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Nonlinear Statistical Modeling and Yield Estimation
Technique for Use in Monte Carlo Simulations
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Abstract—A novel nonlinear statistical modeling technique for
microwave devices and a new approach to yield estimation for mi-
crowave integrated circuits are presented. The statistical modeling
methodology is based on a combination of applied multivariate
methods with heuristic techniques. These include principal com-
ponent analysis and factor analysis in conjunction with maximally
flat quadratic interpolation and group method of data handling.
The proposed modeling approach, when applied to the database
of extracted equivalent circuit parameters (ECPs) for a pseudo-
morphic high electron mobility transistor device, has proven that
it can generate simulated ECPs, -parameters, that are statisti-
cally indistinguishable from a measured ones. A new yield estima-
tion technique based on a Latin hypercube sampling (LHS) is also
demonstrated. The LHS-based simulation is utilized as an alterna-
tive to primitive Monte Carlo (PMC) simulation in yield analysis.
An equally confident yield estimate based on the LHS method re-
quires only one-fourth of those simulations needed when the PMC
technique is used.

Index Terms—Algorithms, design automation, microwave field-
effect transistors (FETs), modeling, Monte Carlo methods, random
number generation, statistical databases, yield estimation.

I. INTRODUCTION

STATISTICAL analysis and design of monolithic mi-
crowave integrated circuits (MMICs) requires accurate

statistical models of the variation in the active device’s perfor-
mance. Probably the most commonly used approach today for
statistical device modeling is based on the dc and-parameter
measurements for a sample of finished devices [1], [2]. Each
set of measured dc and-parameter data, corresponding to one
field-effect transistor (FET) device, is converted to the corre-
sponding parameters of the equivalent circuit through a reliable
parameter extraction procedure. The statistical properties of the
equivalent circuit parameters (ECPs) are then examined, and
the estimates of the means , the standard deviations , and
the correlation coefficients are calculated. Finally, a statis-
tical model based on some multivariate or heuristic techniques
capable of recreating those means, standard deviations, and
correlations is developed. Our work will follow this approach.

To date three distinctive statistical modeling techniques ap-
plied to the FET equivalent circuit parameters have been re-
ported [1]–[6]. The first approach is commonly referred to as
a plus-minus sigma model [1] and has been widely ac-
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cepted in the microwave industry. The plus-minus sigma
models, however, are known to be unnecessarily conservative
and usually represent physically impossible devices due to in-
ability to account for the correlations that exist between device
parameter variations. The second approach is based on principal
component analysis (PCA) [2]–[4]. This method orthogonalizes
the extracted FET equivalent circuit parameters into a new set of
hypothetical variables called principal factors. When using this
method, equations that can recreate the original ECPs’ correla-
tion structure can then be written in terms of a linear combina-
tion of the orthogonal principal factors. Statistical simulations
[2] have shown that this approach can accurately predict ECPs’
means, standard deviations, and linear correlations. The work
of Meehan and Anholt [7], [8], however, provided evidence that
linear models fail to recreate the-parameters from which the
ECPs’ model was originally extracted. Improvements to sta-
tistical device modeling via heuristic methods have been pro-
posed by Bandler [5], [6]. However, the nonlinearities of ECPs
as well as their ability to reproduce original-parameters have
also not been addressed adequately. To the best of our knowl-
edge, no nonlinear statistical characterization methodology for
microwave devices has been reported.

In this paper, a novel nonlinear statistical modeling technique
for equivalent circuit parameters is developed. This technique
combines multivariate methods such as PCA [9] and factor
analysis (FA) [9] with heuristic algorithms such as maximally
flat quadratic interpolation (MFQI) [10] and group method of
data handling (GMDH) [11]–[14]. The result of this approach
is a very sophisticated statistical model capable of preserving
ECPs’ ( -parameters) means, standard deviations, correlations,
and nonlinear relationships with high accuracy.

The primary goal of statistical modeling is to provide accu-
rate models for yield estimation. Yield is commonly approxi-
mated by the primitive Monte Carlo (PMC) method [15]. The
advantage of the PMC analysis is that the method is completely
general, with no assumptions regarding circuit complexity or
the complexity of the input parameter statistics. The accuracy
of the PMC yield estimate, however, for a given confidence is a
function of the number of trials used to form that estimate. The
variance of the estimate varies as the inverse of the square root of
the number of trials. Thus, to half the variance in the estimate, a
quadrupling of the number of trials is necessary. To date several
variance reduction techniques have been investigated, namely,
importance sampling [16], stratified sampling [16], and control
variates [16]. Hocevaret al.[16] have shown that the importance
sampling is generally not very effective for variance reduction in
a Monte Carlo yield estimation, and the efficiency of the strati-
fied sampling is not significant with respect to the complexity of
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Fig. 1. Statistical modeling methodology.

the implementation. The generality and usefulness of the con-
trol variate (shadow model technique) in comparison with PMC
method has been confirmed by Hocevaret al. [16]. However,
this method requiresa priori information about the circuit be-
havior, and it only marginally increases the efficiency and accu-
racy of the yield analysis.

The second contribution of this article is the analysis and
novel application of the Latin hypercube sampling (LHS) as an
efficient variance reduction method for yield estimation. This
mathematical technique was originally pioneered by McKay
[17] for one-dimensional space and was restricted to monotonic
functions only. The technique was generalized to-dimensions
by Keramat and Kielbasa [18] and applicable to any function.
Theoretical results presented in [18] have shown that LHS is
equivalent to PMC in its generality, yet the variability of statis-
tical estimators based on the same sample size is significantly
reduced.

II. STATISTICAL MODELING FUNDAMENTALS

The modeling steps of the proposed statistical methodology
are depicted in Fig. 1. In Stage I, statistical properties of ECPs
are derived from dc and-parameter measurements through a
reliable extraction procedure. The means, standard deviations,
and correlation coefficients are calculated. In Stage II, eigen-
value decomposition (i.e., principal component analysis) is used
on the ECPs’ correlation matrix as an exploratory tool to deter-
mine the minimum number of independent dimensions needed
to account for most of the variance in the extracted set of vari-
ables (ECPs). Eigenvalues are obtained through diagonalization
of the correlation matrix . It is known that can be repre-
sented as

(1)

where

...
...

.. .
...

(2)

and are the eigenvalues of obtained by solving
the following equation:

(3)

and is an orthonormal matrix containing eigenvectors
(column vectors) corresponding to solutions of the
equation

(4)

where is an identity matrix. In Stage III, a factor model based
on FA of the following form is created:

(5)

where
and mean and standard deviation of the original vari-

able, respectively;
loading coefficient of theth variable on the th
factor;
th common factor with mean zero and unit vari-

ance .
The number of common factors in the model is equal to the
number of selected eigenvalues in Stage II. Random errorac-
counts for the residual variance of theth variable. In most prac-
tical cases, the term is small and can be neglected. Such an
initial factor model is commonly not easily interpretable, and
it is the usual practice to mathematically rotate the loading
coefficients until a simpler model structure is achieved. From a
mathematical viewpoint, it is immaterial whether the or the
rotated matrix is used in the model equation [(5)]. The ratio-
nale of the rotation procedure is very much akin to sharpening
the focus of a microscope in order to see detail more clearly.
Ideally, we would like to see a pattern of loadings such
that each original variable loads highly on a single common
factor and has small to moderate loadings on the remaining
factors. It is not always possible to get this simple structure,
however; for most types of data, rotations improve model struc-
ture/interpretation significantly [9].

When a factor model with a simple structure is obtained, a
more physical model can be constructed. In Stage IV of our
methodology, some of the original variables (those with the
highest loading coefficients) are selected as the regressors (in-
dependent predictors) and the rest as regressands (dependent pa-
rameters). There are several reasons why we need to build such
a physical model.

1) The process engineers and microwave circuit designers
feel more comfortable with the original variables.

2) The nonlinear relationships between parameters can be
accounted for by higher order regressions/polynomials.

3) The regression/polynomial models can be used to speed
up the characterization of the process/device by its pre-
diction feature.

In general, linear and/or quadratic regression models of the
following form might have been adequate:

(6)

where ’s and s represent independent predictors and regres-
sion coefficients, respectively. The regression methods, how-
ever, have severe limitations.

1) Linear models are not sufficiently accurate.
2) Quadratic models require a large number of collected data

(e.g., if the number of variables , then the number
of samples needed to build the model is
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Fig. 2. GMDH modeling strategy.

); additionally, these models are
valid only within small exploration region.

3) Higher order regressions often lead to a severely ill-con-
ditioned system of equations.

To alleviate problems of conventional regressions, a combi-
nation of heuristic methods MFQI [10] and GMDH [11]–[14]
has been utilized in our methodology. The MFQI technique ap-
proximates the performance function of interest by interpolating
polynomials of the following form:

(7)

where ’s and ’s represent independent predictors and polyno-
mial coefficients, respectively. The MFQI approach is more effi-
cient and more accurate than the traditional quadratic regression
[10] methods. Model accuracy, however, just like in regressions,
is confined to a small region of parameter space. To overcome
that deficiency, the ECPs’ data set is divided intonumber of
overlapping subsets and MFQI models are created
first. These models generate new variables, which are used as in-
puts to the GMDH algorithm as depicted in Fig. 2.

The GMDH algorithm is a multilayer approximation
technique with a neural network-type architecture, proposed
in [11]–[13], to model the input and output relationship
of a complex system. At each layer, new generations of
complex equations are constructed from simple forms. The
survival-of-the-fittest principle (appropriate thresholds) deter-
mines the equations that are passed on to the next layer and
those that are discarded, that is, only the best combination of
input parameters is allowed to pass through to the next layer.
The model obtained after each layer is progressively more
complex than the models excluded during the preceding layers.
To avoid an overfit, the GMDH algorithm divides the data
sample into a) the training set, which is used for generation of
several competing alternative models, and b) the checking set,
which is used to check the accuracy of the models generated
and for the selection of the best models at each layer. This
provides the self-organizing feature of the algorithm, leading
to models of optimal complexity. The number of modeling

Fig. 3. Nonlinear modeling system—computer implementation.

layers is increased until the newer models begin to have poorer
powers of predictability than did their predecessors. The net
result is a very sophisticated model from a very limited data
set. The resulting modeling polynomial has the form

(8)

where ’s and are independent predictors and
polynomial coefficients, respectively.

The combined structure of the MFQI and GMDH methods
allows the MFQI algorithm to create several locally accurate
and overlapping interpolating models over the entire parameter
space first. Then the GMDH algorithm combines these models
in an optimal way, based on approximation strategy—min-
imizing average error. The resulting final model overcomes
the limitations of the traditional regressions and is more
accurate than the models created by the two individual algo-
rithms. Computer implementation of the composite modeling
(MFQI GMDH) strategy is depicted in Fig. 3.

The final stage (Stage V) validates the generated model by
Monte Carlo simulation and comparison of the simulated and
original ECPs or by comparison of the simulated and original

-parameter databases.

III. STATISTICAL MODELING EXAMPLE

The proposed modeling was applied to the database of ex-
tracted equivalent circuit parameters for a pseudomorphic high
electron mobility transistor (pHEMT) FET device. The lumped
element equivalent circuit for pHEMT is shown in Fig. 4.

Thirteen ECPs for each pHEMT device from 27 wafers and
six different lots were extracted and recorded [19]. The original
ECPs’ means, standard deviations, and correlations are given in
Tables I and II, respectively.

Initially, we performed exploratory analyses on the original
ECPs’ correlation matrix utilizing eigenvalue decomposition in
order to determine the minimum number of dimensions needed
to account for most of the variance in the original set of vari-
ables. Eigenvalue decomposition resulted in the vector of eigen-
values and the vector of cumulative explained variance as pre-
sented in Table III.
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Fig. 4. Equivalent circuit model for pHEMT device.

TABLE I
ORIGINAL ECP MEANS AND STANDARD

DEVIATIONS FOR THEpHEMT

TABLE II
ORIGINAL ECP CORRELATIONS FOR THEpHEMT DEVICE

Note that five eigenvalues are sufficient to explain approxi-
mately 90% variance of the original data. This decision is some-
what subjective; as a rule of thumb, avoid eigenvalues that are
much smaller than one (Kaiser criterion [9]) or whose indi-
vidual contributions to the cumulative variance are less than 5%.
Based on the above result, a factor model with five common fac-
tors utilizing commercial statistical software-PLUS [20] was
developed. To improve interpretibility of the factor model, the
“varimax” orthogonal rotation was applied, leading to the pat-
tern of loading coefficients shown in Table IV.

Physically meaningful linear and nonlinear models were
built by substituting the hypothetical factors
with the original variables as independent predictors
(those strongly related to ). In our case, we selected

TABLE III
EIGENVALUE DECOMPOSITION OF THEpHEMT ECPS

TABLE IV
ROTATED FACTOR MODEL

TABLE V
ESTABLISHED ACCURACY: ORIGINAL VERSUSMODEL

TABLE VI
MODELED CORRELATIONS FOR THEpHEMT DEVICE

, while the remaining parameters
are determined in terms

of the selected predictors. Based on this selection, linear and
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Fig. 5. Scatter plot of original ECPs.

nonlinear physically meaningful polynomial equations, uti-
lizing a combination of the MFQI and GMDH algorithms, were
developed. For better efficiency, equations were implemented
in C language. Three hundred Monte Carlo simulations on
the generated statistical ECP model were performed, which
resulted in means, standard deviations, and a correlation matrix
as presented in Tables V and VI, respectively.

Maximum errors for the calculated means and standard de-
viations are 2% and 9%, respectively. The original and mod-
eled linear correlations have also matched very satisfactorily.
The most significant achievement of this technique, however, is
the accurate reproduction of the nonlinear relationships existing
among original ECPs, as depicted in Figs. 5 and 6.

To improve the viability of the proposed methodology, a de-
veloped pHEMT statistical device model was implemented in a

LIBRA [21] simulator. A pHEMT device was biased with the
same settings at which-parameters were originally extracted.
The model was simulated 300 times in the LIBRA simulator. At
a randomly chosen frequency (6 GHz in our case),-parame-
ters were extracted and compared to-parameters as generated
by the original ECPs’ database at the same frequency. Linear
and nonlinear relationships existing among original-parame-
ters were reproduced with high accuracy, as depicted in Fig. 7.

Once the reliable statistical equivalent circuit device model
has been obtained, the analysis and optimization of any sub-
system (power amplifier, mixer, oscillator, etc.) containing the
transistor can be made with the aid of common commercial mi-
crowave simulators such as LIBRA. The results of such simula-
tion, however, will be questionable for these nonlinear circuits
since our statistical models are based on dc and small signal
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Fig. 6. Scatter plot of modeled ECPs.

measurements under specific bias conditions. Intrinsic param-
eters of the equivalent circuit model
are bias ( ) dependent. This is difficult and yet continues
to be unresolved. The nonlinear statistical device model, which
accounts for the voltage dependence of intrinsic parameters, is
the subject of further research. We will, however, address one of
the avenues we are pursuing. The values of intrinsic elements of
Fig. 4 for different gate and drain voltages can be obtained by the

-parameters of the FET in a wide range of bias conditions and
extracting a small signal equivalent circuit at each bias point.
Intrinsic elements are then expressed as functions of the volt-
ages . The statistical characterization should be done then
in two fundamental stages: characterization 1) due to manufac-
turing tolerances and 2) due to different biasing conditions. The
interpolation method can be utilized, which shifts the statistical

characteristics of the former based on specific conditions of the
latter (superposition). This approach has the advantage that even
with simple interpolation functions, the solution will always be
accurate in the bias point. For large amplitude excursions from
the bias point, at the extreme voltage values, the accuracy will
be poorer, but that should be a secondary effect not affecting the
global accuracy of the solution.

IV. RANDOM NUMBERS—LHS VERSUSPMC SAMPLING

Statistical modeling is a required prerequisite but is not suf-
ficient for accurate yield estimation. Yield is commonly ap-
proximated by the PMC method. The success of yield estima-
tion based on the Monte Carlo calculation often stands or falls
with the quality of the random samples that are used. Random
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Fig. 7. Original and modeledS andS parameters at 6 GHz for pHEMT
device.

number generation based on LHS is advocated over traditional
industry-standard PMC sampling.

LHS is similar to PMC sampling except in sample genera-
tion. LHS operates as follows. Generate a sample sizefrom
the variables with the joint probability
density function (jpdf) of . The range of each variable
is partitioned into nonoverlapping intervals on the basis of
equal probability size 1 . One value from each interval is se-
lected at random with respect to the probability density in the in-
terval. The values thus obtained for are paired in a random
manner with the values of . These pairs are combined
in a random manner with the values of to form triplets,
and so on, until a set of -tuples is formed. This set of-tu-
pels is the Latin hypercube sample. It should be evident from
the above description that the LHS generator partitions the dis-
turbance space of interest into cells and samples one point
from each cell. This unique sampling scheme is computationally
efficient, can cope with many input variables, and ensures that
all portions of the range of each input variable is represented.

To quantify the quality of the LHS uniform sample by the
scheme described above, a uniform two-dimensional sample of
500 has been generated. The two-dimensional uniform (0,1)
plane was divided by subintervals, such that by sub-
regions were created. The error function, which determines the
quality of uniform distribution, was defined as in [22]

(9)

where
sample number;
sample number of two-dimensional random
vector in subregion ;
probability of two-dimensional standard uni-
form distribution in subregion .

TABLE VII
COMPARISON OF THEDIFFERENT RANDOM NUMBER GENERATORS

(Error ideal= 0;max = 1)

The error value was calculated for the sample size and
(as discussed in [22]) and contrasted with the values

reported in [22] for four uniform pseudorandom number gen-
erators that are widely used in microwave circuits analysis and
optimization (Table VII). LHS sampling displays the smallest
error: meaning, it has the best uniform coverage.

Uniform distributions, however, are hardly used in practice,
but they serve as a basis for creation of other desirable distribu-
tions (Gaussian, for example). Transformation techniques from
uniform to Gaussian have been studied in [23]. The most com-
monly used transformations in today’s microwave circuit simu-
lators are:

1) polar form of the Box–Muller method;
2) functional approximation of the inverse transform;
3) lookup table.

These techniques take a uniform sample as input and generate
standard normal (Gaussian) variable as output. Any good
quality uniform random number generator (i.e., shuffling
method, data coding method, etc.) subject to one of the above
transformations would give us a Gaussian pdf for a small
sample size , as depicted in Fig. 8(a) (shuffling random
number generator and polar form of Box–Muller transforma-
tion have been utilized in this case). Skewness, poor uniformity,
and a clustering of sample points for such small sample sizes
are well-known and -understood phenomena [24] in PMC
sampling. These detrimental patterns change significantly from
one simulation to another when such small samples are used.
Consequently, large variability and low confidence in statistical
estimators are expected.

The proposed LHS sampling strategy in conjunction with the
inverse transform method [18] would give us a pdf for the same
sample size as depicted in Fig. 8(b).

The unique sampling of LHS assures consistent and uniform
coverage compared to the sparse or clustered coverage achieved
by the PMC technique. The significance of that will be evi-
dent in variability reduction and repeatability of yield estima-
tors when a small number of Monte Carlo simulations in yield
analyses are used.

V. QUALITY OF YIELD ESTIMATE—LHS VERSUSPMC
SAMPLING

The efficiency of LHS over PMC sampling in yield analysis is
demonstrated on a 3.8–4.2 GHz single-stage FET amplifier [24].
The circuit schematic is depicted in Fig. 9, and design specifi-
cations [24] are as follows: dB, dB,
and dB for frequencies from 3.8 to 4.2 GHz.

The matching circuit elements, namely,
nH,
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(a)

(b)

Fig. 8. Two-dimensional Gaussian probability density functions based on (a)
PMC and (b) LHS sampling.

Fig. 9. Schematic of the 3.8–4.2 GHz single stage FET amplifier.

nH, and nH, were chosen as design
variables. Tolerance of 10% was assumed for all components.
A statistical device developed in Section III was incorporated
into the design so the full characterization of the circuit was
completed. A microwave circuit simulator LIBRA [21], in con-
junction with the Matlab program, was employed to perform
Monte Carlo simulation utilizing both sampling strategies.
Sample sizes from ten up to 10 000 based on the LHS and PMC
methods were generated. Circuit analyses were performed, and
yields for each sample were computed. Fig. 10 summarizes the
yield outcomes as a function of sample size for both sampling
schemes.

It is evident that the LHS yield estimator displays a stable
value for sample sizes of 200 and less, while samples of nearly
1000 were needed for an equally confident yield estimate when
the PMC method was used. Our simulation analyses have con-
sistently shown that on average, yield estimate can be obtained
with the same confidence by an LHS method, using approxi-
mately one-fourth of the simulations usually required by the
PMC technique. To improve the viability of this conclusion,
ten Monte Carlo iterations, each simulation starting with a dif-
ferent random seed number, were performed for both sampling
methods. Equal sample sizes of 200 each time were generated,
and yields were plotted as depicted in Fig. 11.

The same experiment was repeated for the PMC method when
each sample size was 1000; these results are also plotted in
Fig. 11 (as PMC2). Note that approximately 200 LHS versus

Fig. 10. Variability of yield estimate versus sample size for 3.8–4.2 GHz
amplifier based on PMC and LHS method.

Fig. 11. Estimated yield variability for ten Monte Carlo iterations: PMC and
LHS yields are based on samples of 200 and PMC2 yields based on samples of
1000.

1000 PMC simulations were needed to get the same small vari-
ability and the same degree of confidence in the yield estimate.

VI. CONCLUSION

A novel nonlinear statistical characterization methodology
for FET equivalent circuit parameters has been presented. The
technique is based on a combination of hierarchically struc-
tured applied multivariate methods such as principal compo-
nent analysis and factor analysis with heuristic techniques such
as maximally flat quadratic interpolation and group method of
data handling. As a result, a very sophisticated model capable
of recreating ECPs’ means, standard deviations, correlations,
and linear and nonlinear relationships is obtained. Model equa-
tions, however, are of high complexity and cannot easily be im-
plemented into existing commercial microwave computer-aided
design software. An interface between model and microwave
circuit simulator is required.
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A new approach to yield estimation for microwave integrated
circuits based on Latin hypercube sampling also was presented.
This sampling method ensures that each of the input variables
has all portions of its range represented during simulation
irrespective of the sample size. Comparisons of yield estimates
based on LHS and PMC sampling have shown that for an
equally confident yield estimator, the LHS method on average
requires one-fourth the analyses normally used by the PMC
technique. The proposed technique is very simple and should
be easily integrated into the code of existing microwave circuit
simulators.
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