponding
waveform sample of the original nonlinear circuit. The objective
for training the macromodel is

(8)

In order to employ efficient gradient-based optimization
methods in the training of the macromodel, derivatives of the
error function for training with respect to each parameter in the
RNN are required to form the Jacobian matrix. As shown in
(7), the outputs of the RNN macromodel are fed back to the
input layer. Therefore, outputis not only a function of input ,
but also the previous output of itself. Thus, conventional error
back propagation method is not applicable for neural-network
training. An advanced macromodel training scheme based on
BPTT [23] is developed here to derive the Jacobian matrix.

For the th training sample in the th waveform
, the error of the macromodel is

(9)

To obtain derivatives of with respect to weights for
training, we need , which is computed recursively
from history of in the following way.

For , initialize , where
the left-hand side is the derivative of the RNN macromodel and
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in the right-hand side is the derivative of the FFNN
part in the macromodel betweenand , which can be com-
puted by normal back propagation [16]. The subsequent deriva-
tive for the RNN for can be computed by
using the history of as

(10)

where

if
otherwise

(11)

The recurrent back propagation includes two parts. First, normal
back propagation [16] is done through the FFNN between
the and layers to get the partial derivative .
This represents the sensitivity of the circuit output waveform
with respect to macromodel internal parameters. Secondly,

is obtained from further back propagation to the
FFNN input layer . This derivative represents the dependency
of the circuit output waveform between adjacent time points
and can be written as

for

(12)

The result of is stored and used recursively as the
history for computing the derivative at the step. After this
procedure, the Jacobian matrix of each sample with respect to
each parameter in the RNN macromodel can be formulated as

...

(13)

Based on this gradient scheme, gradient-based optimization al-
gorithms, such as the Levenberg–Marquardt and quasi-Newton
methods, are used to train the macromodel.1 Once an RNN
macromodel is trained, it can then represent the parametric and
dynamic input–output relationship of the original nonlinear mi-
crowave circuit.

1Q. J. Zhang, NeuroModeler version 1.02, Dept. Electron., Carleton Univ.,
Ottawa, ON, Canada, 1999.

Fig. 2. Power-amplifier circuit to be represented by a macromodel based on
an RNN.

E. Discussion

The number of delay buffers represents the order of the
macromodel. Theoretically, to identify the complete dynamic
characteristics, the number of delays should at least exceeds
the number of states in the original circuit. For the purpose
of model reduction and macromodeling, a system with much
lower orders can predict the output of the original system suc-
cessfully [14], [15]. By choosing to be lower than the order
of original system, our proposed RNN model automatically
achieves model reduction effects. Another factor in the RNN
model is the number of hidden neurons. Different number of
hidden neurons represents the extent of nonlinearity between
FFNN inputs and outputs (and ). Too few hidden neurons
cannot represent the nonlinearity sufficiently, while too many
will lead to overlearning.

RNNs can be used to learn the dynamics both in the transient
and steady-state stages, as will be shown in examples in Sec-
tion III. When using an RNN macromodel, a good estimation of
the initial state is necessary. For models trained using a transient
waveform, the initial state can be considered to be zero or dc
solution. If in the transient stage, the signal has sudden changes
in the beginning: a separate RNN model with smaller sampling
interval can be trained for initial state estimation. For models
trained using steady-state waveform data, the initial states are
not simply zeroes or constants. A time-delay neural network
(TDNN) [24] can be trained using the information contained in
training data and used to provide initial estimations.

III. M ACROMODELING EXAMPLES

A. RFIC Power-Amplifier Macromodeling Example

This example demonstrates the macromodeling of an RF inte-
grated-circuit (RFIC) power amplifier, shown in Fig. 2 through
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TABLE I
AMPLIFIER: RECURRENTTRAINING AND TESTING VERSUSDIFFERENT

NUMBER OF HIDDEN NEURONS

TABLE II
AMPLIFIER: COMPARISON OFRECURRENTMODEL AGAINST DIFFERENT

NUMBERS OFBUFFERS

the proposed RNN approach. The choice of a power amplifier
is due to the fact that it is a key circuit in wireless-communica-
tion systems. The amplifier contains eight n-p-n bipolar junction
transistors (BJTs) modeled by two internal HP-ADS nonlinear
models Q34 and Q37.2 Input parameters for the RNN are the
voltage waveform of amplifier input and their sampling inter-
vals. Output of the RNN is the voltage waveform of the ampli-
fier output.

The first macromodel is constructed to represent the tran-
sient characteristics of the amplifier. The sampling intervals
are changed with frequency so that 50 points per cycle are
ensured. The training waveform is gathered by exciting the
circuit with a set of signal frequencies ( GHz)
and amplitudes ( V). Testing data is
generated using frequencies (0.9, 1.1 GHz) and amplitudes
( V), which are different from those used
in training.

Training results and testing results are listed in Table I. Dif-
ferent numbers of delay buffers are tried
in the RNN, as shown in Table II.

A set of sample test waveforms is shown in Fig. 3 for the
RNN at frequencies of 0.9 and 1.1 GHz, and amplitudes 0.55
and 1.15 V. The RNN macromodel can reproduce amplifier
output accurately even when amplifier input waveform is
different from those used in training. Moreover, an RNN
macromodel can generate similar output as original simulation
with much faster speed. The evaluation of 900 different sets of
input–output waveforms takes 10 s by the RNN macromodel
and 177 s by the original simulation.

A second macromodel is trained to learn the large-signal be-
havior of the amplifier in the steady state. The sampling cycle is
also proportional to frequency so that 50 points per cycle are en-
sured. The training waveform is generated from HP-ADS with
the following set of excitation signal: GHz
and volts. Testing data is gath-
ered for two cycles using a set of samples different from
those used in training ( GHz and

2HP-ADS version 1.3, Agilent Technologies, Santa Rosa, CA, 1999.

Fig. 3. Comparison between output waveforms from original amplifier(�)
and that from an RNN macromodel with three buffers (-) trained in transient
state. Good agreement is achieved even though these waveforms have never
been used in training.

Fig. 4. Comparison between output waveforms from original amplifier(�)
and that from an RNN macromodel with three buffers (-) trained in steady state.
Good agreement is achieved even though these waveforms have never been used
in training.

V). The overall accuracy (average
test error of all test waveforms) is 0.728%. Fig. 4 shows the
comparison of the RNN with a set of sample test waveforms
(with three cycles) excited at sample frequencies of 0.95 and
1.05 GHz, and amplitudes of 0.45 and 1.15 V. As expected,
the RNN macromodel can reproduce the amplifier output
accurately even though these test waveforms were never used
in training. Moreover, the training was done with one cycle of
waveform data. In the testing of Fig. 4, the RNN can reliably
predict the signal well beyond one cycle.

B. RF Mixer Macromodeling Example

This example demonstrates the RNN method in macromod-
eling a mixer, which is a basic circuit in any transmission-re-
ception process. The circuit is a Gilbert cell, shown in Fig. 5.
The internal subcircuit contains 14 n-p-n BJT transistors (mod-
eled by five different HP-ADS nonlinear models – ). The
RNN macromodel for the mixer has three inputs, namely, RF
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Fig. 5. Mixer circuit to be modeled by a macromodel based on an RNN.

TABLE III
MIXER: RECURRENTTRAINING AND TESTING VERSUSDIFFERENT

NUMBER OF HIDDEN NEURONS

TABLE IV
MIXER: COMPARISON OFRECURRENTMODEL AGAINST DIFFERENT

NUMBERS OFBUFFERS

input waveform, local oscillator (LO) input waveform, and IF
load impedance. The sampling cycle is fixed proportionally to
the highest frequency to be trained.

The first macromodel is constructed to model the dynamics
of the mixer in the transient state. The training data is gathered
in the following way: the RF frequency and power level changed
from 1.8 to 3.0 GHz with a step size of 0.1 GHz, and from60
to 30 dBm with a step size of 5 dBm, respectively. The LO
signal is fixed at 1.75 GHz and5 dBm. IF Load impedance is
sampled at 30, 40, 50, 60, and 70. The transient time range
for training is ns . Test data is given using dif-
ferent set of samples from those used in training: RF frequencies
(2.35, 2.55, 2.75 GHz), RF power levels (38, 43, 47, 48,

Fig. 6. Comparison between output waveforms from original mixer(�) and
that from an RNN macromodel with three buffers (-) trained in transient state.
Good agreement is achieved even though these waveforms have not been used
in training (f = 2:55 GHz,P = �48 dBm,Z = 50 
).

Fig. 7. Comparison between output waveforms from original mixer(�) and
that from an RNN macromodel with three buffers(�) trained in steady state.
Good agreement is achieved even though these waveforms have not been used
in training. (f = 2:05 GHz,P = �47 dBm,Z = 35 
). This is one
of the many test waveforms used.

Fig. 8. Circuit used to generate training data for a transistor to be represented
by an RNN macromodel. The training data is obtained using HSpice simulation
with BSIM3—level 49 transistor model.

53 dBm) and for a 50--load IF impedance with transient time
up to 2 ns.

The training error and testing error are listed in Table III.
Results of the RNN with a different number of buffers
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(a) (b)

(c) (d)

Fig. 9. Effect of initial state estimation and comparison between output waveforms from original transistor simulation(�) and that from an RNN macromodel
with two buffers (-) forf = 0:9 GHz,V = 1:55 V, V = �2:125 V, andV = �3:25 V. (a) Gate current: without initial state estimation. (b) Drain
current: without initial state estimation. (c) Gate current: with initial state estimation by an initial RNN. (d) Drain current: with initial state estimation by an initial
RNN.

are shown in Table IV. Fig. 6 shows an example test
result of an RNN at the RF frequency of 2.55 GHz, RF power
level 48 dBm, IF load impedance of 50, and transient time
up to 6 ns. Again, using the macromodel, the original analog
dynamic behavior can be retained and the evaluation of such
behavior is much faster than original circuit simulation.

A second macromodel is constructed to learn the behavior of
the mixer in steady state. Training data is generated as follows:
RF frequency and power level are changed from 1.8 to 3.0 GHz
with a step size of 0.1 GHz and from50 to 30 dBm with
a step size of 5 dBm. LO signal frequency is 1.75 GHz and
power level is 5 dBm. IF load impedance is sampled at 30,
40, 50, 60 and 70 , and time range is up to 4 ns. Test data
is given for a different set of RF frequencies (1.85, 1.95,,
2.95 GHz), RF power levels (47, 42, 37, and 32 dBm)
and for a load IF impedance sampled at 35, 45, 55, and 65
with time range up to 12 ns. The overall test error for all the
waveforms is 0.541%; the RNN macromodel can predict the
output waveforms accurately even beyond the time range used
in training. Fig. 7 shows an example test result of the RNN with
RF frequency equal to 2.05 GHz, RF power level47 dBm,
and IF load impedance of 35. Again, using the macromodel,
the original analog dynamic behavior can be retained and the
evaluation of such behavior is much faster than original circuit
simulation.

C. MOSFET Time-Domain Macromodeling Example

The last example is a transient device level example of a
p-MOSFET transistor. The training data is collected by HSpice
simulation using BSIM3 (level 49) model.3 The physical param-
eters of this model are a length of m and a width of

m.
The RNN macromodel has two inputs, namely, gate and

drain voltage waveforms. The two outputs of the RNN are
gate and drain current waveforms (and ). To generate
the training and testing waveform data, we used the circuit
shown in Fig. 8. Sampling intervals are proportional to the
frequency, thus, 50 points per cycle are ensured. The data
is gathered by varying frequencies of excitation signal:

GHz, source amplitudes:
V, gate bias voltages:

V, and drain bias voltages:
V with transient up to two

cycles.
Testing data are waveforms simulated in HSpice using

a set of samples different from those in training (fre-
quency GHz, source amplitudes:

V, gate bias:
V, drain bias:

3HSPICE, Avant! Corporation, Fremont, CA 1996.
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(a) (b)

(c) (d)

Fig. 10. Comparison between output waveforms of gate current from original transistor(�) and that from an RNN macromodel with two buffers (-) under various
excitation with different parameters. Initial estimation by an initial RNN was used. The macromodel matches test data very well even though those various test
waveforms have never been used in training. (a) DifferentV with f = 1:1 GHz,V = �2:125 V, andV = �3:25 V. (b) Different frequencies with
V = �2:125 V, V = �3:25 V, andV = 1:55 V. (c) DifferentV with f = 1:1 GHz,V = �3:25 V, andV = 1:55 V. (d) Different
V with f = 1:1 GHz,V = �2:125 V, andV = 1:55 V.

V) with transient up to two cy-
cles.

A separate RNN macromodel is trained to estimate the
initial conditions for the above model. The training data for
this initial RNN includes short segments of various training
waveforms sampled at high sampling rate. The sampling
interval of the training data for this initial macromodel is
one-fifth of that in the main RNN macromodel. Three delay
buffers are used. This initial RNN helps to accommodate the
sudden rise and fall of the signal in the beginning. Fig. 9
shows the response of RNN under the same excitation with
and without initial estimations.

The overall accuracy (test error) of the macromodel with ini-
tial estimation with respect to all test waveforms is 0.303%. The
RNN macromodel can predict both gate and drain currents accu-
rately even when the exciting gate and drain voltage waveforms
are different from what is used in training. Figs. 10 and 11 show
the examples of different test results with different set of vari-
ables (with varying source amplitude, frequency, and gate and
drain bias voltages, respectively). The output trajectory from the
proposed macromodel matches the test waveform from the orig-
inal MOSFET very well under various excitations even though
these waveforms have never been used in training.

D. Comparison Between Standard Neural Network and the
Proposed RNN Methods for Nonlinear Macromodeling

In order to compare the proposed recurrent neural model with
the conventional non-RNN model, the three examples in this
section are also used to develop a conventional FFNN, and time-
delay neural-network (TDNN) models. In an FFNN, the output
is dependent only on the inputs at the same instantaneous time,
while in a TDNN, only the history of input signals are used
as the inputs of the macromodel. Both FFNNs and TDNNs are
nonrecurrent models since they have no feedback from outputs
to input. The test errors for FFNN, TDNN, and RNN models are
listed in Table V.

As can be observed from the table, the proposed RNN
method gives the best modeling results. The conventional
FFNN model has poor accuracy since it can only represent a
static input–output relationship and is not suitable for repre-
senting the dynamic behavior in the examples. The TDNN
model is an improvement over the FFNN because a history
of inputs is used in training, representing a partial dynamic
information. However, the circuit output may be different even
with the same input because of the differences in the history
of the circuit responses. In this case, the nonrecurrent models
(i.e., FFNN and TDNN) will try to learn the average between
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(a) (b)

(c) (d)

Fig. 11. Comparison between output waveforms of drain current from original transistor(�) and that from an RNN macromodel with two buffers (-) under various
excitation with different parameters. Initial estimation by an initial RNN was used. The macromodel matches test data very well even though those various test
waveforms have never been used in training. (a) DifferentV with f = 1:1 GHz,V = �2:125 V, andV = �3:25 V. (b) Different frequencies with
V = �2:125 V, V = �3:25 V, andV = 1:55 V. (c) DifferentV with f = 1:1 GHz,V = �3:25 V, andV = 1:55 V. (d) Different
V with f = 1:1 GHz,V = �2:125 V, andV = 1:55 V.

TABLE V
COMPARISON OFTESTERRORSBETWEENNONRECURRENT AND THEPROPOSED

RECURRENTMODELS FORNONLINEAR MODELING

different outputs when the inputs are the same and, therefore,
cannot give accurate modeling solutions. The RNN method
takes the history of outputs as additional inputs, thus feeding
the RNN with rich information identifying differences between
different dynamic states of the circuit, and giving the best
modeling accuracy among all the methods.

IV. CONCLUSION

For the first time, an RNN macromodeling approach for non-
linear microwave circuits has been presented. As a departure
from the artificial neural-network methodology used for pas-

sive linear device modeling, the RNN macromodel provides fast
and accurate representation of the time-domain dynamic be-
havior of the original circuit. The method is based on learning
the input–output waveform and does not require conventional
manual construction of an equivalent circuit. It opens a new po-
tential for automatic model generation through neural-network
learning.
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