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Nonlinear Statistical Modeling and Yield Estimation
Technique for Use in Monte Carlo Simulations

Jan F. Swidzinski and Kai ChanBgellow, IEEE

Abstract—A novel nonlinear statistical modeling technique for cepted in the microwave industry. The plus-minus sigtha)
microwave devices and a new approach to yield estimation for mi- models, however, are known to be unnecessarily conservative
crowave integrated circuits are presented. The statistical modeling and usually represent physically impossible devices due to in-

mzmgggls\% Iﬁez?iss?ig fer::ﬁn%%n;sb 'nTaﬁg):e?;gﬁggegﬁnmclfggllaé?ﬁ ability to account for the correlations that exist between device

ponent analysis and factor analysis in conjunction with maximally Parameter variations. The second approach is based on principal
flat quadratic interpolation and group method of data handling. component analysis (PCA) [2]-[4]. This method orthogonalizes
The proposed modeling approach, when applied to the database the extracted FET equivalent circuit parameters into a new set of
of extracted equivalent circuit parameters (ECPs) for a pseudo- pygthetical variables called principal factors. When using this
morphic high electron mobility transistor device, has proven that . . )
it can generate simulated ECPsS-parameters, that are statisti- method, equations that can r_ecreate the orlglna_l ECPs cor_rela-
cally indistinguishable from a measured ones. A new yield estima- tion structure can then be written in terms of a linear combina-
tion technique based on a Latin hypercube sampling (LHS) is also tion of the orthogonal principal factors. Statistical simulations
demonstrated. The LHS-based simulation is utilized as an alterna- [2] have shown that this approach can accurately predict ECPs’
fﬁl\\:]eetouglllml(tzl(\)/r?fi,\élgr?tteiglzrleosgiz’\'\g?e) S;“;g('jagmr:g {'g'g ;r(‘;t‘h’;'js;re_ means, standard deviations, and linear correlations. The work
quaty y of Meehan and Anholt [7], [8], however, provided evidence that

quires only one-fourth of those simulations needed when the PMC *~ ) -
technique is used. linear models fail to recreate tht&eparameters from which the

, . , . , ECPs’ model was originally extracted. Improvements to sta-
Index Terms—Algorithms, design automation, microwave field- . . - . . .
effect transistors (FETs), modeling, Monte Carlo methods, random tistical device modeling via heuristic metho‘?'s ha_V? been pro-
number generation, statistical databases, yield estimation. posed by Bandler [5], [6]. However, the nonlinearities of ECPs
as well as their ability to reproduce origing#parameters have
also not been addressed adequately. To the best of our knowl-
edge, no nonlinear statistical characterization methodology for
TATISTICAL analysis and design of monolithic mi- microwave devices has been reported.
rowave integrated circuits (MMICS) requires accurate In this paper, a novel nonlinear statistical modeling technique
statistical models of the variation in the active device’s perfofor equivalent circuit parameters is developed. This technique
mance. Probably the most commonly used approach today ¢embines multivariate methods such as PCA [9] and factor
statistical device modeling is based on the dc &ngarameter analysis (FA) [9] with heuristic algorithms such as maximally
measurements for a sample of finished devices [1], [2]. Eaflat quadratic interpolation (MFQI) [10] and group method of
set of measured dc arftiparameter data, corresponding to ongata handling (GMDH) [11]-[14]. The result of this approach
field-effect transistor (FET) device, is converted to the corrés a very sophisticated statistical model capable of preserving
sponding parameters of the equivalent circuit through a reliaBf&Ps’ (S-parameters) means, standard deviations, correlations,
parameter extraction procedure. The statistical properties of &g nonlinear relationships with high accuracy.
equivalent circuit parameters (ECPs) are then examined, and he primary goal of statistical modeling is to provide accu-
the estimates of the meafys), the standard deviatiorfs), and rate models for yield estimation. Yield is commonly approxi-
the correlation coefficient§p) are calculated. Finally, a statis-mated by the primitive Monte Carlo (PMC) method [15]. The
tical model based on some multivariate or heuristic techniquagvantage of the PMC analysis is that the method is completely
capable of recreating those means, standard deviations, gaderal, with no assumptions regarding circuit complexity or
correlations is developed. Our work will follow this approach.the complexity of the input parameter statistics. The accuracy
To date three distinctive statistical modeling techniques apfthe PMC yield estimate, however, for a given confidence is a
plied to the FET equivalent circuit parameters have been fgnction of the number of trials used to form that estimate. The
ported [1]-[6]. The first approach is commonly referred to agriance of the estimate varies as the inverse of the square root of
a plus-minus sigmé+4-c) model [1] and has been widely ac-the number of trials. Thus, to half the variance in the estimate, a
guadrupling of the number of trials is necessary. To date several
variance reduction techniques have been investigated, namely,
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and 7" is an orthonormal matrix containing eigenvectors
ornery (column vectors)T; corresponding to); solutions of the
equation

DC, RE Statistical Microwave Circuit
A v
easurement: Model MONTE CARLO| Simulator (LIBRA)
_j/ [Veritication ( E —AT ) T7,=0 (4)

gir;?c;tg; +—’ E{cg:;);alue. ' IE:i:[((:)irpal MFQUGMDH where! is an identi;y matrix._ In Stage !II, a factor model based
(ECP's) coomposition Mot Polynomials on FA of the following form is created:
Xi = pi +0i(Lij Fy + ¢) %)
Fig. 1. Statistical modeling methodology. where

u; ando;  mean and standard deviation of the original vari-
able, respectively;

the implementation. The generality and usefulness of the con- k e ) , .
loading coefficient of théth variable on theth

trol variate (shadow model technique) in comparison with PMC Lij

method has been confirmed by Hoceedral. [16]. However, I f?ﬁtor; fact ith d unit vari
this method requirea priori information about the circuit be- J éncz(j\rfrzom?r)] actorwith mean zero and unit vari-
, ).

havior, and it only marginally increases the efficiency and acc
racy of the yield analysis.
The second contribution of this article is the analysis al

novel application of the Latin hypercube sampling (LHS) as aftal cases, the; term is small and can be neglected. Such an

efficient variance reduction method for yield estimation. Thigiia| tactor model is commonly not easily interpretable, and
mathematical technique was originally pioneered by McKayig the ysual practice to mathematically rotate the loading
[17] for one-dimensional space and was restricted to monotoRiGefiicients until a simpler model structure is achieved. From a
functions only. The technique was generalized4dimensions athematical viewpoint, it is immaterial whether thg or the
by Keramat and Kielbasa [18] and applicable to any functiopstatedr*; matrix is used in the model equation [(5)]. The ratio-
Theoretical results presented in [18] have shown that LHS fgle of the rotation procedure is very much akin to sharpening
equivalent to PMC in its generality, yet the variability of statisthe focus of a microscope in order to see detail more clearly.
tical estimators based on the same sample size is significantigally, we would like to see a pattern of loadings;;) such
reduced. that each original variable loads highly on a single common
factor(F};) and has small to moderate loadings on the remaining
factors. It is not always possible to get this simple structure,
Il. STATISTICAL MODELING FUNDAMENTALS however; for most types of data, rotations improve model struc-

. - ture/interpretation significantly [9].
The modeling steps of the proposed statistical methodolog\yhen 5 factor model with a simple structure is obtained, a

are dep_icted in Fig. 1. In Stage |, statistical properties of ECRs) . physical model can be constructed. In Stage IV of our
are derived frof“ dc and-parameter measurements thro‘%gh ﬁ'nethodology, some of the original variables (those with the
reliable extraction procedure. The means, standard deviatioggest joading coefficients) are selected as the regressors (in-
and correlation coefficients are calculated. In Stage I, e'geﬁ‘épendent predictors) and the rest as regressands (dependent pa-

value decomposition i.e., principal component analysis) is UStheters). There are several reasons why we need to build such
on the ECPs’ correlation matrix as an exploratory tool to detet-

; > . . ; ghysical model.
mine the minimum number of independent dimensions neede 1) The process engineers and microwave circuit designers
to account for most of the variance in the extracted set of vari- P 9 9

: : : o feel more comfortable with the original variables.
ables (ECPs). Eigenvalues are obtained through dlagonallza'uo% The nonlinear relationships betwgen parameters can be
of the correlation matriX . It is known that} can be repre-

accounted for by higher order regressions/polynomials.

Y'he number of common factofs; in the model is equal to the
number of selected eigenvalues in Stage Il. Random eyaar-
unts for the residual variance of thk variable. In most prac-

sented as 3) The regression/polynomial models can be used to speed
. up the characterization of the process/device by its pre-
Z =TAT 1) diction feature.
In general, linear and/or quadratic regression models of the
where following form might have been adequate:
Au 0 0 f(x)2/30+Z/3i$i+22/3ij$ixj+---+6 (6)
0 A ... 0 pt p i
A= ] ) ’
: : o wherez’'s and s represent independent predictors and regres-
0 0 ... X\ sion coefficients, respectively. The regression methods, how-
ever, have severe limitations.
and;, A2, ..., A, are the eigenvalues df obtained by solving 1) Linear models are not sufficiently accurate.
the following equation: 2) Quadratic models require a large number of collected data

(e.g., if the number of variables = 40, then the number
(Z —)\—7) =0 3) of samples needed to build the modehis= ("}?) =
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Fig. 3. Nonlinear modeling system—computer implementation.

@ @

@uadratic, Pairwise Regression Blocks

Wx; X ) = agh ax+ X+ XX+ a1f€+ azf(? layers is increaged u'r!til the newer quels begin to have poorer

powers of predictability than did their predecessors. The net
result is a very sophisticated model from a very limited data
set. The resulting modeling polynomial has the form

Fig. 2. GMDH modeling strategy.

(n+1)(n+ 2)/2 = 861); additionally, these models are F(@) = ao + zn: bz + zn: P

valid only within small exploration region. = ==l e
3) Higher order regressions often lead to a severely ill-con- "

ditioned system of equations. + Z dijraizizy + - - (8)
To alleviate problems of conventional regressions, a combi- =1 mLik=1

nation of heuristic methods MFQI [10] and GMDH [11]-[14] ; g ; ;
has been utilized in our methodology. The MFQI technique aﬁg@;%fnsia?gggf?{ggﬁg ?gskp:(r:‘taivlggependent predictors and

proximates the performance function of interest by interpolati 9The combined structure of the MFQI and GMDH methods

polynomials of the following form: allows the MFQI algorithm to create several locally accurate

1 n and overlapping interpolating models over the entire parameter
f@) = a0+ Z @i + Z @ijLilj + - (")  space first. Then the GMDH algorithm combines these models

=1 i=lijz1 in an optimal way, based on approximation strategy—min-

wherez’s anda’s represent independent predictors and polyndmizing average error. The resulting final model overcomes

mial coefficients, respectively. The MFQI approach is more effthe limitations of the traditional regressions and is more

cient and more accurate than the traditional quadratic regressiogurate than the models created by the two individual algo-

[10] methods. Model accuracy, however, just like in regressiontghms. Computer implementation of the composite modeling

is confined to a small region of parameter space. To overcofdFQI--GMDH) strategy is depicted in Fig. 3.

that deficiency, the ECPs’ data set is divided iktaumber of ~ The final stage (Stage V) validates the generated model by

overlapping subsets , . .., S, andk MFQI models are created Monte Carlo simulation and comparison of the simulated and

first. These models generate new variables, which are used aiginal ECPs or by comparison of the simulated and original

puts to the GMDH algorithm as depicted in Fig. 2. S-parameter databases.

The GMDH algorithm is a multilayer approximation

technique with a neural network-type architecture, proposed [ll. STATISTICAL MODELING EXAMPLE

in [11]-[13], to model the input and output relationship

of a complex system. At each layer, new generations

complex equations are constructed from simple forms. T

fThe proposed modeling was applied to the database of ex-
racted equivalent circuit parameters for a pseudomorphic high

survival-of-the-fittest principle (appropriate thresholds) detefrectron mob_|I|ty tran_3|stpr (PHEMT) F.ET dewc_e. The lumped
mines the equations that are passed on to the next layer &finent equivalent circuit for pHEMT is shown in Fig. 4.

those that are discarded, that is, only the best combination of Nirteen ECPs for each pHEMT device from 27 wafers and
input parameters is allowed to pass through to the next layght different lots were extrac'Feq and recorded [19]. The ongmal'
The model obtained after each layer is progressively mor&EPs’ means, standard_ deviations, and correlations are given in
complex than the models excluded during the preceding layefables I and Il, respectively.

To avoid an overfit, the GMDH algorithm divides the data Initially, we performed exploratory analyses on the original
sample into a) the training set, which is used for generation BEPS’ correlation matrix utilizing eigenvalue decomposition in
several competing alternative models, and b) the checking s#ger to determine the minimum number of dimensions needed
which is used to check the accuracy of the models generatedaccount for most of the variance in the original set of vari-
and for the selection of the best models at each layer. Thibles. Eigenvalue decomposition resulted in the vector of eigen-
provides the self-organizing feature of the algorithm, leadingilues and the vector of cumulative explained variance as pre-
to models of optimal complexity. The number of modelingented in Table IlI.
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INTRINSIC FET PARAMETERS TABLE 1l
EIGENVALUE DECOMPOSITION OF THEDOHEMT ECPs

Parameter | Eigenvalue | Cumulative Explained Variance %
A1 4.35 33.47
Ag 3.79 62.66
A3 1.80 76.50
V] 1.05 84.58
' As 0.65 89.63
R, Ao 0.49 93.40
Ly . . .
A1 0.001 100.00
Fig. 4. Equivalent circuit model for pHEMT device. TABLE IV
ROTATED FACTOR MODEL
TABLE |
ORIGINAL ECP MEANS AND STANDARD Var.| F1 F2 F3 F4 F5
DEVIATIONS FOR THEPHEMT Em 0.026 | 0.275 ||0.880 0.119 0.244
Ry 1]0.983] | -0.082 | -0.033 -0.02 0.021
Parameter Name | Mean | Standard Deviation Cg | 0.716 | 0.154 | 0.513 | 0.231 | 0.349
7S 9.4936-2 6.3246.3 Cy | -0.393 | -0.059 | -0.383 | -0.471 | 0.116
Ru(Q) 373.77 47.39 Cy,e | 0951 | -0.014 | 0.119 | -0.096 | -0.063
Cou(pF) 0.56 0.0553 R; | 0.373 | -0.84 | -0.343 | -0.018 | -0.208
CoolpF) 6.5560-2 3.587¢-3 T.. | 0.834 | -0.428 | -0.078 | 0.138 | 0.097
Coa(pF) 2.243e-2 2.744e-3 R, | -0.007 | |0.879]| 0.143 0.055 | -0.142
R:()) 3.436 0.451 Ry -0.01 | -0.112 | -0.104 | |-0.852 | -0.073
Tou(pS) 4.473 0.335 R, 0.126 | -0.012 | 0.248 0.194 0.798
R,(2) 0.575 0.196 L, |-0.586 | 0.458 | 0.414 | -0.005 | -0.472
R4(Q) 0.395 0.176 Ly -0.093 | -0.074 | 0.088 0.742 0.494
R()) 0.682 0.184 L, 0.013 0.495 0.590 0.299 0.081
Ly(nH) 1.786e-2 7.568¢-3
Ly(nH) 7.018e-3 2.074e-3
Ly(nH) 2.197e-3 1.083e-3 TABLE V
ESTABLISHED ACCURACY: ORIGINAL VERSUSMODEL
TABLE I Parameter | Orig.(n) | Est(y) | Error% | Orig.(6) | Est(c) | Error%
ORIGINAL ECP (RRELATIONS FOR THEpHEMT DEVICE gm(5) 9.493e-2 | 9.50e-2 | 0.07 | 6.324e-3 | 6.505¢-3 | 2.86
Rys(Q) 373.77 | 373.95 0.05 47.39 48.54 2.43
} C,e(pF) 0.56 0.558 0.35 0.0553 | 0.0517 6.51
Var. | Correlations Cu(pF) | 6.556e-2 | 6.561e-2 | 0.07 | 3.587e-3 | 3.60e-3 | 0.36
gm | 1.0 Coa(pF) | 2.243e-2 | 2.250e-2 | 0.31 | 2.744e-3 | 2.64e-3 | 3.79
R4 |-0.03 1.0 Ri(Q) 3.436 3.448 0.35 0.451 0.423 2.8
Cys | 0.58 0.66 1.0 Tou(pS) 4.473 4.460 0.29 0.335 0.310 7.46
Ca: | -0.39 -0.37 -0.54 1.0 R,(9) 0.575 0.578 0.52 0.196 0.203 3.57
Cga | 0.12 0.93 0.69 -0.36 1.0 Ry() 0.395 0.394 0.25 0.176 0.178 1.14
£ |-0.550.45 -0.14 -0.06 0.33 1.0 R.(9) 0.682 0.679 0.44 0.184 0.188 2.17
T 1-0.17 0.86 0.60 -0.29 0.77 0.64 1.0 LynH) | 1.786e-2 | 1.751e-2 | 1.96 | 7.568¢-3 | 6.885e-3 | 9.02
R, 10.31 -0.08 0.16 -0.22 0.00 -0.76 -0.45 1.0 La(nH) | 7.018¢-3 | 6.910e-3 | 1.54 | 2.074e-3 | 1.897¢-3 | 8.53
Ry |-0.21 0.03 -0.28 0.37 0.03 0.18 -0.07 -0.12 1.0 Ly(nH) |2.197e-3 | 2.205 0.36 | 1.083¢-3 | 1.10e-3 | 1.57

R, |0.40 0.15 0.51 -0.16 0.06 -0.16 0.16 -0.05 -0.20 1.0

L, |0.31-0.63 -0.30 0.01 -0.50 -0.66 -0.75 0.51 -0.04 -0.35 1.0

Ls |0.26 -0.09 0.30 -0.31 -0.18 -0.13 0.10 -0.08 -0.60 0.54 -0.17 1.0
L, |0.61-0.04 0.49 -0.38 0.03 -0.66 -0.16 0.46 -0.37 0.29 0.46 0.25 1.0 TABLE VI

MODELED CORRELATIONS FOR THEPHEMT DEVICE

Note that five eigenvalues are sufficient to explain approx ‘;‘“' Todeled Correlations
mately 90% variance of the original data. This decision is som z,, |-0.02 1.0
what subjective; as a rule of thumb, avoid eigenvalues that ¢ fq 0(')4297“342;% 57 1.0

. . A . s =u. -uU. =uU. N
much smaller than one (Kaiser criterion [9]) or whose indi ¢,, | 0.08 0.88 0.45 -0.24 1.0
7 H 7 P H R, |-0.64 0.29 -0.23 -0.15 0.37 1.0
vidual contributions to the cumulative variance are lessthan 5« | 7000 20208 0 0t 10
Based on the above result, a factor model with five commonfe &, | 0.25 -0.04 0.22 -0.30 0.01 -0.70 -0.43 1.0
tors utilizing commercial statistical softwagePLUS [20] was 2 |-0:17 0.04 -0.31 0.46 0.14 0.22 -0.01 -0.12 1.0
. . - R, |0.36 0.14 0.63 -0.27 -0.09 -0.19 0.16 -0.04 -0.14 1.0
developed. To improve interpretibility of the factor model, th' 1 |0.33 -0.72 -0.42 0.11 -0.61 -0.63 -0.91 0.48 -0.12 -0.24 1.0
“varimax" 0rth0g0na| rotation was app"ed’ |eading to the pa L; |0.32-0.03 0.55 -0.39 -0.24 -0.18 0.03 -0.20 -0.80 0.64 -0.11 1.0
. .. . Ly 10.59 -0.06 0.44 -0.34 -0.08 -0.63 -0.28 0.45 -0.30 0.29 0.43 0.32 1.0

tern of loading coefficients shown in Table IV.

Physically meaningful linear and nonlinear models were
built by substituting the hypothetical factordi,...,F5) (Ras, Ry, gm, Ra, R,), while the remaining parameters
with the original variables as independent predictor®ss, Cus, Cga, Ri;, Tau; Ry, La, Ls) are determined in terms

(those strongly related td¥}). In our case, we selectedof the selected predictors. Based on this selection, linear and
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Fig. 5. Scatter plot of original ECPs.

nonlinear physically meaningful polynomial equations, utikIBRA [21] simulator. A pHEMT device was biased with the
lizing a combination of the MFQI and GMDH algorithms, weresame settings at whicti-parameters were originally extracted.
developed. For better efficiency, equations were implementétle model was simulated 300 times in the LIBRA simulator. At
in C language. Three hundred Monte Carlo simulations @randomly chosen frequency (6 GHz in our caseparame-
the generated statistical ECP model were performed, whitgrs were extracted and comparedtparameters as generated
resulted in means, standard deviations, and a correlation mabyxthe original ECPs’ database at the same frequency. Linear
as presented in Tables V and VI, respectively. and nonlinear relationships existing among origisigharame-
Maximum errors for the calculated means and standard ders were reproduced with high accuracy, as depicted in Fig. 7.
viations are 2% and 9%, respectively. The original and mod- Once the reliable statistical equivalent circuit device model
eled linear correlations have also matched very satisfactorihas been obtained, the analysis and optimization of any sub-
The most significant achievement of this technique, howeverggstem (power amplifier, mixer, oscillator, etc.) containing the
the accurate reproduction of the nonlinear relationships existitignsistor can be made with the aid of common commercial mi-
among original ECPs, as depicted in Figs. 5 and 6. crowave simulators such as LIBRA. The results of such simula-
To improve the viability of the proposed methodology, a ddion, however, will be questionable for these nonlinear circuits
veloped pHEMT statistical device model was implemented insince our statistical models are based on dc and small signal
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Fig. 6. Scatter plot of modeled ECPs.

measurements under specific bias conditions. Intrinsic paracmaracteristics of the former based on specific conditions of the
eters of the equivalent circuit mod@},.., Cga, Ces, Cas, Ras)  latter (superposition). This approach has the advantage that even
are bias t;, V) dependent. This is difficult and yet continuesvith simple interpolation functions, the solution will always be

to be unresolved. The nonlinear statistical device model, whielcurate in the bias point. For large amplitude excursions from
accounts for the voltage dependence of intrinsic parametersthis bias point, at the extreme voltage values, the accuracy will
the subject of further research. We will, however, address onelef poorer, but that should be a secondary effect not affecting the
the avenues we are pursuing. The values of intrinsic elementgtifbal accuracy of the solution.

Fig. 4 for different gate and drain voltages can be obtained by the
S-parameters of the FET in a wide range of bias conditions and
extracting a small signal equivalent circuit at each bias point.
Intrinsic elements are then expressed as functions of the voltStatistical modeling is a required prerequisite but is not suf-
agesV,, V,. The statistical characterization should be done thdicient for accurate yield estimation. Yield is commonly ap-
in two fundamental stages: characterization 1) due to manufgceximated by the PMC method. The success of yield estima-
turing tolerances and 2) due to different biasing conditions. Thien based on the Monte Carlo calculation often stands or falls
interpolation method can be utilized, which shifts the statisticalith the quality of the random samples that are used. Random

IV. RANDOM NUMBERS—LHS VERSUSPMC SAMPLING



2322 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

ORIGINAL $11 AT 6GHZ ORIGINAL S21 AT 6GHZ TABLE VII
-0.82 . 3.2 COMPARISON OF THEDIFFERENT RANDOM NUMBER GENERATORS
+ (Errorideal= 0,max = 1)
-0.84 3
- 086 ’ - . Uniform sample generation Error
b7 , %2 8 + gt Linear Congruential method[22] 0.571
€ 088 1, 27 e Square Choosing Middle Method[22] | 0.581
- T - Tt Shuffling Method|[22] 0.223
~0.9 TeE L, 26 i Data Coding Method[22] 0.225
+ LHS - Proposed Method 0.218
%5 52 o1 0 o 24 -15 i -05
Real S11 Real 521
. The error value was calculated for the sample &ize- 500 and
ogaTODELED ST1 AT6GHZ gp, TODELED S21 AT 6GHZ m = 10 (as discussed in [22]) and contrasted with the values
reported in [22] for four uniform pseudorandom number gen-
-0.84 3 . erators that are widely used in microwave circuits analysis and
+ . . . . .
- 086 = *}*&* optimization (Table VII). LHS sampling displays the smallest
4 Do * iy error: meaning, it has the best uniform coverage.
E-os8 £ + Uniform distributions, however, are hardly used in practice,
09 26 e but they serve as a basis for creation of other desirable distribu-
g tions (Gaussian, for example). Transformation techniques from
0902 o1 o o4 % s T+ s Uniformto Gaussian have been studied in [23]. The most com-
Real $11 Real 521 monly used transformations in today’s microwave circuit simu-
lators are:

Fig. 7. Original and modeleff;; and.S., parameters at 6 GHz for pHEMT

device. 1) polar form of the Box—Muller method;

2) functional approximation of the inverse transform;

number generation based on LHS is advocated over traditional3) Iookup_table. ) )
industry-standard PMC sampling. These techniques take a uniform sample as input and generate

LHS is similar to PMC sampling except in sample gener&tandard normal (Gaussian) variable as output. Any good
tion. LHS operates as follows. Generate a sample sizeom 9uality uniform random number generator (i.e., shuffling
the n variables® = 41, s, . .., 4, with the joint probability method, daFa coding method, etc.) subjec_t to one of the above
density function (jpdf) off,,(¥). The range of each Variab|etransformatlons rwould give us a Qaus&an pdf_ for a small
is partitioned intolV nonoverlapping intervals on the basis of2@Mmple sizéV = 50, as depicted in Fig. 8(a) (shuffling random
equal probability size AV. One value from each interval is se-"umber generator and polar form of Box-Muller transforma-
lected at random with respect to the probability density in the ifion have been utilized in this case). Skewness, poor uniformity,
terval. TheN values thus obtained fdr, are paired in arandom and a clustering of sample points for such small sam'ple sizes
manner with theV values ofl,. TheseN pairs are combined &€ Well-known and -understood phenomena [24] in PMC
in a random manner with th¥ values of'; to form N triplets, sampling. These detrimental patterns change significantly from
and so on, until a set a¥ n-tuples is formed. This set of-tu- °N€ simulation to another when such small samples are used.
pels is the Latin hypercube sample. It should be evident frogppsequently, large variability and low confidence in statistical
the above description that the LHS generator partitions the dfStimators are expected. , o
turbance space of interest ind" cells and samples one point, | "€ Proposed LHS sampling strategy in conjunction with the
from each cell. This unique sampling scheme is computationalfjy€rse transform method [18] would give us a pdf for the same

efficient, can cope with many input variables, and ensures tifMPle sizeV = 50 as depicted in Fig. 8(b). _
all portions of the range of each input variable is represented. The unique sampling of LHS assures consistent and uniform

To quantify the quality of the LHS uniform sample by th&Overage compareq tothe sparse or clustered coverage achi_eved
scheme described above, a uniform two-dimensional sample?¥fthe PMC technique. The significance of that will be evi-
500 has been generated. The two-dimensional uniform (O,dﬁnt in variability reduction and repeatablllt_y of yl_eld e_stlma-
plane was divided byn subintervals, such that by m sub- tors when a small number of Monte Carlo simulations in yield
regions were created. The error function, which determines halyses are used.
quality of uniform distribution, was defined as in [22]

L T b NG V. QUALITY OF YIELD ESTIMATE—LHS VERSUSPMC
err — WZZ JNT”J (9) § SAMPLING o B
i=1 j=1 The efficiency of LHS over PMC sampling in yield analysis is
where demonstrated on a 3.8—4.2 GHz single-stage FET amplifier [24].

N sample number; The circuit schematic is depicted in Fig. 9, and design specifi-
P;; sample number of two-dimensional randongations [24] are as followsSy; = 15+ 1 dB, S;; < —8dB,

vector in subregions, j); andS,, < —8 dB for frequencies from 3.8 to 4.2 GHz.
O probability of two-dimensional standard uni- The matching circuit elements, namely,, = 38.15 €,

form distribution in subregiof, ). Ey, =85, Ly = 3.23nH, Z,y = 86 Q, Egyy = 99.8°,
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Fig. 8. Two-dimensional Gaussian probability density functions based on fdf- 10. Variability of yield estimate versus sample size for 3.8-4.2 GHz
PMC and (b) LHS sampling. amplifier based on PMC and LHS method.

54 T T T T T

L. Lout ———  PMC: 4.63e+01, 4.2%
=y 52 --- LHS: 4.82e+01, 1.3% | |
PMC2: 4.826+01, 0.8%

Zout ¢ out

-
"
B
Lo

T

Yield %
B
>
T

Fig. 9. Schematic of the 3.8—4.2 GHz single stage FET amplifier.
42+

Loyt = 8.48 nH, andL, = 0.57 nH, were chosen as design

variables. Tolerance of 10% was assumed for all componer 4°;

A statistical device developed in Section Ill was incorporate

into the design so the full characterization of the circuitwa % 2 3 2 5 & 7 8 9 10

completed. A microwave circuit simulator LIBRA [21], in con- Monte Carlo lteration

junction with the Matlab program, was employed to performy, 1, eqimated yield variability for ten Monte Carlo iterations: PMC and

Monte Carlo simulation utilizing both sampling strategies.Hs yields are based on samples of 200 and PMC2 yields based on samples of
Sample sizes from ten up to 10 000 based on the LHS and PNA®O.

methods were generated. Circuit analyses were performed, and
yields for each sample were computed. Fig. 10 summarizes @0 PMC simulations were needed to get the same small vari-
yield outcomes as a function of sample size for both sampliagility and the same degree of confidence in the yield estimate.
schemes.

It is evident that the LHS yield estimator displays a stable VI. CONCLUSION
value for sample sizes of 200 and less, while samples of nearly, . - o
1000 were needed for an equally confident yield estimate wh rfA novel n_onlmear_ sta_tlst|cal characterization methodology
the PMC method was used. Our simulation analyses have ¢ -FE_T qulvalent circuit parameters has bgen prgsented. The
sistently shown that on average, yield estimate can be obtaifgghniaue is based on a combination of hierarchically struc-
with the same confidence by an LHS method, using approfired applied multivariate methods such as principal compo-
mately one-fourth of the simulations usually required by thaent an_aIyS|s and factor a_nquas Wlth_ heuristic techniques such
PMC technique. To improve the viability of this conclusionas maximally flat quadratic interpolation and group method of
ten Monte Carlo iterations, each simulation starting with a diflata handling. As a result, a very sophisticated model capable
ferent random seed number, were performed for both samplipigrecreating ECPs’ means, standard deviations, correlations,
methods. Equal sample sizes of 200 each time were generagétl linear and nonlinear relationships is obtained. Model equa-
and yields were plotted as depicted in Fig. 11. tions, however, are of high complexity and cannot easily be im-

The same experiment was repeated for the PMC method wh#e@mented into existing commercial microwave computer-aided
each sample size was 1000; these results are also plotteddsign software. An interface between model and microwave
Fig. 11 (as PMC2). Note that approximately 200 LHS versugrcuit simulator is required.
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A new approach to yield estimation for microwave integrated17] M. D. Kay, R. J. Beckman, and W. J. Conover, “A comparison of three
circuits based on Latin hypercube Sampllng also was presented methods for selecting values of input variables in the analysis of output

This sampling method ensures that each of the input variablq§8]

from a computer code,Technometricsvol. 21, no. 2, May 1979.
M. Keramat and R. Kielbasa, “Modified latin hypercube sampling

has all portions of its range represented during simulation  Monte Carlo (MLHSC) estimation for average quality indetat. Jour.
irrespective of the sample size. Comparisons of yield estimates Analog Integrated Circuits Signal Processol. 19, no. 1, pp. 87-98,

Apr. 1999.

based on LHS an_d PMC_ sampling have shown that for ag] Triquint Semiconductor, , Dallas, TX, Mar. 1999.
equally confident yield estimator, the LHS method on averag¢0] S-PLUS Users Manual ver. 3.2 Seattle, WA: Statistical Sciences,

requires one-fourth the analyses normally used by the PM‘f1 1993.
technique. The proposed technique is very simple and shouczj ]

HP Series IV Reference ManualSanta Rosa, CA: Hewlett-Packard,
1996.

be easily integrated into the code of existing microwave circui{22] Y. Huang and C. Sheng, “The influence of pseudo-random numbers on
simulators. yield analysis and optimization of microwave circuits,"|EEE MTT-S

Int. Microwave Symp. Dig1994, pp. 377-380.
[23] P. Brately, B. L. Fox, and L. E. Schragk,Guide to Simulation New
York: Springer-Verlag, 1987.
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