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Abstract—This paper proposes a new design procedure for
planar microwave filters based on the inversion of the one-dimen-
b

sional transmission-line matrix (TLM) method. The essence of the

technique is the solution of the inverse scattering problem using ZD Zy Zz Z3 24 ZH
a TLM-based algorithm instead of using equivalent circuits. The |
procedure consists of determining the geometry of the obstacle

that generates the desired scattered field. In the case of filters,

this field is the time-domain input reflection coefficient, and the

geometry is the impedance profile of the filter. The procedure was I-—--I

validated with the design of low-pass and bandstop filters. It can AX

be used to create filters with arbitrary characteristics. X

Index Terms—Distributed parameter circuits, electromagnetic
scattering inverse problems, electromagnetic transient scattering,
transmission-line matrix (TLM) methods.

Fig. 1. Discretized nonuniform transmission line.
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I. INTRODUCTION 0 T

HE inverse scattering problem deals with the reconstruc

tion of the geometry of an object from its scattered field
[1]-[5]. In the case of microwave passive linear devices, thi
field is the total transmission or reflection coefficient in time or
frequency domains. Therefore, this is a synthesis problem whe
the solution is the reconstruction of the impedance profile of
nonuniform transmission line. Consequently, the desired refle
tion (or transmission) coefficients of the device determine th
profile. In [1], Roberts and Town used an integral equation pro
cedure to solve the inverse scattering problem in the calculatic
of the impedance profile. The input parameter was the reflec- ) ) o
tion coefficient response of a desired filter. Recently, Le Bpy "9 2-  Space-time diagram of incident and reflected pulses.
al. developed the continuously varying transmission-line tech- . ) o
nique [2] to design filters by impedance profile optimization dilnPut coefficient. The problem consists of a wave incident at
rectly from the input reflection coefficient. Therefore, it is posth® input point of a nonuniform transmission line of impedance
sible to use different algorithms to determine the geometry tH¥efile Z(x) (Fig. 1). o _
provides the desired scattered field. This paper uses a modified? this case, a good approximation of the continuously
procedure based on the inversion of the transmission-line matff{ying impedance of a nonuniform transmission line is a
(TLM) method. In this case, the solution is exact within the sanf®MpPosition of infinitesimal sections of transmission line
pling accuracy of the time-domain input reflection coefficientVith length Az and impedanceZ (). In the discrete case, the
This approach enhances the applicability of TLM. The proposéfve propagation process is a result of the infinite sum of the

method is a synthesis tool for linear passive microwave devicdi@nsmitted and reflected waves from each line interface, as
shown in the space-time diagram of Fig. 2.

Consequently, in a transmission line of lengthwith NV

) ) _ ~_layers, the time-domain response to an input impulge is
The formation process of the input reflection coefficient is thg,o input reflection coefficient

main concept in inverse TLM method. All the discontinuities
along the transmission line contribute to the composition of the

Il. THEORY

o>
Ti(t) = axd(t — 2kAL) 1)
k=0
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TABLE | theory of method does not rely on the analogy between waves
VALUE OF ;. GIVEN BY BACH IMPEDANCE LAYER and fields but in the direct application of the various reflections
between adjacent sections. Once the simulation is completed,
the input reflection coefficient of the structure is readily avail-
able. One interesting feature of 1-D TLM is that in some imple-
0 T mentations there is no numerical dispersion associated with the
numerical algorithm. Since the procedure uses one of such im-
2 |Tol12T o plementations, the calculated response is exact within the sam-
pling limits of the spatial and temporal discretization.
4 | Torl 1210l 12T 10 + To1T 120237 21701 The proposed method uses TLM as a tool to determine the
reflection coefficient of each impedance layer of the structure.
The inverse TLM algorithm separates all the components of the
nput reflection coefficient into reflection coefficients of each
nterface. In order to understand the algorithm, one should con-
sider the reflection from the first three layers of the nonuniform
. GFihsmission line expressed in Fig. 1. The space—time diagram
layersk and;. . . (Fig. 2) shows the composition of the time-domain reflection
The mathematical expre_ssmnaqjstarts to bec_ome CF"mber'coefﬁcient (see also Table I). Consider two different cases in
some_afterk =4, as seenin Tab_le . I-_|owever, if the tlme'do'the calculation of the input reflection coefficient from thth
main input reflection coefficient is available, one can calcula‘gyer(k — 1,2, 0r3)
the reflection coefficient of each interface by knowing the math- 7 ’ . -
ematical expression ef;,. The value ofz;, yields the reflection 1) Inthe f.'rSt caseZy, = Zx—1 and the reflection coefficient
coefficient of the interface and the impedance of the particular Tii—1 is zero (matched load). . -
2) Inthe second cas&; = oo and the reflection coefficient

k ag

possible to obtaim; as a function of internal transmission ancls
reflection coefficients shown in Table I, whelrg; andl'x; rep-
resent the reflection and the transmission coefficients betw

layer ; o
y I'xx—1 is one (open circuit load).
7 1+0, @) If one executes this procedure for each layer using the results
m el T, from Table I, the input reflection coefficiett; is as follows.
whereT',, is equivalent to the reflection coefficient between L@Yer1) & = 0—lInterface betweed, andZ,
layersn andn — 1 (T, ,—1). riable — 1y, (3a)

The problem is that a closed expressiomfs not simple. It [matelied _ (3b)
involves not only the impedance layer of interest but also a non- g -
linear combination of the characteristics of all previous layers. P =1. (3¢)
We propose a solution to this problem based in the inversion of
the one-dimensional (1-D) TLM method. In the inverse proce-
dure, the TLM method can accurately represent the reflection r;able =T15T50T0; (4a)
and transmission of each impedance layer of the structure. [matched _ g (4b)

One possible application of the one-dimensional TLM ¢
method [6], [7] is the solution the wave equation on trans-
mission lines in one dimension. It discretizes the devicé/in
sections. Each one has a lengilz: (given by At/v—where

Layer 2) k = 2—Interface betweetr; andZ,

l—w?pen =Tiolo1. (4C)

Layer 3) & = 4—Interface betweelttr, andZ3

At is the timestep and is the speed of light) and impedance [Pl — oo 0 To1 TioTo1 + DiaTioTo1 (5a)
Z,. The calculation is performed in the time domain, and at [mateled _ 1o 0Ty, (5b)
each timestep the reflected waves are calculated usin " open
P ? PP = TioTo T12 151 (5¢)
2 . .
Vi= 11y YoV, + V) From (3a)—(5c), it is possible to reconstruct the general ex-
VTV nVi pression for the input reflection coefficient shown in Table |
BV, = Ve — iV,
kV,n, _ va _ kV,nZ (3) F:able(2k) —_ ]-_‘kk—l]-_‘;‘)ben(2k) + l—w;natched(2k). (6)

whereY,, is the ratio between admittances of adjacent sections,!t iS Simple to perform these calculations for a known struc-
k is the timestep of the calculated section, arid the position ture, but what if the structure is not previously known? In this
of the calculated section. The transmitted waves are calculafé@§€; at each even timestep)2wo TLM simulations have to

using be performed to determine the reflection coefficient. One sim-
‘ ulation will be executed assuming the next layer is a matched

LA A load. The result will bel#atehed(21) The other simulation
k+1V7f,+1 =V 4) Will assume that the next layer is an open circuit. The result

will be I'{P°*(2k). The combination of (6) with the time-do-
This version of TLM is slightly different when comparedmain reflection coefficientl’;(2%)) yields the reflection coef-
with traditional implementations of the method. In this case, thigient of layerk, I'xx_1. Using this coefficient in (2) results
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in the impedance of the layer. The procedure is repeated recur- ., s Processing time versus Number of Sections
sively. As an example, consider the case of a three-layer un-
known structure, such as the one shown in Table I.

1) Atk = 0, the impedance profile has no elements and the
first layer is obtained using (2). There is no need to per-
form a TLM simulation. The first element of the profile
is calculated from the results shown in (3).

2) At k = 2, the impedance profile has one element, and
two TLM simulations of a single-layer structure (obtained
from the result ink = 0) are performed. The simulation
results shown in (4) are used to calculate the impedance
of the second layer.

3) At k = 4, the impedance profile has two elements, and
two TLM simulations of a double-layer structure (ob- 10" .
tained from the results ik = 0 andk = 2) are per- 10 Relative number of impedance sections 0
formed. The simulation results shown in (5) are used to
calculate the impedance of the second layer. Fig. 3. Computational time and number of sections, calculdted and

At each timestep 2, the impedance profile up to theth experimental (+).

layer is determined using two simulations of a TLM structure
with k—1 elements. The procedure is repeated until the end of 8
the time-domain input reflection coefficient response. If the re-

=
(=)

(syun swi] ) swg Buissed0ld
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=]

1

% 10" Error in procedure (%)

sponse has® timesteps, then the structure will hayé ele- /
ments. z 4 ;
3
=) fid
lll. | MPLEMENTATION ISSUES 2 /\ /\
0
The direct synthesis procedure is different from the design J N \
based on equivalent circuit approximations. Since it includes §‘2

a numerically intensive computation, issues of processing time 4
and numerical accuracy are important. Itis also necessary to dis-
cuss the effects of two-dimensional wave propagation, sampling
of the time-domain reflection coefficient, feasible impedance -8
values, and truncation of the filter in the final design. 10

5 10 15 20 25 30 35 40

A. Processing Time Admittance Ssction

The first point to study in this procedure is the numerical prdg. 4. Percentage error in procedure.
cessing time. In the case of a structure withelements, &/
TLM simulations are necessary. The processing time of the al-another factor that influences error is the length and de-
gorithm is on the order of( V| (N +1)* — N — 1]), as shown creasing rate of the time-domain response. The premature
in Fig. 3. truncation of time-domain response can increase the error to

If one doubles the number of elements, the computation timgyher levels. This shows that inverse scattering TLM is very
will be roughly eight times longer. An optimization of the al-accurate, although it can be quite time consuming for very large
gorithm will reduce the processing time 40V?). This is pos-  structures.
sible since several calculations are redundant. In the CaICUIaThe Signa|_to_noise ratio (necessary Of accurate impedance
tion process of théVth layer of a nonuniform transmission line,profile calculation) has effects in the profile error. This is an im-
some modifications are possible. The use of TLM results froﬁbrtant parameter to test if the a|gorithm can be used to calcu-
the calculation of theV—1 layer avoids extra calculations.  |ated impedance profiles from real data. In real measurements,

. noise is always present even in reduced levels. In this case, the

B. Numerical Accuracy signal-to-noise ratio (S/N) determines the accuracy of the re-

The second point to study is the numerical accuracy. The tecwenstructed profile. After adding white Gaussian noise to sev-
nique is an inverse scattering procedure. Therefore, once ieigl known time-domain responses, we observed that the S/N
applied to the known response of a nonuniform line, it returmeeds to be higher than 60 dB (for a 5% error in the profile)
the impedance profile of the line. We used random nonuniforfor rapidly varying impedance profiles. However, if impedance
lines (the impedance of the line varies randomly with its lengtlpyofile varies slowly (it is composed mainly by a few sections of
to verify the numerical accuracy of the procedure. The resutiffferent impedance), the S/N can be as high as 15 dB for a 5%
show that the error of the procedure is very small{19%), as error. This suggests the use of the algorithm for the calculation
shown in Fig. 4, but it grows as the number of sections increasetthe impedance profile using real data in the slowly varying
The truncation and roundoff are the main reasons. profile case.
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C. Effects of Two-Dimensional Wave Propagation

The inverse scattering algorithm presented in this paper h|
good performance for one-dimensional wave propagation cas
However, in some cases, it is necessary to study the two-dime
sional case. It is possible to adapt the procedure for two-dime
sional TLM and use it in different structures. This modificatior
involves some changes in the calculation of the reflection ¢
efficient. The inverse 1-D TLM procedure works well only for '
TEM waves. Nonetheless, it is possible to modify 1-D TLM fol
special two-dimensional cases.

If the wave is TEM and is incident at the interface with &
certain angle, then it is necessary to modify the algorithm to r
flectimpedance changes. In this case, the calculated impedaiice
is a function of the incidence angle. The transmitted wave Wi, 5.
modify the angle of propagation as it passes through the inter-
face. Therefore, it will be necessary to correct both impedan~<2
and angle as the wave propagates. If the propagation is TEM
quasi-TEM, the procedure does not demand significant chang
The input reflection coefficient is extracted from tHeparam-
eters of the structure.

Layout of the assembled interpolated low-pass filter.

D. Effects of Sampling, Impedance Values, and Truncation

As shown in (3)-(5), the time-domain response of th
input reflection coefficient has nonzero elements only at eve
timesteps. Consequently, in the synthesis procedure, it is ni
essary to sample the time-domain response of the desired fil
characteristic. Since the sampling of the response affects the
gain of the filter, it is necessary to normalize the filter respongé. 6. Layout of the assembled Chebyshev low-pass filter.
before the method is used. Another effect of this sampling is
the duplication of the filter response in the frequency domai
This duplication may cause problems (aliasing) in the design
certain filters. Another implementation issue is that the filter
created in this procedure usually have low-pass characteristi
It is mathematically possible to create bandpass or high-ps¢
filters with this method. However, these filters may hav
unrealizable impedance values. A possible solution is the L
of coupled transmission lines in the design suitable bandp:
and high-pass filters. This approach is still under study. Tt
last implementation issue regards the length of the structur
In a general case, the time-domain response of the reflecti
coefficient is infinite. Since the method uses this response
calculate the filter, the resulting structure is a truncated versiuri
of the ideal filter. This is quite common if Chebyshev and Butsig. 7. Layout of the assembled Butterworth low-pass filter.
terworth functions are used. If the frequency-domain response

is periodic, there is a reduction in the effect of premature fiIte{ this is not true, the interpolation procedure may result in

truncation. Although this may result in spurious passbhands, | %tortion of the desired response. The desian procedure is
final length of the filter can be quite compact. Therefore, the*e b ' gn p

. . "X automatic for several kinds of filters. The assembled
's a compromise between accurate frequency response andfilﬁ]ers were three low-pass filters (two tenth-order Chebyshev
dimensions of the structure. P y

and a fifteenth-order Butterworth). The low-pass filters shown
in this paper had cutoff frequencies of 5 GHz. In view of the
choice of manufacturing technology, one Chebyshev filter

The procedure was validated with three filter designs. Imeeded truncation and interpolation. Since the response of the
all cases, a MATLAB code was used to perform the synthesigerpolated filter may not be the same as the staircase one, an
procedure and generate an impedance profile. The result isagralysis procedure is necessary. A TLM algorithm performed
impedance profile in a staircase configuration. If the spatiiie simulation of the interpolated filters. Fig. 5 shows the
discretization is small (compared to the wavelength of interestdyout of the interpolated filter. The other filters did not need
the interpolation result will not cause problems. Howevemterpolation (Figs. 6 and 7).

IV. EXPERIMENTAL RESULTS
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Low Pass filter — simulation and measurements
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Fig. 8. Measured and simulated results for the interpolated low-pass filter.

Measurements—solid line, simulation—dashed line.
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The measurements were executed in the HP 8539 spectrum ana-
lyzer. The results are shown in Fig. 8 (interpolated Chebyshev),
Fig. 9 (staircase Chebyshev), and Fig. 10 (Butterworth).

The discrepancies in the results of the interpolated band re-
ject filter are a result of the assembly technology. One inter-
esting problem is that the result for the noninterpolated Cheby-
shev filter has better out-of-band behavior than predicted. The
cause is probably the high impedance line obtained in the assem-
bled filter. The error between measured and simulated results is
smaller for noninterpolated filters. For the Chebyshev filter, the
error was smaller than 1%. The truncation of the filter has some
effect on its performance, especially in out-of-band character-
istics. However, this is necessary because of the final lengths
involved in some design specifications.

V. CONCLUSIONS

This paper presented a new synthesis technique for mi-
crowave filters using inverse scattering TLM. The procedure
consists of using the inverse TLM method as a tool for de-
termining the impedance profile of an unknown microwave
structure from its time-domain input reflection coefficient.
Filters designed with this technique do not have to use equiva-
lent lumped circuit analysis procedures to achieve the desired
response. TLM simulations and experimental measurements
validated the procedure. The results show good agreement
(within 1% in the Chebyshev low-pass case). Preliminary
research activities indicate that it is possible to develop a
two-dimensional version of the procedure.

ACKNOWLEDGMENT

The authors would like to thank F. Assis de Lima and Dr.
P. H. P. de Carvalho for their invaluable help in the assembly

Fig. 9. Measured and simulated results for the Butterworth low-pass filtetnd implementation of the filters. The authors also would like

Measurements—solid line, simulation—dashed line.

Low pass Chebyscheff
10
0 ~= e T
e
10 f//-\‘\' ‘\
' J
14
20 W

[
=}

(ap) apnpubepy
‘/
=
.’_c_"._:;:

N
S,

TR afdansand

B
(=]

(i)
o

60

3 4 5 5 7 8 9 10
Frequency (GHz)

Fig. 10. Measured and simulated results for the Chebyshev low-pass filter.
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