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Abstract—\We propose a new class of an electromagnetic-field 2) One has to synchronize a drive signal of a de-
probing scheme for microwave planar circuit diagnosis. The vice-under-test (DUT) to an optical pulse source,

measurement principle is based on the electrooptic/magnetooptic which allows the diagnosis to be made only for limited
effects of crystals glued at optical fiber facets. We have com- discrete frequencies

bined the concept of those fiber-edge probes with a fiber-optic J .
RF spectrum analyzing system containing a continuous-wave 3) MMIC tests in the frequency domain are rather standard,

semiconductor laser source, a fast photodetector, and an RF while the EO sampling technique provides primarily tem-
spectrum analyzer to realize a highly sensitive measurement poral data. Although their numerical Fourier transform is
equipment of local impedance. Electromagnetic-field intensity on one possible solution, relatively long waveform acquisi-

a microstrip transmission line has been measured in the frequency

domain, where voltage and current amplitudes have been inde- tion time is required for broad-band analyses

pendently investigated with sensitivities of 16 mV/Hz/2 and 4) An EO crystal is generally suspended by a cantilever
0.33 mA/Hz~1/2, respectively. In addition, it has been shown that structure in an asymmetric manner. Such suspension leads
the former value can be improved to be 0.7 mV/Hz /2 or smaller to an asymmetrically distorted electric-field distribution
by the resonant cavity enhancement effect. and could conceal obtainable knowledge of DUT.

Index Terms—Electromagnetic-field measurements, electrooptic To overcome those obstacles, we propose in this paper a novel
effects, Fabry—Perot resonator, Faraday effect, local impedance optical probe configuration combined with the frequency-do-
measurement, magnetoopltic effects, pockels effect. main measurement technique [5]-[7]. The probe configuration

includes alternative use of EO and magnetooptic (MO) crystals
|. INTRODUCTION glued at optical fiber facets, and is expected to settle the draw-
ECENT progress of the monolithic-microwave integrate(faCkS 1) and 4). The spectrum-doma}in measurement s to sqlve
he problems 2) and 3). In the following, we report our experi-

circuit (MMIC) design and production technologies hav ) )
realized higher performances and a resultant increase of cirénﬁmal trials with emphases on the proposed EO/MO probe, the

complexity. To ensure the desired performances of such Sopmsqasurem_ent system _cqnfiguration, and the preliminary rgsglts,
ticated circuits, the internal node diagnosis is effective fro;ﬁ)getherwnh the drastic improvement of EO-probing sensitivity

the early design stage to the final production test. The elé%r_owded by the Fabry—Perot enhancement effect [5].

trooptic (EO) sampling technique based on the Pockels effect
and short optical pulses has been frequently applied to such in-
ternal node tests, as well as the electric-field mapping [1]-[4], A schematic of the novel probe structure is shown in Fig. 1.

Il. PROBE AND SYSTEM CONFIGURATIONS

having proven its usefulness therein. An EO or MO crystal with a high reflection coat on one sur-
However, there are some drawbacks in the EO sampling te¢hiee was glued on to an optical fiber facet by UV cure adhe-
nigue as follows. sive. The probing light is emitted from the optical fiber facet

1) Since an EO crystal responds only to an electric fielito the crystal, responds to an electric/magnetic field through
characteristics related to circuit currents cannot be dée EO/MO effect during one round trip in the crystal and goes
rived, which leads to the absence of local impedance ihack into the optical fiber. Note that this probe structure is sym-
formation. metric to the optical axis, therefore, the field to be measured

is not distorted asymmetrically. This advantageous feature was
, _ , _ confirmed in a separate numerical simulation. We call those
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Fig. 1. Schematic of fiber-edge probe structure (left-hand side) and a Frequency [200Hz/div.]

photograph of a FEEO probe head.

. . Fig. 3. Typical RF spectrum trace of detected signal.
Optical Circulator

|CW-LD }*LEDFA }w ng)arizaltlwn @ We used Er-doped fiber amplifiers to compensate optical loss
e J caused in all the fiber optics. The detected signal was analyzed

by an RF spectrum analyzer in the frequency domain. The DUT
spezfum ” and the probe were placed beneath a microscope for the probe

Analyzer Mechanical position alignment. Since the microscope is not aimed for
Splice focusing an optical probe beam, one can set the magnification

EO/MO Crystal “«—> of microscope independently of the spatial resolution of the

field measurements.

In contrast with the conventional field detection systems
Maicrostrip Line based on the EO sampling technique, our system is unique
_ _ o _ since it contains such elements as the CW laser source, the
Eg%;dneﬁ'éc:redgg;sgtgg f)’;sé%rt?cglof?ggf_at'on is shown. All the opticahinpy_speed and high-power allowance PD, and the RF spectrum

analyzer, which allows the measurement to be free from the

YIG crystal, respectively. The vertical fields to the substrate a) é(nchronlzanon of drive S|gpal. ”? qther words, the DUT can
measured in both cases. We used those two probes alternati nalyzed at any frequencies within the system bandwidih. In

to derive local voltage and current data independently as will B\ |t|on, we WOUIc.j !lke_to point out Fhat th.e speqtrum—domgln
described later. analysis is beneficial in the two-dimensional field-mapping

The optical fiber used here is a single-mode fiber with an erpIication of EO-probing techniques. The details of this issue

panded core region at its end. The expanded core structure 8> reported in [7]. Therg 1S, however, a premature .featu.re
vides low optical power loss in both crystals at the expense tthe_ phase of the RF S'gn?" IS not measurable at this p0_|nt.
spatial resolution. In other words, the mode field diameter is e ' peheve that_ some modification of the system could, in
larged up to 25-4pm at the facet so that the divergence of propqnnuple, make it possible [5], [6].
agating optical beams in the crystals is suppressed. Therefore,
about one-half of the incident light power is coupled back to the
fiber. The spatial resolution given by the fiber core dimension We have preliminarily investigated the characteristics of our
(25-45.m) is fine enough for most of RF circuit diagnoses. FEEO and FEMO probes. We used as a DUT a microstrip trans-
Fig. 2 shows a block diagram of the measurement system. Allssion line of a 23Q:m width and a few centimeters length.
the optical system contains fiber optics only, which offers sonits characteristic impedance is $Dand a terminating load of
attractive features: the system is very simple, stable, and fee®&0{2 resister was connected to its output. While the ZnTe
from optical alignment. One should note here that those benefit®be head picks up the signal voltage of the DUT, the YIG
came from the all-optical-fiber configuration provided by th@robe senses the magnetic field generated by the signal current.
introduction of the fiber-edge probe scheme. The only fault By combining results of those measurements, local variation of
that rather sophisticated polarization control is necessary sai@msmission impedance should be clarified if it would exist.
to set the polarization state of probing light fixed to the optimum Fig. 3 shows a typical signal acquired by the RF spectrum
in the crystals. However, this issue will be solved if one usesamalyzer, where power and frequency of the applied RF signal
polarization-maintaining fiber instead of the single-mode fibetp the DUT were 20 dBm and 1 GHz, respectively. The detected
which will be the subject of future work. optical power was 1 mW. The gap between the transmission line
We used a semiconductor laser diode emitting JuB5- and crystal was kept around 5—&f. The internal noise of the
continuous-wave (CW) light. The laser light was amplifiedpectrum analyzer was a dominant noise component under such
and launched into the FEEO and FEMO probes throughaacondition of our measurements, which limited the minimum
polarization controller and a circulator. The reflected lighdetectable level of the PD output signal to-b&35 dBm.
from the crystal was detected with a high-spee®@ GHz) Fig. 4(a) and (b) shows the RF power response of these
and high-power-allowance>20 mW) photodetector (PD). probes. The horizontal axes are the RF input power of the

Synthesized
Signal Generator

Ill. M EASUREMENT RESULTS
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Fig. 5. Electromagnetic-field distributions near the microstrip line acquired
Fig. 4. Relationship between input RF power of the DUT and the signal powasing the: (a) EO probe and (b) MO probe.
derived for EO and MO probing are shown in (a) and (b), respectively. Detected
optical power was 3 mW in both cases. ) )
factor. However, the dominant parameter in the later case seems
DUT, and the vertical axes show the detected EO/MO S|gntg| be the dl'men3|on of.the YiG crysta]. This is befcauselthe MO
" c¥ stal, which was available at the point of experiment, is rather
power. The measurement conditions were the same as thos% Fin its heiaht and Th h ke | id
the data shown in Fig. 3, except for the frequency and optice{P n Its heig t_ar_l_ area. 'hus, we have to take Into consid-
. Iy . eration the possibility of field deformation caused by the YIG
power. The minimum detectable signal level of the DUT was . . ) . :
. crystalinsertion, as well as the too long MO interaction distance.
less than-15 dBm, which corresponded to voltage and curre . e
. . S etailed analysis will be reported elsewhere.
amplitudes of 30 mV and 0.6 mA in a 30transmission line, .
) : . The measurement bandwidths of the probes were also ex-
respectively. We believe that those values can be improved. . .
. . . amined. Fig. 6(a) and (b) shows the measured EO/MO signal
to some extent by increasing the detected optical power or lotted as f , f RE sianal f ies. N h
inserting an electrical amplifier after the photodetection. | ower plotted as functions o signal frequencies. Note that
i . . " the EO probing bandwidth is as broad as 20 GHz, which is
addition, there would be some room for improvement in the - . .
L S .0 restricted either by the DUT bandwidth or the measurement
optimization of the polarization state of the probing light in the . .
sgsttem bandwidth (given by the PD or RF spectrum analyzer
crystals. Furthermore, the Fabry—Perot resonance enhancement; . .
) ! : rpandwdths), as expected. On the other hand, the practical band-
scheme is also effective as experimentally demonstrated later, L
The relationshios between the applied RE power and t idth of the FEMO probe was about 5 GHz. The limiting factor
P : ppied =T pov ofthe MO probing bandwidth is not clear at present. In addition,
detected EO or MO signal power are fairly linear in the range
ne could see some resonantly degraded structures around 2
we tested. GHz in the MO probe response. Also, there are many miniature
Fig. 5(a) and (b) shows the EO/MO profiles derived by ling P P ' n y mini
L Structures below 1 GHz. One could claim that the dynamic be-
scans across the transmission line. One should note that rea-. f ic-d in boundari iah h
sonably precise field profiles were derived in both cases Tﬁworo magnetic-domain boundaries might cause those struc-
. ' ureis, whereas more extended studies are definitely necessary to
these measurements, the distance between the probe and sample L .
.~ teach a clearer answer. Some of the origins of those behaviors
was set to be 10-20m to prevent the probes from mechanlcatl] " ; )
. . . ave been clarified, which will be reported elsewhere.
damage. We can estimate the spatial resolutions of the EO or
MO probing by deconvolution of the DUT width from the data
in Fig. 5. The spatial resolution in the case of EO probing is
about 50:zm, whereas the MO probing resolution is more than Finally, we report on our trial to enhance the sensitivity
100 m. Since the EO crystal we used is thin and rather smadf our probes by using two methods as described below; the
our estimation is considerably valid in the former, where theabry—Perot enhancement effect and an introduction of new

mode field diameter at the optical fiber edge is a major limitingind of MO crystal.

IV. SENSITIVITY IMPROVEMENT
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For the sensitivity enhancement of the FEEO probe, we 2
applied the Fabry—Perot resonant cavity scheme to the crystal. = -100
This is a well-known technique to enhance the modulation go
efficiency of optical modulators [9]. On the other hand, it has 2 -120
been scarcely applied to an EO crystal used in the external S I e e s amm ]
. . .- T m
EO-probing schemes as far as we know [8]. This is probably -140 Noise level : -13
because of the following three reasons. -50 25 0 25

1) The resonant nature is not fully advantageous for the RF power [dBm]

EO-sampling scheme since the broad-band optical spec- 2 Sensiivity enh derived by a Fabry_p

. . . . 7. Sensitivity enhancement derived by a Fabry—Perot resonator structure

trum of samphng pUIseS is not suitable to the narrow ade on a sensor crystal. Open triangles and solid diamonds in each plot are the
spectral window of resonance. data acquired by the EO probes with and without the top mirror, respectively.

2) A light source having the fine wavelength tunability i€a) Reflectance spectra of the crystals. (b) RF spectrum analyzer traces. The

: : ectra are shifted from each other for clarity. (c) RF power response of two
necessary to hit a resonant mode, which would lead E obes. (In this measurement, the data without a top mirror is already improved

an increase in system complexity and cost. alittle compared with those in Fig. 4(a). This is probably due to fine wavelength
3) An EO Crysta| with the Fabry_Perot enhancement is nadjustment to the spectral valley given by the residual reflectance.)
commercially available at present.

While the first issue does not matter in our case, Wejection between the fiber and EO crystal. In contrast, strongly
prepared awavelength tunable external cavity diode la§ggonant structures were clearly provided in the Fabry—Perot
for the second. cavity case. The frequency traces measured by the RF spectrum

In addition, we made a resonant cavity FEEO probe usingaaalyzer are shown in Fig. 7(b). The applied RF power was 25
ZnTe crystal. Two pairs of Ti@SIO, stacks were deposited ondBm, and detected optical power was set around 3 mW. Those
its top surface by the electron beam evaporation technique. Madues were provided commonly for both probes, whereas the
reflectance of the top mirror was designed to be about 80%. laser wavelength was tuned to fit to one of the valleys in each
To confirm the sensitivity enhancement, we measured theflectance spectra of Fig. 7(a). One can conclude from the data
same signal on the microstrip line using the two kinds of FEEtat the obtained sensitivity enhancement is as much as 18 dB.
probes; with and without the resonant cavity structure. The pres-The relationships between the applied RF power and detected
ence of the top mirror made the optical reflectance spectrasifinal power were plotted in Fig. 7(c). The lowest input RF
EO crystals different from each other drastically, as shown power of the DUT was limited to be-32 dBm in the experi-
Fig. 7(a). The FEEO probe without the top mirror possessesrgent since an accurate attenuator to go down further was not
slight wavelength dependence of reflectance because of residualilable. We expected from the extrapolation of the data that
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the minimum detectable signal power of our measurementrasponses at specific points of RF circuits. We expect that it will
as low as—45 dBm. This value corresponds to sub-millivolprovide careful comparison between theoretical and real effec-
sensitivity (0.7 mV/HZz1/2), which is the lowest in the ever-re-tiveness of impedance-varying circuit designs.

ported EO-probing sensitivity for microstrip line measurements
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