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Abstract—In this paper, a new macromodeling approach is the starting point for deriving a reduced set of nonlinear dif-
developed in which a recurrent neural network (RNN) is trained  ferential equations. However, the task of developing more au-
to learn the dynamic responses of nonlinear microwave circuits. tomatic and generic model structures with full analog behavior
Input and output waveforms of the original circuit are used as still remains very open. In this paper, we propose a novel alterna-

training data. A training algorithm based on back propagation . . . . o
through time is developed. Once trained, the RNN macromodel tive approach for macromodeling nonlinear microwave circuits

provides fast prediction of the full analog behavior of the original based on RNNs.
circuit, which can be useful for high-level simulation and opti- An RNN is a special type of neural network having the

mization. Three practical examples of macromodeling a power capability of learning and then representing dynamic system

amplifier, mixer, and MOSFET are used to demonstrate the pehavior. It has been used in areas such as signal processing,

validity of the proposed macromodeling approach. speech recognition [16], system identification, and control
Index Terms—Computer-aided design, macromodeling, neural [17]-[21]. The motivation for using RNNs in macromod-

networks, nonlinear circuits, optimization, simulation. eling nonlinear microwave circuits is threefold. Firstly, the
neural-network learning capability can be used to learn the
|. INTRODUCTION input—output behavior directly from measured or simulated

. . input—output data of the original circuit, avoiding otherwise

RECENTLY’ a new computer-aided design (CAD) apmanyal effort of developing equivalent-circuit topology.
T\ proach based on a neural-networks model has begB:ondly, the universal approximation property of full RNN
introduced for microwave modeling, simulation, and Optigonfirms that the model has a theoretical base of representing
mization [1]-[4]. After being trained with microwave datathe fyl| analog behavior of the circuit with good accuracy.
the neural model can be used in microwave design, providiggjrdly, the evaluation of the RNN from input to output is very
fast answers to the task it has learned. Significant progregs; with these motivations, we propose a new macromodeling
in applying the neural network to the modeling of passivgs,roach using a buffered input-output RNN. The model is
electromagnetic (EM) structures [5], [6] and active devices [7iompletely formulated in time domain since nonlinear dynamic
[8] has been made. This paper presents a further advance in fifayior is best described in the time domain. Input and
direction. For the first time, a recurrent neural network (RNN,inut waveforms of original circuits are used as training data.
methodology is presented here for macromodeling of genegliraining method based on back propagation through time
dynamic behavior of nonlinear microwave circuits. (BPTT) is introduced for model development. Three practical

A nonlinear macromodel aims to represent the mput—outpégpammes of macromodeling a power amplifier, mixer, and
behavior of a nonlinear circuitin a form that is faster and sSimpl@fioSFET are used to confirm the validity of the proposed
to evaluate than original nonlinear circuit simulation. It becom proach.
very important due to the need for simulation and optimization This paper is organized as follows. In Section II, we first state
of analog behavior at higher level design involving many subCise gynamic representation of nonlinear circuits and the pur-
cuits such as amplifiers and mixers [9]. Several approaches hgyge of macromodeling. A new macromodeling method is pro-
been developed such as the behavioral model approaches [gglsed and the modeling structure with an RNN is presented.
where frequency-domain information [11], [12] or time-domaiRode| development procedure and a training method based on
information based on scattering function [13] is used to develgpbTT is described. In Section IIl, three examples are shown

a nonlinear model, the equivalent-circuit-based approach [1¢{},qemonstrate our approach. A conclusion is then presented in
which involves the development of a simpler circuit topolog¥ection Iv.

and related nonlinear component expressions, and the model re-

duction approach [15], which uses original circuit equations as
II. M ACROMODELING NONLINEAR CIRCUITS WITH RNN

Manuscript received March 5, 2000; revised August 21, 2000. This work was STRUCTURE AND TRAINING
supported in part by the Natural Science and Engineering Research Councijof ; Sear ;
Canada, and in part by Micronet, a Canadian Network Center of ExcellenceAir'] Formulation of Circuit Dynamics

Microelectronic Devices, Circuits, and Systems. - Let N, and N, be the total number of input and output sig-
The authors are with the Department of Electronics, Carleton University, Ot- Is in th l . . ivel be th |

tawa, ON, Canada K1S 5B6. nals in the nonlinear circuit, respectively, afAg, be the tota
Publisher Item Identifier S 0018-9480(00)10727-6. number of circuit parameters. Lgt= [§1 72 ... gn,]" u =

0018-9480/00$10.00 © 2000 IEEE



2336 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

Training Error

Output
waveform p (k)

&) | yEK) a1y |a(K) | P, Nonlinear
Microwave
[addie laddde Circuit
r A M Input layer T T
Time varying ~ Time invariant Input Circuit
input u(k) input p waveform (k) parameter p
~— —_— _— ~— —— —
Recurrent Neural Network macromodel Original Training Data

Fig. 1. Proposed RNN-based macromodel structure.

[ug u2 ... un,]*, andp = [p1 p2 ... pKP]T be vectors of the C. Proposed Macromodel Structure Based on RNN

output signals, input signals, and circuit parameters of the non- ) ) .

linear circuit, respectively, wherE denotes transposition. The, In orderto dgnve a macrompdel, we f|r.st re-formulatelt_he ong-

characteristics of the original nonlinear circuit can be gener:’:t'g(.aI problgm n th.e discrete-time doma_ln with a specific sam-
ing rate into an input—output formulation as [19]

described as a nonlinear system in state variable form as

X(t) = <P(X(t)7 u(t)v P, t)
y(t) = ¢ (x(®), u(),t) 1)

wherex = [x1 x2 ... xn.]% is the vector of state variables

andN, is the number of states. In a modified nodal formulation . . . . .

[22], the state vectox (t) includes nodal voltages, currents ofVN€re is the time index in the discrete time doma, and
inductors, currents of voltage sources, and charge of capacitdyg: '€ the total number of delays ¢f and u, respectively,
However, solving this original nonlinear differential equation id/« < My andgis asetof nonlinear functions/, and/, also

computationally intensive when the nonlinear circuit becomggPresent the order of the original nonlinear circuit dynamics.

large. For higher level design and optimization, where this cifhis model can be used as an alternative representation of the

cuit is used as a sub-module and repetitive evaluations for dfnamics in the original circuit of (1).

ferent circuit inputs are needed, a more simplified and conve-IN Practice, it is often difficult to derive (3) analytically
nient computational form should be used. for a large-scale nonlinear circuit. Neural networks are well

known to identify nonlinear relationships between input and
B. Statements of Macromodeling output parameters, and have achieved success in solving prac-

The purpose of macromodeling is to develop a model thg\(fal modeling problems_ [16]. In thi_s paper, we emp"_’y an
N to learn the dynamic characteristics of nonlinear circuits

has a similar input—output relationship as the original compl : :
circuit within an acceptance error range. At the same time, t Ed determine their macromodgls. RNNSs are neural networks
evaluation of the macromodel should be much faster than that§if? feedback from output to mput. The. prqposed macro-
the original circuit. Suppose the candidate macromodel is repF@Qdel_ structure b.ased on.RN!\l is shown in F_|g. 1 Th? input
sented byM : u(t) — y(¢), which is a functional on the spaceIayer includes a time varying input pat and_ time-invariant

of input waveformsu(t). SupposdT;, 1] represents the time part p. _The output layer Is time varying signal. For ex
sampling range of interest for the input and output signals. L3fPI€, if the macromodel is used to represent an amplifier,
U, anduy,;, represent the upper and lower boundary ofian'ilf'en u wil rgprgsent the amplifier input signap W'.". rep-
signalu(t). For each inpuia(t), umin < u(t) < b € resent the circuit parameters related to the amplifier, sand

[71, T3], the quality of the macromodel can be represented W" be Fhe QUtDUt signal from amplifier. i
the difference between the output of the macromodel and that N€ first hidden layer of the RNN, labeledlayer, contains
of the original circuit in @, norm buffered history of circuit output signat, which is fed back
from the output of the RNN, buffered history of the circuit input
/T2 signalu, and the circuit parametgr. Let the time sample index

-~ 2
ly(®) =y (@) dt. ) bek. Let K, and X, be the number of buffers for outpytand

y(k) =gFk—-1),....y(k = My),u(k = 1),...,
ll(k— Mu)vp) )

e
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input parameten, respectively. Then neurons in tisdayer is Here, the number of delay buffeis, and K,, represent the

defined as order of dynamics in the RNN macromodel.
yi(k —n), fori = (n—1)N, + j; D. Model Development and RNN Training
1<js Ny lsn<K, . The RNN macromodel will not represent the nonlinear mi-
wilk) = uj(k—n),  fori=K,N,+(n—-1)N.+J; crowave circuit behavior unless it is trained by training data.
1<j< Ny 1<n< Ky Following the requirement described in Section II-B, the macro-
pn,  fori=n+K,N,+ K.Ny; model should be trained to match the output of the original cir-
1<n <K, cuit under various input excitations in the interyal, 75]. In

(4)  our approach, training data is a set of input and output wave-
forms of the original nonlinear circuit. They can be collected
Let IV, be the total number of neurons in tkdayer; we have through simulation and/or measurements. A second set of wave-
Ny =K, +N,K,+ N, K,. form data, called “testing data,” should also be generated from
The next hidden layer is called the layer. The neurons the original circuit for model verification. The excitations used
in this layer contain sigmoid activation functions. L&L, for generating testing waveforms should be different from those
be the total number of hidden neurons in thdayer. The for generating training waveforms.
vector of weights between the and z layers is denoted as Lety(¢) represent the output response of the RNN, 2l
w = [wi wiz ... wy.n, |5, andd = [6; 6o ... Ox5.]% represent the output waveform of original nonlinear circuit, i.e.,
denotes the bias vector of neurons in thiayer. For a given the simulation and/or measurements. Let training data be rep-
set of values in the layer, the responses of hidden neurons iresented by input—output waveforras,(¢), ¥,(¢)), 71 < t <
layerz can be computed from delayed input and output signdl, ¢ = 1,. .., N,,, whereu,(t) andy,(t) are thegth input and

as output waveforms andv/,, is the total number of sample wave-
forms.
Ky Ny Each dynamic respongét) from the RNN macromodel over
v;(k) = Z Z yi(k — wjii—1)N, +1 the time interva[Z;, T3] is also called an RNN output trajectory.
i=1 1=1 The process of training is to minimize the difference between
K D . the RNN trajectoryy(t) and circuit waveform datg(t) under
- Z Z tm (k= DWj[1c, N, +(i=1)No4m] various input signala(¢). Let NV; be the number of time samples
’;1 m=t in [T1, T3], andy,, (k) be theith output signal atth time sample
d in thegth trajectory of the RNN angt;, (k) be the corresponding
T Zpiwi[l"y N 4K No+i] T 05 waveform sample of the original nonlinear circuit. The objective
=1 , for training the macromodel is
zi(k) =(y;(k),  J=1....N. (5)
1 N,, N, N, )
whereg(v) is a sigmoid functiong(y) = 1/(1+¢~7), andw;; min 3 Z Z Z (viq(k) = §iq(k)) . (8)
is the weight between thegh neuron in thez layer and thejth g=1 i=1 k=1

neuron in thex layer. L. ) o
The last layer is the output layer called thiayer. They layer I order to employ efficient gradient-based optimization

outputs are linear functions of the responses of hidden neurdigthods in the training of the macromodel, derivatives of the
in the z-hidden layer. Letv = [u1; v12 ... vw, n.]F be the €rror function for training with respect to each parameter in the

vector of weights between the layer andy layer andy = RNN are required to form the Jacobian matlixAs shown in
[m 2 ... ny,]" be the bias vector of output neurons in thé7), the outputs of the RNN macromodel are fed back to the
y layer. The output of the overall macromodel is computed a¥'Put layer. Therefore, outpytis not only a function of inpua,
but also the previous output of itself. Thus, conventional error
N, back propagation method is not applicable for neural-network
yi(k) = sz(k)% + 7, i=1,...,N, (6) training. An advanced macromodel training scheme based on
=t BPTT [23] is developed here to derive the Jacobian matrix.
For the kth training sample in thegth waveform
wherew;; is the weight between thgh neuron in they layer (ug(k),¥4(k)), thels error of the macromodel is
and thejth neuron in thez layer.

.

Let the parameters of the RNN be denoted®sd = Mg . 2
[wZ6TvT7T|T. The part in the macromodel structure from the IAOEDY 5{.%‘(1(/%‘) - Yiq(/%‘)} - )
x layer,z layer, to they layer is a feed forward neural network =1

(FFNN) denoted asy(x,®). The overall neural network

_ ) i . To obtain derivatives o, (k) with respect to weightg for
realizes a nonlinear relationship

training, we needly;,(k)/d®, which is computed recursively
from history ofdy;,(k)/d® in the following way.

yb) = fly(k=1),....,y(k = Ky),u(k = 1),..., Fork = 1, initialize (dy,,(k)/d®) = (dy;,(k)/0®), where
u(k —K.),p, @). (7) the left-hand side is the derivative of the RNN macromodel and
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Oyi.(k)/0® inthe right-hand side is the derivative of the FFNN Input  Port1 Port 2 Output
part in the macromodel betweenandy, which can be com- X b I> L’l ¥
puted by normal back propagation [16]. The subsequent deriva-

tive dy;,(k)/d® for the RNN fork > 1 can be computed by _l_ _J_

using the history ofly,,(k)/d® as +3.95V VLY

el

I 1

dyiq(k) _ MWiq(k)

d® od
L, N,
Y { Ayjq(k)  dyjq(k — m)} +.‘
=1 =1 OT[j4+(m-1)N,] d® o
“o e
where —/ W\
N
I = Ky, ifk>Ky_ (11) —"\— Port 2
Y k—1, otherwise ¥ ¥ ¥ v
Port 1

The recurrent back propagation includes two parts. First, normal
back propagation [16] is done through the FFNN between 1
the x andy layers to get the partial derivativiy;,(k)/0®.
This represents the sensitivity of the circuit output waveform
with respect to macromodel internal parameters. Secondfig- 2. Power-amplifier circuit to be represented by a macromodel based on
Oyiq(k)/0x(k) is obtained from further back propagation to th8" RNN-

FENN input layerx. This derivative represents the dependenc . )

of the circuit output waveform between adjacent time poinfs Discussion

and can be written as The number of delay buffers represents the order of the
macromodel. Theoretically, to identify the complete dynamic

iy (k Z dyiq(k dz, characteristics, the number of delays should at least exceeds
3$[1+(m DN, dz, dx[j-l—(m—l)Ny} the number of states in the original circuit. For the purpose

of model reduction and macromodeling, a system with much
_ ZU . Y ) lower orders can predict the output of the original system suc-
i TN, ] cessfully [14], [15]. By choosingy,, to be lower than the order
K of original system, our proposed RNN model automatically
Y"achieves model reduction effects. Another factor in the RNN
(12)  model is the number of hidden neurons. Different number of
hidden neurons represents the extent of nonlinearity between
The result ofdy;,(k)/d® is stored and used recursively as theFNN inputs and outputsz(andy). Too few hidden neurons
history for computing the derivative at tthet 1 step. After this  cannot represent the nonlinearity sufficiently, while too many
procedure, the Jacobian matrix of each sample with respectjl lead to overlearning.
each parameter in the RNN macromodel can be formulated asRNNs can be used to learn the dynamics both in the transient
and steady-state stages, as will be shown in examples in Sec-

r=1
forj=1,...,N,; m=1,..

v

[ |:6E1(1) OE(2) aEl(Nt)r i tion Ill. When using an RNN macromodel, a good estimation of
o o o . the initial state is necessary. For models trained using a transient
[51‘32(1) OEx(2) | 31527(1\0} waveform, the initial state can be considered to be zero or dc
J = oD oD oP (13)

solution. If in the transient stage, the signal has sudden changes
: in the beginning: a separate RNN model with smaller sampling
[aEww(l) 0B~ (2) . 9Ew, (Nf)r interval can be trained for initial state estimation. For models
or or or trained using steady-state waveform data, the initial states are
t simply zeroes or constants. A time-delay neural network
DNN) [24] can be trained using the information contained in
aining data and used to provide initial estimations.

Based on this gradient scheme, gradient-based optimization
gorithms, such as the Levenberg—Marquardt and quasi-Newton
methods, are used to train the macromddénce an RNN
macromodel is trained, it can then represent the parametric and
dynamic input—output relationship of the original nonlinear mi-
crowave circuit. A. RFIC Power-Amplifier Macromodeling Example

I1l. M ACROMODELING EXAMPLES

1Q. J. Zhang, NeuroModeler version 1.02, Dept. Electron., Carleton Univ., This e?(am_ple demonstrates the. macromOd?"ng of an RFinte-
Ottawa, ON, Canada, 1999. grated-circuit (RFIC) power amplifier, shown in Fig. 2 through
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TABLE | f=0.9 GHz f=1.1 GHz
AMPLIFIER: RECURRENT TRAINING AND TESTING VERSUSDIFFERENT A=1.15V

NUMBER OF HIDDEN NEURONS

1.0}
Number of Hidden Rggurrent Ref: urrent 08r1
Neurons in z layer Training Error Testing Error |
(3 buffers) (3 buffers) & 06
30 1.35¢-2 1.43¢-2 5 o4t
40 1.08¢-2 1.1le-2 &
50 1.06e-2 1.04e-2 3 02}
60 1.12¢-2 1.19¢-2 5
E 0
=
E 027
TABLE 1l <
AMPLIFIER: COMPARISON OFRECURRENTMODEL AGAINST DIFFERENT -04 [
NUMBERS OFBUFFERS
06T
Number of 0.8
buffers Recurrent Recurrent 0 02 04 06 08 1.0 12
Training Error Testing Error
& Time (ns)
1 3.11e-2 3.00e-2
2 1.81e-2 1.83e-2 _ _ o _
3 1.06e-2 1.04e-2 Fig. 3. Comparison between output waveforms from original amplifer
4 9.10e-3 9.33e-3 and that from an RNN macromodel with three buffers (-) trained in transient

state. Good agreement is achieved even though these waveforms have never
been used in training.

the proposed RNN approach. The choice of a power amplifier

is due to the fact that it is a key circuit in wireless-communica- f=105GHz| |f=105GHz| |f=095GHz
tion systems. The amplifier contains eight n-p-n bipolar junction 12| AZ045V AT 1‘15V A- HSV

transistors (BJTs) modeled by two internal HP-ADS nonlineat
models Q34 and Q3% .Input parameters for the RNN are the

voltage waveform of amplifier input and their sampling inter-
vals. Output of the RNN is the voltage waveform of the ampli-
fier output.

The first macromodel is constructed to represent the tran
sient characteristics of the amplifier. The sampling intervals
are changed with frequency so that 50 points per cycle ar
ensured. The training waveform is gathered by exciting the
circuit with a set of signal frequencieg & 0.8,1.0,1.2 GHz)
and amplitudes 4 = 0.2,0.3,...,1.3 V). Testing data is ) 0.5 1 1.5 2 2.5 3 35
generated using frequencies (0.9, 1.1 GHz) and amplitude
(0.25,0.35,...,1.25 V), which are different from those used
in training. Fig. 4. Comparison between output waveforms from original amplifgr

Training results and testing results are listed in Table |. Difnd that from an RNN macromodel with three buffers (-) trained in steady state.
_ferent numbers of dela_y buffefs (K = K, = K,) are tried ﬁci?; r%?]rgéement is achieved even though these waveforms have never been used
in the RNN, as shown in Table II.

A set of sample test waveforms is shown in Fig. 3 for thg — 0.25.0.35 1.15 V). The overall accuracy (average

RNleai;r?;qu%?ci;chl)\j 0.9 and 1'; IGHZ' and acrjnplitudes lg.'llae'ast error of all test waveforms) is 0.728%. Fig. 4 shows the
and 1. ' el mac;}romo N I_(;_an reprogduce eflmp : '%Bmparison of the RNN with a set of sample test waveforms
output accurately even when amplifier Input waveform g, three cycles) excited at sample frequencies of 0.95 and

different from those used in training. Moreover, an RN .05 GHz, and amplitudes of 0.45 and 1.15 V. As expected,

macromodel can generate similar output as original simulati RNN macromodel can reproduce the amplifier output
With much faster speed. The evaluation of 900 different S(atsq;’m;r(bcurately even though these test waveforms were never used
input-output waveforms takes 10 s by the RNN macromodgly aining Moreover, the training was done with one cycle of

and 177's by the original §|mu!at|on. . waveform data. In the testing of Fig. 4, the RNN can reliably
A second macromodel is trained to learn the large-signal bﬁ‘r’edict the signal well beyond one cycle

havior of the amplifier in the steady state. The sampling cycle’s

also proportional to frequency so that 50 points per cycle are &f- RF Mixer Macromodeling Example
sured. The training waveform is generated from HP-ADS with
the following set of excitation signaf: = 0.8,0.9, ...,1.2 GHz
and A = 0.2,0.3,...,1.2 volts. Testing data is gath-
ered for two cycles using a set of samples different fro
those used in trainingf( = 0.85,0.95,...,1.15 GHz and

Amplifier output (V)

Time (ns)

This example demonstrates the RNN method in macromod-
eling a mixer, which is a basic circuit in any transmission-re-
ception process. The circuit is a Gilbert cell, shown in Fig. 5.
The internal subcircuit contains 14 n-p-n BJT transistors (mod-
eled by five different HP-ADS nonlinear modéi$1-A45). The
2HP-ADS version 1.3, Agilent Technologies, Santa Rosa, CA, 1999. RNN macromodel for the mixer has three inputs, namely, RF
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+ 5V 0.08 }

RF Port, 0.061
“ ¥ IF Port
< 0.04}
Pre L %
& 0.02f
=
=]
5 0
=
. = .02}
g -0.04}
g o { sV -0.06
| 0 1 2 3 4 5 6
N Time (ns)
ko
’I‘ IF Port Fig. 6. Comparison between output waveforms from original m{x¢rand
LO Port that from an RNN macromodel with three buffers (-) trained in transient state.
Good agreement is achieved even though these waveforms have not been used
in training (frr = 2.55 GHz, Prr = —48 dBm, Z1r = 50 Q).
RF Port I
0.04
0.03
, p . {
v % . 002 X L8 ? n[ P ) E
i >
5 0.01p ITibel Rl [biP p
& PP i it i
Fig. 5. Mixer circuit to be modeled by a macromodel based on an RNN. g 0 cly o7 7 @ E | |
St by '} P
£ 001 i £ i L b
TABLE Il =
MIXER: RECURRENT TRAINING AND TESTING VERSUSDIFFERENT -0.02 L 18 it 1 L
NUMBER OF HIDDEN NEURONS t | p
-0.03 3
8
. Recurrent Recurrent
I;Ilurr;bir Ofl Hlldden Training Error | Testing Error -0.04 0 5 4 6 3 10 12
eurons in z fayer (3 buffers) (3 buffers)
30 7.77e-3 5.69¢-3 Ti
40 5.53¢-3 3.60e-3 ime (ns)
50 6.03e-3 4.17e-3
60 6.40¢e-3 5.40e-3 Fig. 7. Comparison between output waveforms from original m{xgrand
that from an RNN macromodel with three bufférs ) trained in steady state.
Good agreement is achieved even though these waveforms have not been used
TABLE IV in training. (frp = 2.05 GHz, Prr = —47 dBm, Z1x = 35 Q2). This is one

MIXER: COMPARISON OFRECURRENTMODEL AGAINST DIFFERENT
NUMBERS OF BUFFERS

of the many test waveforms used.

Number of buffers Recurrent Recurrent Vade
(K Training Error Testing Error Vg de |_||,
1 8.81e-2 7.85¢-2
2 2.59%2 2712 ""“l
3 6.03¢-3 4.17¢-3
4 8.21e-3 7.89¢-3

input waveform, local oscillator (LO) input waveform, and IF
load impedance. The sampling cycle is fixed proportionally to
the highest frequency to be trained.

The first macromodel is constructed to model the dynamics
of the mixer in the transient state. The training data is gathered
in the following way: th_e RF frequ_ency and power level Changqgg. 8. Circuit used to generate training data for a transistor to be represented
from 1.8 to 3.0 GHz with a step size of 0.1 GHz, and fret®0 by an RNN macromodel. The training data is obtained using HSpice simulation
to —30 dBm with a step size of 5 dBm, respectively. The L®@ith BSIM3—level 49 transistor model.
signal is fixed at 1.75 GHz and5 dBm. IF Load impedance is
sampled at 30, 40, 50, 60, and 0 The transient time range —53 dBm) and for a 5@2-load IF impedance with transient time
for training [71,1»] is [0,1 ng. Test data is given using dif- up to 2 ns.
ferent set of samples from those used in training: RF frequencied he training error and testing error are listed in Table IlI.
(2.35, 2.55, 2.75 GHz), RF power levels38,—43,—-47,—48, Results of the RNN with a different number of buffédts( K =

VSOUTCC
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Fig. 9. Effect of initial state estimation and comparison between output waveforms from original transistor sinfulatiod that from an RNN macromodel
with two buffers (-) forf = 0.9 GHz, Viguree = 1.55 V, V, ae = —2.125V, andV, 4. = —3.25 V. (a) Gate current: without initial state estimation. (b) Drain
current: without initial state estimation. (c) Gate current: with initial state estimation by an initial RNN. (d) Drain current: with initiab&tatgien by an initial
RNN.

K, = K,) are shown in Table IV. Fig. 6 shows an example te€. MOSFET Time-Domain Macromodeling Example
result of an RNN at the RF frequency of 2.55 GHz, RF power 1e |35t example is a transient device level example of a

level —48 dBm, IF load impedance of 3@, and transient time , \OSFET transistor. The training data is collected by HSpice

up to 6 ns. Again, using the macromodel, the original analQgmjation using BSIM3 (level 49) modeiThe physical param-
dynamic behavior can be retained and the evaluation of s rs of this model are a length Hf= 0.4 zm and a width of

behavior is much faster than original circuit simulation. W = 170 um.
A second macromodel is constructed to learn the behaviorof-l-he RNN macromodel has two inputs, namely, gate and

the mixer in steady state. Training data is generated as followssin, voltage waveforms. The two outputs of the RNN are
RFfrequency and power level are changed from 1.8 to 3.0 G'déte and drain current waveforms, (and 1,). To generate
with a step size of 0.1 GHz and from50 to —30 dBm with  he (raining and testing waveform data, we used the circuit
a step size of 5 dBm. LO signal frequency is 1.75 GHz ang,,yn, in Fig. 8. Sampling intervals are proportional to the
power level is—5 dBm. IF load impedance is sampled at 3Qyoquency, thus, 50 points per cycle are ensured. The data

40, 50, 60 and 702, and time range is up to 4 ns. Test daly gathered by varying frequencies of excitation signal:
is given for a different set of RF frequencies (1.85, 1.95, f = 08,1.0,1.2,1.820,2.2 GHz, source amplitudes:

2.95 GHz), RF power levels{47, —42, 37, and—-32dBm) y, = _ (510 1.2 1.4,1.516 V, gate bias voltages:
ar_1d f(_)r a load IF impedance sampled at 35, 45, 55, anft 6 4 = —3.0,—2.75,...,—2.0 V, and drain bias voltages:
with time range up to 12 ns. The overall test error for all thgd

X : = —5.0,—4.5,...,—3.0 V with transient up to two
waveforms is 0.541%; the RNN macromodel can predict t'?:?/cles.

output waveforms accurately even beyond the time range Usegtegting data are waveforms simulated in HSpice using
in training. Fig. 7 shows an example test result of the RNN with ¢t of samples different from those in training (fre-

RF frequency equal to 2.05 GHz, RF power level7 dBm, qiency —09,1.1,1.9,21 GHz, source amplitudes:
and IF load impedance of 38. Again, using the macromodel, 0.9,1.1,1.3,1.45,1.55 V, gate bias:V, 4.

.. . . . source @ —
the ongmal analog dynar.mc. behavior can be reta,n_ed and tﬂ%.875, —2625,...,-2.125
evaluation of such behavior is much faster than original circuit

simulation. 3HSPICE, Avant! Corporation, Fremont, CA 1996.

V, drain bias: Vj4c =
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Fig.10. Comparison between output waveforms of gate current from original trarisistord that from an RNN macromodel with two buffers (-) under various
excitation with different parameters. Initial estimation by an initial RNN was used. The macromodel matches test data very well even thougibtkdestvar
waveforms have never been used in training. (a) Diffetépt,.. with f = 1.1 GHz,V, 4. = —2.125 V, andV, 4. = —3.25 V. (b) Different frequencies with
Vyde = —2.125V, Vyqe = —3.25V, and Viouree = 1.55 V. (€) DifferentV, 4. with f = 1.1 GHz, V4 4. = —3.25 V, andViouree = 1.55 V. (d) Different
Vaae with f = 1.1 GHz, V, 4o = —2.125 V, andVieurce = 1.55 V.

—4.75,—4.25,...,—3.25 V) with transient up to two cy- D. Comparison Between Standard Neural Network and the
cles. Proposed RNN Methods for Nonlinear Macromodeling

A separate RNN macromodel is trained to estimate theln orderto compare the proposed recurrent neural model with
initial conditions for the above model. The training data fathe conventional non-RNN model, the three examples in this
this initial RNN includes short segments of various trainingection are also used to develop a conventional FFNN, and time-
waveforms sampled at high sampling rate. The samplimiglay neural-network (TDNN) models. In an FFNN, the output
interval of the training data for this initial macromodel iss dependent only on the inputs at the same instantaneous time,
one-fifth of that in the main RNN macromodel. Three delawhile in a TDNN, only the history of input signals are used
buffers are used. This initial RNN helps to accommodate tlaes the inputs of the macromodel. Both FFNNs and TDNNs are
sudden rise and fall of the signal in the beginning. Fig. Bonrecurrent models since they have no feedback from outputs
shows the response of RNN under the same excitation withinput. The test errors for FFNN, TDNN, and RNN models are
and without initial estimations. listed in Table V.

The overall accuracy (test error) of the macromodel with ini- As can be observed from the table, the proposed RNN
tial estimation with respect to all test waveforms is 0.303%. Theethod gives the best modeling results. The conventional
RNN macromodel can predict both gate and drain currents acél=NN model has poor accuracy since it can only represent a
rately even when the exciting gate and drain voltage waveformsisitic input—output relationship and is not suitable for repre-
are different from what is used in training. Figs. 10 and 11 shosenting the dynamic behavior in the examples. The TDNN
the examples of different test results with different set of vanmodel is an improvement over the FFNN because a history
ables (with varying source amplitude, frequency, and gate aoflinputs is used in training, representing a partial dynamic
drain bias voltages, respectively). The output trajectory from tirdformation. However, the circuit output may be different even
proposed macromodel matches the test waveform from the onigith the same input because of the differences in the history
inal MOSFET very well under various excitations even thougbf the circuit responses. In this case, the nonrecurrent models
these waveforms have never been used in training. (i.e., FFNN and TDNN) will try to learn the average between
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Fig. 11. Comparison between output waveforms of drain current from original tran@istnd that from an RNN macromodel with two buffers (-) under various
excitation with different parameters. Initial estimation by an initial RNN was used. The macromodel matches test data very well even thougibukdsstvar
waveforms have never been used in training. (a) Diffetépt,.. with f = 1.1 GHz,V, 4. = —2.125 V, andV, 4. = —3.25 V. (b) Different frequencies with
Vyde = —2.125V, Vyae = —3.25 V, andV,ouree = 1.55 V. (c) DifferentV, 4. with f = 1.1 GHz, V4 4. = —3.25 V, andV,ouree = 1.55 V. (d) Different

Vaae with f = 1.1 GHz, V; 4o = —2.125 V, and Viource = 1.55 V.

COMPARISON OFTEST ERRORSBETWEEN NONRECURRENT AND THEPROPOSED

TABLE V

RECURRENTMODELS FORNONLINEAR MODELING

Standard Standard | Proposed
FFNN TDNN RNN
Method Method Method
Amplifier 156e1 | 3422 | 1.04e2
Macromodel
Mixer
Macromodel 9.61e-2 8.12¢-2 3.60e-3
MOSFET 637e3 | 432e3 | 3.033
Macromodel

sive linear device modeling, the RNN macromodel provides fast
and accurate representation of the time-domain dynamic be-
havior of the original circuit. The method is based on learning

the input—output waveform and does not require conventional
manual construction of an equivalent circuit. It opens a new po-
tential for automatic model generation through neural-network

learning.
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