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Abstract—In recent years, there has been significant interest
in complete surface-wave elimination (meaning in all possible
directions) through the use of periodic elements incorporated
into integrated circuit structures. However, to date there is no
comprehensive theory for the design of the surface-wave bandgap,
and it also appears that leaky modes with complex propagation
constants that may exist on the planar periodic structures have
not been properly taken into account. As shown here, fast periodic
leaky modes may exist within a surface-wave bandgap zone.
These leaky modes may result in more energy loss and crosstalk
than the surface-wave modes and should be taken into account
in circuit design. This paper presents theory and experimental
validation for guided surface-wave and leaky modes on a printed
circuit structure consisting of planar periodic metal patches over
a grounded substrate. The existence of surface-wave bandgaps
and leaky modes is attributed to either element resonances or the
weakly bounded dielectric slab modes. It is also found that fast
periodic leaky modes may exist within a surface-wave bandgap
zone. Design procedures for achieving a complete surface-wave
bandgap without leaky-modes are outlined and examples are
given.

Index Terms—Bandgap, integrated circuit, leaky wave, mi-
crostrip, periodic structures, photonic band gap, surface wave.

I. INTRODUCTION

I N RECENT years, there has been significant renewed
interest in microwave applications of wave bandgap

technology [1]–[3], particularly in two- or three-dimensional
periodic structures. Printed circuit elements placed on a
dielectric or semiconductor substrate are known to generate
surface-wave modes (or dielectric-slab modes). There are
two major effects of the surface-wave mode generation. First,
surface-wave modes propagating laterally are distinct from
space waves and are considered losses in integrated circuits.
Second, crosstalk between devices printed on the surface
of the substrate may be significant due to the surface-wave
interaction. It is therefore often desirable to eliminate or
minimize the surface-wave effects. A few years ago, the use of
artificial periodic materials as the integrated-circuit substrates
was proposed in order to eliminate surface-wave modes within
a frequency bandgap zone [1]. It was concluded, however,
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that with common material (dielectric) periodic elements,
a complete surface-wave elimination in all directions is not
feasible [2], [3]. The main reason is that the surface-wave phase
constant variation with respect to the angle of propagation
(measured in the array plane) is not dramatic. As a result, the
Bragg diffraction condition cannot be satisfied in all directions
(since, for a rectangular lattice, the “effective periodicity”
depends significantly on angle). It was found recently that
the use of metallic periodic patches and vias could result in a
surface-wave bandgap in all directions [4] at low frequencies.
However, this bandgap is due to the prevention of the funda-
mental TM mode propagation largely via the element design
rather than Bragg diffraction.

This paper will demonstrate that a complete bandgap is
possible for all angles of propagationwhen using periodic
metallic patch elements. The complete bandgap is due to
pronounced element resonances, which in turn result in a large
variation of phase constant over a short frequency range. The
use of metallic elements allows for the creation of frequency
bandgap edges that are relatively insensitive to angle (and
hence a surface-wave bandgap can be created for all angles [5].
Once the phase constant of a bound mode (a mode having fields
that decay vertically) is close to the Bragg diffraction condition

, with the phase constant andthe periodicity),
the corresponding mode becomes a bound complex mode that
is highly attenuating. The mode is no longer a propagating
mode but an evanescent mode that does not carry power.
The frequency band within which the mode is complex is a
surface-wave bandgap. However, as shown here, leaky modes
that are fast waves (with respect to free space) with a small
attenuation constant may also exist inside the bandgap region.
In contrast to a complex evanescent mode, a leaky mode will
leak power into space, resulting in significant power loss for
the circuits. A leaky mode may also cause interference with
other circuits or devices placed above the integrated circuit. In
order to have a complete understanding of mode propagation
on artificial periodic substrates, the leaky modes should be
taken into account properly.

In experimental verification of bandgaps, a transmitter and
receiver are often placed at opposite sides of the planar struc-
ture. A low signal reception is assumed to indicate the existence
of a surface-wave bandgap. However, it is shown here that there
may exist leaky-mode excitation at frequencies inside the sur-
face-wave bandgap. In this case, the signal reception may still
be low, but power loss from the circuit is not avoided; rather, it
is redirected into space. Furthermore, the leaky mode may have
a small attenuation constant and hence propagate to a signifi-
cant distance at certain frequencies, resulting in crosstalk that
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Fig. 1. Planar periodic square patch array on a grounded dielectric substrate.
Array period isa � a. Patch length (width) isL.

could potentially be as serious as that from the surface-wave
modes. In this paper, we clarify the fact that leaky modes may
exist within the surface-wave bandgap. In order to utilize the
surface-wave bandgap for loss reduction, it is necessary to also
eliminate the leaky modes within the bandgap, creating a com-
plete mode bandgap.

A full-wave integral equation moment-method technique
applicable to the analysis of infinite arrays of microstrip
element [6], [7] is applied here to find the surface-wave mode
and leaky-mode (complex) wavenumbers. The mode diagrams
(wavenumber versus frequency) for the periodic metal patch
structures are investigated. The surface-wave bandgaps and
leaky modes are explained based on element resonances and
perturbations of the slab mode of the structure. Measure-
ments of wave transmission through the artificial substrate
are performed in order to validate the predicted surface-wave
stopband and leaky-mode effects. The guidelines for designing
a complete bandgap without surface-wave modes or leaky
modes are described, and design examples are given.

II. A NALYTIC AND NUMERICAL METHODS

The analysis outlined here pertains to wave propagation
along a single grounded dielectric slab that has planar periodic
metallic elements printed on the interface. An extension to
multilayer structures is straightforward. A patch array on a
grounded slab structure is shown in Fig. 1. The geometry is
assumed planar and infinite. The pertinent problem is analyzed
through the use of an electric-field integral-equation formula-
tion in conjunction with the method of moments [6], [7].

Assuming that the metallic elements are thin, the electric-
field integral equation for the pertinent problem is

(1)

where the surface integral is over only one of the periodic ele-
ments in a unit cell, having current density . The dyadic
Green’s function, giving the transverse field components for a
layered media, is expressed as

(2)

Since the structure is periodic, Floquet’s theorem is applied
to simplify the problem to the fields within a unit cell. The

cross section of the rectangular unit cell includes the region
and , where and are

the periodicities along the and directions, respectively. For
the metallic patch structure in Fig. 1, a rectangular microstrip
patch having length along the axis and width along the

axis is at the center of the unit cell. (For the results presented
later, a square lattice and patch are assumed, so that and

.) For planar periodic structures, the components of the
dyadic Green’s function may be expressed in terms of Floquet
space harmonics modes (a plane-wave expansion) [6] as

(3)

In this equation, and are either or , and the wavenum-
bers are defined as ,

, where and are the fundamental propagation
wavenumbers (wavenumbers of the fundamental (zero-order)
Floquet harmonics) in the and directions, respectively.
is the spectral Green’s function component and is a function of
the spectral variables and , and , and the material pa-
rameters. This spectral Green’s function term for a multilayer
periodic structure is the same as that for a single (nonperiodic)
element and was derived with a spectral matrix method [1].

A Galerkin moment-method procedure is applied numeri-
cally to determine the current distribution on the patch element
in the unit cell. Entire-domain basis functions based on patch
cavity modes [6] are used to represent the current density in (1),
and the inner products of the resulting electric fields with a set
of testing functions (the same entire-domain basis functions)
are then set to zero in order to convert the electric field integral
equation into the matrix equation . The matrix
elements are in terms of a double infinite series in a similar
form as that in (3) and are evaluated numerically. A nontrivial
solution for the current requires the matrix determinant to be
zero, which results in a characteristic equation. The eigenvalues
(propagation wavenumbers) are obtained from
the roots of this equation for a given direction in the phase
plane (i.e., for a given ratio of or, equivalently, a given
angle , where and . When
the propagation wavenumber is purely real (for a lossless
structure), the corresponding mode is a bound mode. When the
wavenumber is a complex value, the mode may be either an
attenuating slow wave (an evanescent surface-wave mode in
the bandgap) or a radiating leaky mode [8].

Numerical results for the metallic patch structure are based on
nine entire-domain basis functions for each current component.
In order to provide code validation, results were also obtained
by using subdomain basis functions (rooftop functions), and a
very good agreement was found.

III. RESULTS AND DISCUSSSION

A. Modal Analysis for Periodic Square Patches

An example of the diagram for the planar patch array
in Fig. 1 is shown in Fig. 2. The substrate is 1.27 mm thick with
dielectric constant 10.2. The square patches are 6 mm long, and
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Fig. 2. Normalized phase constant�=k versus frequency for waves on the
planar periodic patch array of Fig. 1. Propagation is in the�(� = 0) direction.

the array spacing (period) is 8 mm in both principal directions.
The propagation is in thedirection for the results in Fig. 2. The
propagation wavenumbers shown in the plot are for the funda-
mental Floquet wavenumber unless otherwise noted.

Only physical modal solutions are shown in this plot. A phys-
ical modal solution is one for which the Floquet space har-
monics are bound (decaying vertically) if the Floquet wavenum-
bers are in the slow-wave region or if they are in the
fast-wave region but correspond to backward waves
(the power flow or group velocity of the Floquet mode is in the
opposite direction to the phase velocity). On the other hand, a
physical modal solution will have improper Floquet space har-
monics (with fields that grow vertically) if those Floquet har-
monics correspond to forward waves in the fast-wave region.

Both the patch size and the array period determine the
bandgap locations. It is seen that at low frequencies, where
the patch electrical length is much less than a wavelength,
the guided wave is similar to that for an unloaded dielectric
substrate is close to, but greater than, 1). When the
frequency increases and approaches the first patch resonance
frequency, the phase constant increases dramatically toward
the edge of the Brillouin zone boundary, which corresponds
to . Near the resonance, the patch array elements tend
to electrically interconnect, as observed in the stopband of a
frequency-selective surface [9], [10].

When the phase constant is close to the Bragg condition
, at the edge of the Brillouin zone, the bound

mode turns into a highly attenuating wave with a complex
wavenumber and the mode is said to be in the bandgap zone.
Note that due to the patch resonance, the bandgap starts at a
frequency much smaller than for the case of periodic material
elements (almost half the frequency for the same period.
The first two modal solutions are associated with the first two
patch resonances, the (1,0) and (0,1) patch modes (which have
the same resonance frequencies for the case of square patches).
It is interesting to observe that in contrast to the first bound
mode that has no cutoff, the second bound mode becomes a
physical but improper leaky mode below its cutoff.
This phenomenon can be explained by consideration of the
patch currents. For wave propagation in thedirection, the
first mode is associated with the patch (1,0) mode (with a
large current in the x direction). This (1,0) patch mode results

in a TM-like mode (H-field perpendicular to the direction of
propagation), similar to the TM mode of a grounded slab at
low frequencies, and therefore without a cutoff frequency. The
second mode is associated with the patch (0,1) mode (with a
large current in the direction). This (0,1) patch mode results
in a TE-like mode. For a grounded slab without a periodic
loading, the lowest TE mode (the TEmode) has a nonzero
cutoff frequency, and TE mode below cutoff becomes a
nonphysical improper real solution (an improper solution with
a real-valued propagation wavenumber). However, the periodic
loading turns the improper real mode into a physical fast leaky
mode [11].

The next modal bandgap edge occurs at about 11 GHz, which
is due to the patch (1,1) mode resonance. The Floquet harmonic
of the (1,1) mode shown in the plot is a backward wave, since
the power flow is in the negativedirection for this mode.

It is seen from Fig. 2 that there also exists a large frequency
band (8–11 GHz) where there exists either a fast leaky mode
or a weakly bound surface-wave type of mode with .
The leaky mode gradually turns into the bound mode as the fre-
quency increases in this band. Because the phase constant of
this mode is close to over most of the frequency range, this
mode is referred to as a “TEM-like” mode. Practically, in the
leaky-mode region, this mode has the potential to cause signif-
icant radiation and power loss in integrated circuits. The exis-
tence of a surface-wave bandgap does not by itself, therefore,
necessarily imply reduced circuit losses.

As the frequency increases beyond the (1,1)-patch mode res-
onance, the TEM-like mode turns into a nonpropagating evanes-
cent mode (the fourth bandgap edge) at about 12.45 GHz. This
bandgap edge, unlike the others, is not due to patch resonances
and is similar to the bandgap edges for a periodic structure
loaded with material blocks [1].

Note that for the example given, the first TE mode of the
slab without periodic loading (the TE1 mode) has a cutoff at
about 19.47 GHz, and that all the modes become leaky (since

for GHz. Practically, the operating fre-
quency should be below both of these two frequencies. It is seen
that there is a frequency band (from 12.45 to 13.9 GHz) where
there is no bound or leaky mode. This frequency region is a true
bandgap. The next two modes after this bandgap are related to
the patch (2,0) and (0,2) modes, respectively. It is concluded
from Fig. 2 that for this geometry, the bandgap edges are ex-
plainable from the existence of either patch resonant modes or
the TEM-like mode.

Experimental results for the case given in Fig. 2 are shown
in Fig. 3. A patch array having the structure shown in Fig. 1 is
fabricated with a standard photolithography technique, and two
probes are soldered at the opposite substrate edges. The trans-
mission across the substrate is measured by an HP-8510C to de-
termine the transmission properties. It is interesting to observe
that at around 7 GHz, there is a sudden drop in transmission, a
result of the first bandgap predicted in Fig. 2. When the second
bound mode starts to propagate immediately after 7 GHz, there
is a slight increase in transmission, which agrees with the theo-
retical results in Fig. 2. It is also interesting to observe that trans-
mission starts to increase beyond 8 GHz. As predicted in Fig. 2,
this is due to the leaky mode attenuation constant’s decreasing
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Fig. 3. Measured power reception across the dielectric slab for the case in
Fig. 2.

Fig. 4. Thef � � diagram for the example in Fig. 2.

as the mode evolves into a bound mode. The measured results
show that there is a low-reception zone around 8 GHz. The the-
oretical results in Fig. 2 suggest that this may be due to the fact
that the frequency is within the surface-wave bandgap region,
while also in a region where the leaky mode is attenuating fairly
rapidly (corresponding to radiation into space). It is seen from
the measured data that there is also a low-reception zone around
13 GHz. This frequency band, according to the theoretical pre-
diction (in Fig. 2), is in the true bandgap zone (region of mod-
eless propagation without surface-wave or leaky-wave modes).
We may define this frequency band as a useful bandgap for in-
tegrated circuits.

The mode diagram in Fig. 2 is for positive phase constants
within the first Brillouin zone. A more conventional plot of the
mode diagram for a periodic structure is shown in Fig. 4. Note
that is periodic with a period 2 , and frequency is an even
function of in this plot. The Brillouin-zone boundary in Fig. 2
corresponds to the right edge of the plot in Fig. 4, at . The
leaky-wave boundary in Fig. 4 corresponds to the region below
the line in Fig. 2. It is seen that for frequency less than
15 GHz, there are four improper but physical leaky modes and
one proper physical leaky mode [the (1,1) mode with backward
propagation]. The results given in Figs. 2 and 3 are for propa-
gation in the direction only. A bandgap that exists in
one direction may not be present for other directions. For planar
structures, one is interested in wave propagation in all possible

Fig. 5. Normalized phase constant (�=k ) versus frequency for waves on the
planar periodic patch array of Fig. 1. Propagation is in the diagonal (� = 45 )
direction.

planar directions from 0 to 360 ). For square patches and lat-
tice, due to symmetry, the propagation information forfrom
0 to 45 is sufficient. For a square lattice, the propagation char-
acteristics in the and directions are the most
distinct. A comparison of the mode diagrams for these two di-
rections provides general information about the mode charac-
teristics in all possible directions.

Fig. 5 shows the diagram for the same case in Fig. 2,
except that . Comparing Figs. 2 and 5, we can see that
the general propagation characteristics are similar in the two
different directions. The first three modes relate to the patch
(1,0), (0,1), and (1,1) modes. The next three modes relate to the
TEM-like mode and the patch (2,0) and (0,2) modes, respec-
tively.

There are three main differences for the modes propagating
in the two different directions. First, for propagation in the

direction, the first two (patch) modes merge together
at the frequency where they turn into complex evanescent
modes (at the Brillouin boundary). Second, as shown in Fig. 5,
there is “spectral gap” (not a Bragg diffraction bandgap) for the
TEM-like mode after about 11 GHz where this mode intersects
the patch (1,1) mode. In this gap region, the TEM-like solution
is not found. Third, there is a true bandgap around 13.5 GHz
within which there are no bound or leaky modes. This bandgap
overlaps with that in the direction (Fig. 2), suggesting
that there exists a true bandgap in all directions, within which
there are no bound or leaky modes that can propagate in any
direction.

Experimental results for the case given in Fig. 5 are shown
in Fig. 6. The structure is the same as that in Fig. 2 except that
here the two probes are aligned along the diagonal, at 45to
the axis. The first measured low-reception zone (from about 7
to 8 GHz) corresponds to the lower region of the surface-wave
bandgap (where a leaky mode exists) in Fig. 5. The second
low-reception zone at about 11 GHz corresponds to the “spec-
tral gap” predicted in Fig. 5. The third observed low-reception
zone corresponds to the true wave bandgap (modeless region)
in Fig. 5.

The existence of a complete (meaning omnidirectional) wave
bandgap for the patch array structure in Fig. 1 is demonstrated
through the electromagnetic band diagram (frequency versus
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Fig. 6. Measured power reception across the dielectric slab for the case in
Fig. 5 (at� = 45 ).

Fig. 7. Two-dimensional guided-wave mode band diagram for periodic square
patches on a grounded dielectric substrate. The horizontal axis corresponds to
the normalized wavenumber for propagation in different directions.�, X, M are
symmetric points in the Brillouin zone of the unit cell.

the boundary of the irreducible reciprocal lattice, or the Bril-
louin-zone spatial boundary) given in Fig. 7. The notations of

, X, and M points follow the terminology for the reciprocal
lattice of a natural crystal. The first sector of the plot (fromto
X), plotting frequency versus from zero to unity, is ba-
sically the same as the plot in Fig. 2 except for an axis rotation
and different normalization factors. The third (last) sector of the
plot (from M to corresponds to the plot in Fig. 4, plotting fre-
quency versus from unity to zero. The region
from X to M plots frequency versus , keeping ,
and is basically a sampling of the modes in various directions
from to . It is seen from Fig. 6 that indeed there is
a complete bandgap dictated by the bandgap in the di-
rection. An important and practical question is whether it is pos-
sible in general to design a modeless band (omnidirectional sur-
face-wave bandgap region without any leaky mode) by choosing
the parameters of the patch array properly. Some design princi-
ples are discussed next.

B. Design Principles for a Complete (Omnidirectional) Wave
Bandgap

The previous case shows that for planar metallic patch
loading, it is possible to have a large variation of phase constant
within a short frequency range due to large electric-field

Fig. 8. Normalized phase constant (�=k ) versus frequency for the first design
example of periodic patch array. Propagation is in the�(� = 0) direction.

strength and element resonances. Therefore, it is possible
that the Bragg condition can be approximately satisfied in all
directions at a given frequency. However, the problem with
utilizing the patch resonances to obtain a surface-wave bandgap
is that there are usually weakly bound modes or leaky modes
that exist within the bandgap, as was seen in Figs. 2 and 5.
Therefore, such a bandgap is only for the surface-wave modes
and may not be useful practically. A complete bandgap, within
which all modes are eliminated, including leaky modes, is
much more useful. The two modes that determine the edges of
a complete bandgap are usually either a weakly bound mode
and a patch resonant mode (as for the case in Figs. 2–7) or
two patch resonant modes. The latter seems more desirable
practically, due to the fact that the element resonances are more
controllable by selection of the patch size.

The key to the design of a complete wave bandgap (no sur-
face-wave modes and no leaky modes) in all directions is to con-
trol the curves for the TEM-like mode and patch resonance
modes separately. It is seen from Figs. 2 and 5 that there is a large
surface-wave bandgap between 8–11 GHz due to the resonance
of the (0,1) and (1,1) patch modes, respectively, but within this
bandgap there also exists a TEM-like mode that may take the
form of either a leaky mode or a weakly bound surface-wave
mode. If we can choose the substrate thickness, frequency, or
array spacing so that these modes are mostly or completely out
of the range of the bandgap edges due to the patch (0,1) and (1,1)
modes, a wideband modeless integrated circuit substrate can be
obtained.

C. Two Design Examples for a Modeless Substrate

The first design example is for a Duroid substrate 1.27 mm
thick with dielectric constant of 10.2 (the same as the previous
case). The square patches are 3 mm long (6 mm long for the
previous case in Figs. 2–7), and the array spacing (period) is 8
mm in both principal directions (the same as the previous case).
Since the patch length is half of that in the previous case, the
bandgap edges due to element resonances will scale up (though
not exactly in the same proportion as the patch length). How-
ever, the TEM-like mode will not change nearly as much. The
mode diagram for this case at is shown in Fig. 8. It is
seen that a sizable modeless bandgap exists, where the lower
and upper band edges are determined by the resonances of the
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Fig. 9. Measured power reception across the dielectric slab for the first design
example. The mode diagram is shown in Fig. 8.

Fig. 10. Mode band diagram for the first design example of the periodic patch
array. Note the complete (omnidirectional) bandgap in the shaded strip region.

(0,1) and (1,1) modes (although a TEM-like mode is just begin-
ning to propagate at the upper edge of the bandgap). Hence, this
bandgap should be fairly insensitive to direction.

Experiments are carried out to further validate the existence
of a complete bandgap for this first design example. The mea-
sured results are shown in Fig. 9. They show that there is a
low-reception frequency zone from about 12–14 GHz for both
the and cases, confirming the existence of a
complete bandgap. The measured results also confirm that at

, the bound mode corresponding to the patch (0,1) mode
is not very significant between 12 and 13 GHz. The measured re-
sults show the lowest reception between 12 and 13 GHz, while
the modeless bandgap, according to the calculations, extends
from about 13.2 to 13.6 GHz. The low reception measured near
12 GHz could be attributed to the fact that the leaky mode in
this region is rapidly attenuating. Although this would explain
the low reception measured across the circuit board, the radia-
tion into space from such a leaky mode would be undesirable.
The corresponding mode band diagram shown in Fig. 10 shows
that the bandgap is indeed omnidirectional.

A second design example shows that it is possible to elim-
inate the TEM-like mode completely within the bandgap by
adjusting the substrate thickness. The example is for the same
patch length, substrate dielectric constant, and array spacing as
for the case in Figs. 2–6, but the substrate thickness is changed
to 2.54 mm from 1.27 mm. The mode diagram for this case at

Fig. 11. Normalized phase constant (�=k ) versus frequency for the second
design example of the periodic patch array. Propagation is in the�(� = 0)
direction.

Fig. 12. Measured power reception across the dielectric slab for the second
design example. The mode dispersion plot is shown in Fig. 11.

Fig. 13. Mode band diagram for the second design example of the periodic
patch array. Note the complete (omnidirectional) bandgap in the shaded strip
region.

is shown in Fig. 11. Comparing Figs. 2 and 11, it is seen
that the use of a thicker substrate does not change dramatically
the bandgap edges due to the patch resonances (i.e., the patch
resonance frequencies), but it does eliminate (or push away) the
bound slab mode. Consequently, the use of the thicker substrate
results in a large modeless bandgap in all directions, at rela-
tively low frequencies. Experiments were carried out to verify
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this property for the second design example. A 1010 patch
array with patch size of 6 by 6 mmwas printed on the surface
of a 100-mil Duroid substrate . The measured re-
sults for power transmission through the substrate are shown in
Fig. 12. The results show clearly that there is a low-reception
frequency zone from about 7 to 9 GHz for both the and

cases, supporting the theoretical prediction of an om-
nidirectional modeless bandgap. The corresponding calculated
mode band diagram shown in Fig. 13 demonstrates the existence
of a complete modeless bandgap within a wide frequency range
(about 2 GHz). The large bandgap remains omnidirectional be-
cause the bandgap edges in Fig. 11 correspond to the patch reso-
nances of the (0,1) and (1,1) modes and therefore remain widely
separated regardless of propagation angle.

IV. CONCLUSIONS

This paper addressed the issue of using periodic metallic
patches on an integrated-circuit substrate to eliminate sur-
face-wave propagation. It was shown that it is fairly easy
to eliminate surface-wave modes completely in a bandgap
frequency region by using periodic metallic patch elements, but
without careful design, there is usually a leaky mode that limits
the extent of a true bandgap. Therefore, from a practical point
of view, such a synthesized substrate may not be useful even if
surface-wave modes are completely eliminated.

A truly useful integrated-circuit substrate is one where both
leaky modes and surface-wave modes are eliminated in all di-
rections, over a moderate range of frequencies. We described
design principles to obtain such a modeless substrate where sur-
face-wave modes and leaky-wave modes are eliminated, using
metallic patches. A key to the successful design of a large omni-
directional bandgap is to choose the patch dimensions and sub-
strate thickness so that both of the bandgap edges are determined
by a Bragg condition arising from patch resonances. The Bragg
condition frequencies that determine the bandgap edges then re-
main widely spaced, for all propagation directions, so that a
large omnidirectional bandgap is obtained. Completely mode-
less artificial substrates were demonstrated with two practical
examples. Both theory and experiment confirm the finding. The
results in this paper have applications in microwave integrated
circuits, where the excitation of substrate modes becomes an im-
portant issue.
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