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Abstract—Using a perfectly matched layer (PML) as lateral
boundary in waveguide analysis introduces artificial modes
and other unexpected effects. This paper presents results of a
finite-difference frequency-domain approach and an analytical
investigation of the PML’s capability to simulate the lateral open
space, including an accuracy estimation. A criterion how to detect
the desired modes out of the mode spectrum is also given. The
findings are verified for a coplanar waveguide radiating into the
substrate.

Index Terms—Coplanar waveguides, electromagnetic propaga-
tion in absorbing media, electromagnetic radiation effects, finite-
difference methods.

I. INTRODUCTION

A MONG THE absorbing boundary conditions used with
the finite-difference (FD) or finite-element (FE) methods,

the currently most powerful formulation is the perfectly
matched layer (PML) approach. Two types of PML are to
be distinguished: the split-field formulation, introduced by
Berenger [1] and the anisotropic-material-based description
by Sackset al. [2]. Both provide absorbing properties for any
frequency and angle of incidence. The anisotropic-material
PML formulation offers the special advantage that it does not
require modification of Maxwellian equations. Hence, it can
be implemented easily in frequency-domain FD and FE codes,
and it preserves consistency of Maxwellian equations. This
is important because, for instance, mode orthogonality in a
waveguide is maintained, which is not clear for the split-field
approach.

Both types of PMLs and their properties have been studied
extensively in the literature during the last years (e.g., [3]–[5]).
To the authors knowledge, however, none of these contribu-
tions treats the waveguide case, where the PML acts as lat-
eral boundary of a longitudinally homogeneous structure. This
is presented in this paper. Starting from a PML implementa-
tion, according to [2] into a finite-difference frequency-domain
(FDFD) approach, this paper addresses the following three basic
questions.

• How does the PML boundary change the mode spectrum
of the waveguide structure?

• How can one identify the waveguide modes of interest?
• How accurate does the PML describe the leakage effects

and, thus, attenuation due to radiation?
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Our investigations revealed some unexpected results that
needed support by an analytical treatment. The analytical
findings are compared to numerical data for the case of a
coplanar waveguide (CPW), which radiates into the substrate.

Although this paper focuses on the frequency domain, the
results are relevant for the finite difference time domain (FDTD)
as well because the mode phenomena influence the time-domain
behavior equally, even if they do not appear there in a distinct
and unambiguous way.

II. I MPLEMENTATION OF THE ANISOTROPICPML

The PML is implemented into our well-proven in-house
FDFD software [6]. Waveguide analysis is formulated as an
eigenvalue problem for the complex propagation constant. As
the code has the capability to handle anisotropic lossy media,
PML implementation is straightforward. We use the discrete
integral form of Maxwellian equations

(1)

applied to each elementary cell, together with the well-known
PML diagonal permittivity and permeability tensors, of the form

(2)

with and .
These tensors are valid for a PML acting in the-direction,

as is assumed in Fig. 1.

III. W HAT ABOUT THE MODE SPECTRUM?

What type of mode spectrum can we expect for a waveguide
structure with lateral PML layers? Since there is always an
electric or magnetic wall behind the PML, the entire structure
forms a closed waveguide, which is partly filled with an
artificial anisotropic material. If this PML material was not
be present, we would have a huge number of box modes
that are related to the enclosing box rather than to the actual
transmission-line structure we are interested in.

Ideally, introducing the PML should suppress these box
modes, leaving only the modes guided by the transmission-line
structure. However, since the total number of modes is constant
(at least in the FD formulation), the PML cannot remove any
mode, but only shift them into other parts of the eigenvalue
spectrum. Hence, the question arises how the undesired box
modes are influenced when introducing the PML. In order to
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Fig. 1. Partly PML-filled rectangular waveguide (the dimensions area =

140 mm,b = 80 mm, andc = 200 mm).

clarify this, in Section IV, we consider a simple structure that
can be treated analytically.

IV. A NALYTICAL MODEL

PARTLY PML-FILLED RECTANGULAR WAVEGUIDE

Fig. 1 shows the structure to be investigated, i.e., a rectan-
gular waveguide, which is partly filled with the PML. The upper
and lower boundaries at and as well as the
left-hand-side one at are formed by electric walls, the
right-hand-side boundary at is a magnetic wall. The
left-hand-side part of the cross section with is filled
with the anisotropic PML material. The propagation characteris-
tics of this structure can be derived analytically. Accounting for
the special properties of the PML layer (see (2), one finds that

and modes exist, which are degenerated as for the
isotropic homogeneous waveguide. The solution for the propa-
gation constant reads

(3)

with and .
It should be noted that due to the term in (3) a

mode exists. In Fig. 2, the eigenvalues of three modes
( , , and are plotted in the complex plane with
conductivity as a parameter. The real part ofrepresents the
phase constant, the imaginary part the attenuation constant. In-
creasing conductivity from zero to , the attenuation shows
a maximum at an intermediatevalue. Thus, attenuation is lim-
ited and much smaller than the phase constant, i.e., not as high as
is desirable. Moreover, the maximum decreases with frequency
and differs significantly from mode to mode. This means: the
PML shifts the propagation constants along the-axis and leads
to some attenuation. However, it does not cause the box modes
to become so strongly attenuated that they can easily be sepa-
rated from the desired guided modes by considering.

V. FINDING THE GUIDED MODES

In order to introduce a useful criterion to separate the wave-
guide modes of interest from the box modes, we use the rect-
angular waveguide of Fig. 1 as an example. With the magnetic

Fig. 2. Propagation constantk in the complex plane with conductivity� [see
(2)] as parameter, for two frequencies of 3 and 6 GHz, respectively (TE ,
TE , andTE mode of the structure in Fig. 1).

wall on the right-hand side, one has a waveguide supporting
and modes according to (3). Introducing a source

field as the right-hand-side boundary
at , on the other hand, yields an analytical approxima-
tion for the case where a guided mode with propagation con-
stant radiates laterally toward the PML region. In this case,
the field components can be derived using a -wave ansatz.
For a complete solution, both the source-induced fields and the
mode fields have to be considered.

In order to identify certain modes, we calculate the-directed
power flow in the PML section and the isotropic section sepa-
rately

(4)

where the superscript denotes the field components inside
the PML region, whereas the superscript refers to compo-
nents outside, i.e., in the isotropic free-space region.

We found that comparing the power flow in the PML section
to that in the non-PML one provides a very useful criterion to
sort out the undesired modes caused by the surrounding PML
boundary. For this purpose, the quantity (power part in
PML)

with (5)

is introduced.
In the following, our analytical example is used to demon-

strate the effectiveness of the power-flow criterion. First, we
have to classify the different modes according to their relevance
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Fig. 3. Complex propagation constantk = ��j� of the waveguide in Fig. 1
with a magnetic wall against frequency;k denotes the free-space value,k

refers to theTE modes [see (3)].

Fig. 4. PPP as a function of frequency for theTE ,TE ,TE mode and
for the source field.

in a typical open waveguide structure: The source-field case
corresponds to the waveguide mode radiating laterally into
the background structure. Additionally, one has the
and modes (the notation refers to (3)). Among
them, the mode is similar to the parallel-plate mode, i.e.,
a realistic mode, whereas the modes of higher order, such as

or are determined by the PML and surrounding
box. Those modes are parasitic and are to be separated from
the desired ones.

For a first inspection, Fig. 3 presents the frequency depen-
dence of the complex eigenvalues of the three modes ,

, and , the last two of them being artificial. A fixed
conductivity value S/m is used. Obviously, none
of the modes is strongly attenuated. With growing frequency,
the imaginary parts approach each other such that a separation
between the eigenvalues of the desired mode and the para-
sitic and mode becomes very difficult. This problem
can be overcome when considering the value according
to (5). As can be seen from Fig. 4, the desired modes (
and the source field) may be easily distinguished from the unde-
sired ones ( and ). The field components of the source
field are calculated using a fixed value , with

GHz. In the whole frequency range, even at the resonant
frequency GHz, where the guided mode is radiating very
strongly into the PML region, there is a clear gap between the

values of the waveguide fields and the box modes. For ex-

ample, may serve as a criterion. This demonstrates
usefulness of the quantity.

VI. A CCURACY LIMITATIONS OF THE PML

The structure in Fig. 1 can be used to check accuracy limits of
the PML approach as well. For this purpose, we will concentrate
on the case of a guided mode with the real propagation constant

, which radiates laterally into the PML region. This is equiv-
alent to the source field case at the right-hand-side boundary
with , which emulates a weakly attenu-
ated guided wave.

This source radiates in -direction and one can calculate the
resulting and components at the boundary between the
PML and PML-free area ( ). and can be related
by an impedance , which is very helpful in discussing PML
properties

(6)

For , using the field components for the source field, one ob-
tains

(7)

with and .
For , which is the case where the guided wave with

propagation constant radiates into the PML, the impedance
approaches the free-space value for increasingand, thus,

the PML acts as the absorbing boundary. More precisely, the
real part of becomes

(8)

for .
For , on the other hand, the guided mode cannot

radiate into the structure and, hence, only evanescent fields are
incident on the PML. In this case, as is well known, the PML
fails to simulate open space. What is new, however, is that a
detailed look into the real part of the impedancereveals that
it may assume negative values (see theterm in the numerator
of (9)).

(9)

for .
In order to check the absorbing properties of the PML, we

compare these values with the value
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Fig. 5. Field impedanceZ at the PML boundary [see (8) and (9)] and
corresponding open space value [see (10)] for a source field with propagation
constantk (structure of Fig. 1,k denotes the free-space wavenumber).

for open space. Assuming a -wave formulation, the open-
space impedance reads

for

for

(10)

In Fig. 5, these reference values are plotted to-
gether with the PML ones. In the range , where the
guided mode radiates into the structure, the PML approximates
open space with good accuracy, although there are still small os-
cillating deviations around the open-space curve. These differ-
ences are not due to numerical accuracy problems, but represent
an inherent PML property caused by the finite PML thickness.
For , where radiation is not possible, the values
of the PML are oscillating around the zero line, which repre-
sents the open-space value. Due to the oscillating behavior, how-
ever, partly negative values for are found. ,
however, means that the PML acts as an active medium. As a
consequence, evanescent fields of a guided mode reaching the
PML are amplified and reflected back, which may result in neg-
ative attenuation values of the guided mode. This is exactly what
we observed in FDFD analysis: for modes that cannot radiate
into the background, the attenuation decreases down to very
low values. In this range, attenuation may also become nega-
tive, which is again not due to numerical accuracy problems,
but to finite PML thickness.

VII. V ERIFICATION CPW RADIATION

In order to clarify in which way the analytical observations
in the previous sections affect waveguide analysis, we inves-
tigated a coplanar structure radiating into the substrate. Using
our FDFD approach, we calculated effective permittivity
and attenuation constant of a CPW on a silicon substrate
( ) of infinite extent. CPW ground-to-ground spacing
is 40 m with 16- m center-conductor width. Ground metal-
lization is assumed to be infinite, and the conductors are ideal
and infinitely thin. A graded mesh of 94 81 cells is used,
which includes ten cells of the PML at the outer boundaries. In
Fig. 6, the attenuation constants of all modes within
a given range of are plotted. It is obvious that the desired CPW

Fig. 6. Attenuation values of the eigenvalue spectrum of a CPW with infinite
ground metallizations on an infinitely thick substrate.

Fig. 7. PPP values for the data in Fig. 6. The lower values belong to a single
mode (CPW mode), whereas the upper values belong to several modes.

Fig. 8. Propagation constants of the CPW mode [structure with 16-�m-wide
center conductor and 40-�m ground-to-ground spacing on lossless silicon
substrate with" = 11:67 (ground width and substrate infinite)].

mode cannot be easily identified when referring solely to its at-
tenuation-constant information. Hence, an additional criterion
has to be established. Fig. 7 presents the corresponding data for
the quantity introduced in (5). One finds that only the CPW
mode exhibits a power part clearly below 0.1 over the whole
frequency range, while the other PML-related modes are well
separated, showing values above 0.6. Thus, choosing the
relation as a criterion for nonphysical modes, the
desired CPW mode can easily be picked out of the mode spec-
trum. Fig. 8 shows the resulting well-known ([7], [8]) propa-
gation characteristics. Fig. 9 adds a plot of the CPW-field
pattern at the frequency GHz, which illustrates the ab-
sorbing properties of the lateral PML layers.

The power criterion proves to be a useful instrument in sepa-
rating physical and nonphysical modes without furthera priori
information. It can be implemented in the eigenvalue search
code and, thus, causes only small numerical overhead.

One should note that at low frequencies ( GHz)
where attenuation is very small, the numerical simulation yields
both negative and positive attenuation valuesdepending on
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Fig. 9. E-field pattern of right-hand-side half of the CPW atf = 500 GHz
(for the parameters see Fig. 8).

frequency. This is in accordance with the accuracy problems of
the PML discussed in Section VII. Since the magnitude ofis
very small, however, this effect becomes visible only for special
cases.

Regarding the limitations of the -based criterion, the
most critical situation is that of strongly radiating modes. Usu-
ally, this occurs in the high-frequency range. The values of
the physical and nonphysical modes then approach each other
and the decision-making algorithm may not accept only the de-
sired modes. Thus far, the only way to handle such a situation
is to include additional information, e.g., field intensity plots.

VIII. C ONCLUSIONS

Applying a PML as lateral boundary in waveguide analysis
involves some of the following specific effects that need to be
taken into account for a proper use.

• Generally, the parasitic box modes are only weakly atten-
uated by the PML layer. Thus, one commonly has several
modes within a given range of the propagation constant,
and attenuation cannot be applied as a criterion to select
the desired modes. Instead, we propose to use the part of
the power flow within the PML region for this decision.
This criterion proved its usefulness in practical waveguide
analysis, using the FD method in frequency domain.

• There are certain differences between a PML layer and
open space, which are not due to numerical peculiarities,
but a PML-inherent property, related to its finite thickness.
These deviations can be proven analytically.

• PML layers fail to absorb evanescent fields. In such a case,
small nonphysical negative attenuation values may be ob-
served. Naturally, this becomes apparent particularly for
weakly or nonradiating modes.

Adapting the formulation according to these characteristics,
the PML proves to be a useful and efficient absorbing boundary

condition also for open waveguide analysis and leaky-wave
structures [9].
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