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Direct Synthesis of Microwave Filters Using Inverse
Scattering Transmission-Line Matrix Method
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Abstract—This paper proposes a new design procedure for
planar microwave filters based on the inversion of the one-dimen-
sional transmission-line matrix (TLM) method. The essence of the
technique is the solution of the inverse scattering problem using
a TLM-based algorithm instead of using equivalent circuits. The
procedure consists of determining the geometry of the obstacle
that generates the desired scattered field. In the case of filters,
this field is the time-domain input reflection coefficient, and the
geometry is the impedance profile of the filter. The procedure was
validated with the design of low-pass and bandstop filters. It can
be used to create filters with arbitrary characteristics.

Index Terms—Distributed parameter circuits, electromagnetic
scattering inverse problems, electromagnetic transient scattering,
transmission-line matrix (TLM) methods.

I. INTRODUCTION

T HE inverse scattering problem deals with the reconstruc-
tion of the geometry of an object from its scattered field

[1]–[5]. In the case of microwave passive linear devices, this
field is the total transmission or reflection coefficient in time or
frequency domains. Therefore, this is a synthesis problem where
the solution is the reconstruction of the impedance profile of a
nonuniform transmission line. Consequently, the desired reflec-
tion (or transmission) coefficients of the device determine the
profile. In [1], Roberts and Town used an integral equation pro-
cedure to solve the inverse scattering problem in the calculation
of the impedance profile. The input parameter was the reflec-
tion coefficient response of a desired filter. Recently, Le Royet
al. developed the continuously varying transmission-line tech-
nique [2] to design filters by impedance profile optimization di-
rectly from the input reflection coefficient. Therefore, it is pos-
sible to use different algorithms to determine the geometry that
provides the desired scattered field. This paper uses a modified
procedure based on the inversion of the transmission-line matrix
(TLM) method. In this case, the solution is exact within the sam-
pling accuracy of the time-domain input reflection coefficient.
This approach enhances the applicability of TLM. The proposed
method is a synthesis tool for linear passive microwave devices.

II. THEORY

The formation process of the input reflection coefficient is the
main concept in inverse TLM method. All the discontinuities
along the transmission line contribute to the composition of the
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Fig. 1. Discretized nonuniform transmission line.

Fig. 2. Space–time diagram of incident and reflected pulses.

input coefficient. The problem consists of a wave incident at
the input point of a nonuniform transmission line of impedance
profile (Fig. 1).

In this case, a good approximation of the continuously
varying impedance of a nonuniform transmission line is a
composition of infinitesimal sections of transmission line
with length and impedance . In the discrete case, the
wave propagation process is a result of the infinite sum of the
transmitted and reflected waves from each line interface, as
shown in the space-time diagram of Fig. 2.

Consequently, in a transmission line of lengthwith
layers, the time-domain response to an input impulse is
the input reflection coefficient

(1)

where is a combination of the reflection coefficient in sec-
tion of the impedance profile and the transmitted
and reflected coefficients from the previous sections. Analyzing
the space–time diagram of Fig. 2 and the profile in Fig. 1, it is
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TABLE I
VALUE OF a GIVEN BY EACH IMPEDANCE LAYER

possible to obtain as a function of internal transmission and
reflection coefficients shown in Table I, where and rep-
resent the reflection and the transmission coefficients between
layers and .

The mathematical expression of starts to become cumber-
some after , as seen in Table I. However, if the time-do-
main input reflection coefficient is available, one can calculate
the reflection coefficient of each interface by knowing the math-
ematical expression of . The value of yields the reflection
coefficient of the interface and the impedance of the particular
layer

(2)

where is equivalent to the reflection coefficient between
layers and .

The problem is that a closed expression ofis not simple. It
involves not only the impedance layer of interest but also a non-
linear combination of the characteristics of all previous layers.
We propose a solution to this problem based in the inversion of
the one-dimensional (1-D) TLM method. In the inverse proce-
dure, the TLM method can accurately represent the reflection
and transmission of each impedance layer of the structure.

One possible application of the one-dimensional TLM
method [6], [7] is the solution the wave equation on trans-
mission lines in one dimension. It discretizes the device in
sections. Each one has a length (given by —where

is the timestep and is the speed of light) and impedance
. The calculation is performed in the time domain, and at

each timestep the reflected waves are calculated using

(3)

where is the ratio between admittances of adjacent sections,
is the timestep of the calculated section, andis the position

of the calculated section. The transmitted waves are calculated
using

(4)

This version of TLM is slightly different when compared
with traditional implementations of the method. In this case, the

theory of method does not rely on the analogy between waves
and fields but in the direct application of the various reflections
between adjacent sections. Once the simulation is completed,
the input reflection coefficient of the structure is readily avail-
able. One interesting feature of 1-D TLM is that in some imple-
mentations there is no numerical dispersion associated with the
numerical algorithm. Since the procedure uses one of such im-
plementations, the calculated response is exact within the sam-
pling limits of the spatial and temporal discretization.

The proposed method uses TLM as a tool to determine the
reflection coefficient of each impedance layer of the structure.
The inverse TLM algorithm separates all the components of the
input reflection coefficient into reflection coefficients of each
interface. In order to understand the algorithm, one should con-
sider the reflection from the first three layers of the nonuniform
transmission line expressed in Fig. 1. The space–time diagram
(Fig. 2) shows the composition of the time-domain reflection
coefficient (see also Table I). Consider two different cases in
the calculation of the input reflection coefficient from theth
layer or .

1) In the first case, and the reflection coefficient
is zero (matched load).

2) In the second case, and the reflection coefficient
is one (open circuit load).

If one executes this procedure for each layer using the results
from Table I, the input reflection coefficient is as follows.

Layer 1) —Interface between and

(3a)

(3b)

(3c)

Layer 2) —Interface between and

(4a)

(4b)

(4c)

Layer 3) —Interface between and

(5a)

(5b)

(5c)

From (3a)–(5c), it is possible to reconstruct the general ex-
pression for the input reflection coefficient shown in Table I

(6)

It is simple to perform these calculations for a known struc-
ture, but what if the structure is not previously known? In this
case, at each even timestep (2), two TLM simulations have to
be performed to determine the reflection coefficient. One sim-
ulation will be executed assuming the next layer is a matched
load. The result will be 2 . The other simulation
will assume that the next layer is an open circuit. The result
will be 2 . The combination of (6) with the time-do-
main reflection coefficient 2 yields the reflection coef-
ficient of layer , . Using this coefficient in (2) results
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in the impedance of the layer. The procedure is repeated recur-
sively. As an example, consider the case of a three-layer un-
known structure, such as the one shown in Table I.

1) At , the impedance profile has no elements and the
first layer is obtained using (2). There is no need to per-
form a TLM simulation. The first element of the profile
is calculated from the results shown in (3).

2) At , the impedance profile has one element, and
two TLM simulations of a single-layer structure (obtained
from the result in ) are performed. The simulation
results shown in (4) are used to calculate the impedance
of the second layer.

3) At , the impedance profile has two elements, and
two TLM simulations of a double-layer structure (ob-
tained from the results in and ) are per-
formed. The simulation results shown in (5) are used to
calculate the impedance of the second layer.

At each timestep 2, the impedance profile up to theth
layer is determined using two simulations of a TLM structure
with 1 elements. The procedure is repeated until the end of
the time-domain input reflection coefficient response. If the re-
sponse has 2 timesteps, then the structure will have ele-
ments.

III. I MPLEMENTATION ISSUES

The direct synthesis procedure is different from the design
based on equivalent circuit approximations. Since it includes
a numerically intensive computation, issues of processing time
and numerical accuracy are important. It is also necessary to dis-
cuss the effects of two-dimensional wave propagation, sampling
of the time-domain reflection coefficient, feasible impedance
values, and truncation of the filter in the final design.

A. Processing Time

The first point to study in this procedure is the numerical pro-
cessing time. In the case of a structure withelements, 2
TLM simulations are necessary. The processing time of the al-
gorithm is on the order of , as shown
in Fig. 3.

If one doubles the number of elements, the computation time
will be roughly eight times longer. An optimization of the al-
gorithm will reduce the processing time to . This is pos-
sible since several calculations are redundant. In the calcula-
tion process of the th layer of a nonuniform transmission line,
some modifications are possible. The use of TLM results from
the calculation of the 1 layer avoids extra calculations.

B. Numerical Accuracy

The second point to study is the numerical accuracy. The tech-
nique is an inverse scattering procedure. Therefore, once it is
applied to the known response of a nonuniform line, it returns
the impedance profile of the line. We used random nonuniform
lines (the impedance of the line varies randomly with its length)
to verify the numerical accuracy of the procedure. The results
show that the error of the procedure is very small (10%), as
shown in Fig. 4, but it grows as the number of sections increases.
The truncation and roundoff are the main reasons.

Fig. 3. Computational time and number of sections, calculated(�), and
experimental (+).

Fig. 4. Percentage error in procedure.

Another factor that influences error is the length and de-
creasing rate of the time-domain response. The premature
truncation of time-domain response can increase the error to
higher levels. This shows that inverse scattering TLM is very
accurate, although it can be quite time consuming for very large
structures.

The signal-to-noise ratio (necessary of accurate impedance
profile calculation) has effects in the profile error. This is an im-
portant parameter to test if the algorithm can be used to calcu-
lated impedance profiles from real data. In real measurements,
noise is always present even in reduced levels. In this case, the
signal-to-noise ratio (S/N) determines the accuracy of the re-
constructed profile. After adding white Gaussian noise to sev-
eral known time-domain responses, we observed that the S/N
needs to be higher than 60 dB (for a 5% error in the profile)
for rapidly varying impedance profiles. However, if impedance
profile varies slowly (it is composed mainly by a few sections of
different impedance), the S/N can be as high as 15 dB for a 5%
error. This suggests the use of the algorithm for the calculation
of the impedance profile using real data in the slowly varying
profile case.
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C. Effects of Two-Dimensional Wave Propagation

The inverse scattering algorithm presented in this paper has
good performance for one-dimensional wave propagation cases.
However, in some cases, it is necessary to study the two-dimen-
sional case. It is possible to adapt the procedure for two-dimen-
sional TLM and use it in different structures. This modification
involves some changes in the calculation of the reflection co-
efficient. The inverse 1-D TLM procedure works well only for
TEM waves. Nonetheless, it is possible to modify 1-D TLM for
special two-dimensional cases.

If the wave is TEM and is incident at the interface with a
certain angle, then it is necessary to modify the algorithm to re-
flect impedance changes. In this case, the calculated impedance
is a function of the incidence angle. The transmitted wave will
modify the angle of propagation as it passes through the inter-
face. Therefore, it will be necessary to correct both impedance
and angle as the wave propagates. If the propagation is TEM or
quasi-TEM, the procedure does not demand significant changes.
The input reflection coefficient is extracted from the-param-
eters of the structure.

D. Effects of Sampling, Impedance Values, and Truncation

As shown in (3)–(5), the time-domain response of the
input reflection coefficient has nonzero elements only at even
timesteps. Consequently, in the synthesis procedure, it is nec-
essary to sample the time-domain response of the desired filter
characteristic. Since the sampling of the response affects the
gain of the filter, it is necessary to normalize the filter response
before the method is used. Another effect of this sampling is
the duplication of the filter response in the frequency domain.
This duplication may cause problems (aliasing) in the design of
certain filters. Another implementation issue is that the filters
created in this procedure usually have low-pass characteristics.
It is mathematically possible to create bandpass or high-pass
filters with this method. However, these filters may have
unrealizable impedance values. A possible solution is the use
of coupled transmission lines in the design suitable bandpass
and high-pass filters. This approach is still under study. The
last implementation issue regards the length of the structures.
In a general case, the time-domain response of the reflection
coefficient is infinite. Since the method uses this response to
calculate the filter, the resulting structure is a truncated version
of the ideal filter. This is quite common if Chebyshev and But-
terworth functions are used. If the frequency-domain response
is periodic, there is a reduction in the effect of premature filter
truncation. Although this may result in spurious passbands, the
final length of the filter can be quite compact. Therefore, there
is a compromise between accurate frequency response and the
dimensions of the structure.

IV. EXPERIMENTAL RESULTS

The procedure was validated with three filter designs. In
all cases, a MATLAB code was used to perform the synthesis
procedure and generate an impedance profile. The result is an
impedance profile in a staircase configuration. If the spatial
discretization is small (compared to the wavelength of interest),
the interpolation result will not cause problems. However,

Fig. 5. Layout of the assembled interpolated low-pass filter.

Fig. 6. Layout of the assembled Chebyshev low-pass filter.

Fig. 7. Layout of the assembled Butterworth low-pass filter.

if this is not true, the interpolation procedure may result in
distortion of the desired response. The design procedure is
fully automatic for several kinds of filters. The assembled
filters were three low-pass filters (two tenth-order Chebyshev
and a fifteenth-order Butterworth). The low-pass filters shown
in this paper had cutoff frequencies of 5 GHz. In view of the
choice of manufacturing technology, one Chebyshev filter
needed truncation and interpolation. Since the response of the
interpolated filter may not be the same as the staircase one, an
analysis procedure is necessary. A TLM algorithm performed
the simulation of the interpolated filters. Fig. 5 shows the
layout of the interpolated filter. The other filters did not need
interpolation (Figs. 6 and 7).
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Fig. 8. Measured and simulated results for the interpolated low-pass filter.
Measurements—solid line, simulation—dashed line.

Fig. 9. Measured and simulated results for the Butterworth low-pass filter.
Measurements—solid line, simulation—dashed line.

Fig. 10. Measured and simulated results for the Chebyshev low-pass filter.
Measurements—solid line, simulation—dashed line.

The filters were built in stripline technology. The substrate
had a dielectric constant and thickness of 1.524 mm.

The measurements were executed in the HP 8539 spectrum ana-
lyzer. The results are shown in Fig. 8 (interpolated Chebyshev),
Fig. 9 (staircase Chebyshev), and Fig. 10 (Butterworth).

The discrepancies in the results of the interpolated band re-
ject filter are a result of the assembly technology. One inter-
esting problem is that the result for the noninterpolated Cheby-
shev filter has better out-of-band behavior than predicted. The
cause is probably the high impedance line obtained in the assem-
bled filter. The error between measured and simulated results is
smaller for noninterpolated filters. For the Chebyshev filter, the
error was smaller than 1%. The truncation of the filter has some
effect on its performance, especially in out-of-band character-
istics. However, this is necessary because of the final lengths
involved in some design specifications.

V. CONCLUSIONS

This paper presented a new synthesis technique for mi-
crowave filters using inverse scattering TLM. The procedure
consists of using the inverse TLM method as a tool for de-
termining the impedance profile of an unknown microwave
structure from its time-domain input reflection coefficient.
Filters designed with this technique do not have to use equiva-
lent lumped circuit analysis procedures to achieve the desired
response. TLM simulations and experimental measurements
validated the procedure. The results show good agreement
(within 1% in the Chebyshev low-pass case). Preliminary
research activities indicate that it is possible to develop a
two-dimensional version of the procedure.
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