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Abstract—This paper presents novel types of polarizers that
are composed of grooved circular waveguides. The presented
polarizers are suitable for realizing high-performance and
low-fabrication cost in the K a-band and above because of simple
structure. Accurate analysis and design of the polarizers are
performed using full-wave mode-matching techniques applied to Circular Waveguide
the circular-to-rectangular waveguide T-junctions and cross-junc-
tions. Ka-band grooved circular waveguide polarizers fabricated
with the aid of the analysis and design techniques have realized
excellent performance without tuning elements.

Coupling Groove

Index Terms—Mode-matching methods, polarizers, waveguides.

. INTRODUCTION

N CIRCULARLY polarized antenna feed systems, polar- Goupling Groove

izers are used to convert linearly polarized signals provided
at the first interface port (e.g., a circular or square waveguide)
into c.ircularly polarizeq signals supplied t.o the second interface; ¢, ar Wavesuide
port (i.e., the antenna interface port). Typical examples of polar-
izer type that aim at high performance and compact size are \
circular waveguide polarizer with metallic posts, a corrugated
waveguide polarizer, and a dielectric-slab waveguide polarizet
[1], [2]. In the Ka-band and above, however, these polarizer
types have serious degradation in performance due to manu-
facturing inaccuracy and difficulty of setting up tuning devices,
as the dimensions of waveguide cross sections should be -1 (@) Single-grooved circular waveguide polarizer. (b) Double-grooved

. . o . . . clrcular waveguide polarizer.

signed very small to avoid excitation of higher order propagation

modes. Consequently, for polarizers operated inRheband ) ) )
and above, low complexity of the physical structure is requirdianch waveguide coupler [3], [4]. The design method is accu-

to reduce influence of manufacturing inaccuracy. In additiofdtely performed using full-wave mode-matching techniques
the design is in need of an accurate analysis to realize high pé¥- circular-to-rectangular waveguide T-junctions and cross
formance without tuning elements. junctions [5]. K a-band grooved circular waveguide polarizers
In this paper, we present novel types of polarizers that dabricated with the aid of analysis and design techniques have
composed of grooved circular waveguides. The presem@ylized excellent performance without tuning elements.
polarizers are suitable for realizing high-performance and
low-fabrication cost in theKa-band and above because of Il. CONFIGURATION
simple structure without corrugated components, metallicgig 1 depicts the structure of two proposed polarizers
posts, and a dielectric slab taper. We further propose a CQfit four grooved circular waveguides. Type number one is a
venient design method of the grooved circular waveguidg,gle-grooved circular waveguide polarizer shown in Fig. 1(a).
polarizers, which applies the well-known design method of thghe polarizer is composed of a circular common waveguide
and several grooves arranged in a single line. Type number
Manuscript received March 6, 2000; revised August 22, 2000. two is a double-grooved circular waveguide polarizer shown
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Fig. 2. Design concept of grooved circular waveguide polarizer.

field (i.e., in the wall of the circular waveguide) instead otorrected end branch guide impedandg,is each scattering
arranging salient features and dielectric slabs in the densrameterSs; of then — 2 center connecting grooved waveg-
electromagnetic field (i.e., inside of the circular waveguidelides, and?, is the corrected center branch guide impedance.
Respectively, by deciding the size and spacing of the groovesrrected branch guide impedanZe and 7, are solutions
according to the design method discussed below, the incidémt the 3-dB directional coupler with-branches, which give a
linearly polarized modes that exhikit45’ offset with respect perfect input match at the center frequency within the assigned
to the diagonal alignment of grooves can be converted inéperating band [3]. Furthermore, each space between grooved
right- and left-hand-side circularly polarized output wave. Th@gaveguide centers is determined by
single-grooved circular waveguide polarizer is suitable for
realizing the small cross section of the common waveguide as L= (2n+ 1))\, /4, n>0 ()
compare with the double-grooved circular waveguide polarizer.
On the other hand, the double-grooved circular waveguigghere )\, is the common circular waveguide wavelength of
polarizer is suitable for realizing the large cross section of thge fundamental mode at the center frequency. This design
common waveguide (i.e., short waveguide wavelength) afgkthod is accomplished by equating numerically obtained
reducing the component size in the direction of the longitudingbupling characteristics of grooved circular waveguides in the
axis of the common waveguide because the symmetric structiiowing full-wave analysis to the above-mentioned coupling
enables the polarizer to suppress excitation of higher orq@{zracteristics of branch waveguides.
propagation modes. As shown in Fig. 1, the single-grooved circular waveguide
is composed of two key building-block elements, i.e., a cir-
IIl. DESIGN AND ANALYSIS cular-to-rectangular waveguide T-junction and a short-circuit
In a circular waveguide, a circularly polarized wave is repréectangular waveguide. We can realize an accurate design of
sented by the superposition of orthogonal dual-polarifgg, the polarizer using full-wave analysis of circular-to-rectangular
circular waveguide mode, thus, the presented polarizers carvi@yeguide - and E-plane T-junctions associated with the
treated as electrically four-port device with respect to the ogeneralizedS-matrix technique [5]. The full-wave analysis
thogonal dominant modes. Here, on the occasion of incidenthas the capability of including high-order mode influences
dominant mode to the four-port device, low return loss, highisand the advantage of shortening the computing time as com-
lation between two orthogonal modes at input port, 3-dB powpared with the finite-element method. On the other hand,
splitting and 90 differential phase shifting between two orthogthe double-grooved circular waveguide is composed of two
onal modes at the output port are in demand for polarizer p&ey-building block elements, i.e., a circular-to-rectangular
formance. Therefore, itis considered that the well-known desigiaveguide cross junction and two short-circuit rectangular
method of the branch waveguide 3-dB directional coupler cgfveguides. We perform an accurate design of the presented
be applied to the design of the polarizers [3], [4]. Fig. 2 illuspolarizer using full-wave analysis of circular-to-rectangular
trates the design concept of the grooved circular waveguid@gyeguideH - and E-plane cross junctions, which expands the
According to the design of the 3-dB directional coupler withyode-matching method for circular-to-rectangular waveguide
n-branches, each size of the groove is determined by satisfying/ £_plane T-junctions [5]. Fig. 3 shows the concept and coor-

the following coupling characteristics: dinate system for modeling a circular-to-rectangular waveguide
H- and E-plane cross junction. A discontinuity is given by the

A = 2Z1/(4 + Z12) () Jink of a circular waveguide to a parallel-plate radial waveguide

Az =2Z2/ (4 + ZQQ) (2) junction and a radial cavity with two rectangular waveguides

[5]. For example, by the application of the resonator method
where 4; is each scattering parameték; (i.e., coupling [6], the electromagnetic fields in regions (1)—(5) of Heplane
voltage amplitude) of two end grooved waveguidgs,is the cross junction, shown in Fig. 3, are derived from the following
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Fig. 3. Circular-to-rectangular waveguide cross junction; concept of analysis
and coordinate systems.

z-component of vector potential’”’ andAEf):
+Z Z C’,(le)l -y kp,mp) -cos ¢ -sin (8)

@ _ (1) (qu )
A = Z Z Gogi -t p whereG(ql and Gqu, (¢ = 1 or 2) are normalization terms

il (F. D s ) ik s of(Z}“Mql and TE,; modes in circular waveguide?'9,,, and
eql eql G, n (@ = 3 or 4) are normalization terms 6f'M;,,, and

A&) Z Z Ggiz)z kie)ql and kf,qu are propagation constants @M, andTE,,
modes ', andk?

" " 1 are propagatlon constants BMZ,,
-coslgh - (F,(f;; e 4 B R ) (4) andTEZ,, modesk'?, andk®) are propagation constants of

o TE?, ., modes (i.e., hybrid modes [8]) in rectangular waveguide,
()

mn Phn .
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X yl
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S eql € eql C..andC;/, are the unknown coefficients that can be ex-
\ pressed as a function of the above normalization terms, prop-
AP = Z Z Gy < “ p) agation constants, and amplitude vectors. Similarly, the electro-

magnetic fields in respective regions of theplane cross junc-
cosl - (F}(Qg _C_jkﬁ{ﬂ(z—d) n B,(Q) +1k(2]>ql(,.—d)) tion shown in Fig. 3 are derived from the followirgcomponent
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(F(4) ] _Jkl,}m(wra) + B(4) +Jk§j}m(x+a)>

hmn
(12) the input and output ports of the sanfé-plane T-junc-
tion/cross junctions,S7; are reflection coefficients at input
AP = Z Z C(l) -Jp (X”’ ) -cosl¢ -cos {ki)ql(d— z)} port of E£-plane T-junction/cross junctions with short-circuit
rectangular waveguides, ait§; are transmission coefficients
between the input and output ports of the sameplane
+Z Z Céi? -Jy (qu ) -cos ¢ -cos (kwﬂr) T-junction/cross junctions. Therefore, analysis and design of
the grooved circular waveguides are performed by combining
L oz the derived generalized scattering matrices Bf/E-plane
+Z Z an)l -Ji( k(enp) -cos ¢ -cos 7 T-junction/cross junctions and well-known scattering matrices
of short-circuit rectangular waveguide. Similarly, analyses of

®) ) Xiq grooved circular waveguide polarizers are realized by cascading
Ayl = Z Z Cra - <70> the above-mentioned scattering matrices.
l As typical design examples, a polarizer with four
~sinl¢~sin{k£,3ql(d—z)} single-grooved circular waveguides and a polarizer with

o / 1‘200urG domi)ble;jgrook:/er:j ci(rjculﬁa;] waveguidzsd are des(ijgnedI in
2 X1 -GHz band with the aid of the presented design and analysis
+Z Z O’(Lq)l i <7qp> ‘sinl¢ -sin (k£’3717) techniques. The total length of the designed single-grooved
circular waveguide polarizer is 75 mm, and the diameter of the
circular common waveguide is 10 mm. The size of two end
grooves and two center grooves && 0.3 mmx L: 14.8 mm
* D 3.4 mmW: 0.7 mmx L: 14.8 mmx D: 0.3 mm, and the

By matching the derived field components at the four irspace between grooved waveguide centers grooves is 20 mm
terfaces between the above regions, the generalized scattetiig\y/4).- On the other hand, the total length of the designed
matrices of the circular-to-rectangular waveguide/ E-plane double-grooved circular waveguide polarizer is 55 mm, and the
cross junctions are, respectively, obtained [5]-[7]. diameter of the circular common waveguide is 13 mm. The size

Fig. 4 shows the concept for full-wave analysis of groove®f two end grooves and two center groovesiarel.7 mms L:
circular waveguides. The scattering coefficieits, Sa1, S5, 11.7 mmsx D:2.6 mmiv: 4.6 mms L: 11.7 mmx D: 2.8 mm,
and S,; of grooved circular waveguides are, respectively, end the space between grooved waveguide centers grooves is
pressed as follows when the incident linearly polaridggh, 14 mm(=~3},/4). Fig. 5 shows the computed characteristics

modes exhibit:45" offset with respect to the diagonal align-of the designed grooved circular waveguide polarizers. The
ment of grooves: calculated results indicate that a good match and a pure circular

polarization can be obtained using the simple structure of

. . Nz
+Z Z Oy - Ik p) sinlg-sin . (13)

o/ 1"
511 _5}1/2 + S}}/Q (14) the presented grooved circular waveguide polarizers and the
521 =551/2+ 55,/2 (15)  above-mentioned design method.
S51=8% /2~ 53,/2 (16)
Sy =51,/2—571/2 17 IV. EXPERIMENTAL RESULT

where S1; are reflection coefficients at input port of the A 20-GHz-band double-grooved circular waveguide
H-plane T-junction/cross junctions with short-circuit rectanpolarizer and a 30-GHz-band double-grooved circular wave-
gular waveguidessS’, are transmission coefficients betweemguide polarizer have been fabricated with the aid of the
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Fig. 5. Calculated characteristics of the 20-GHz-band grooved circuIE_ig. 7. Measured and qalculated characteristics of the 2_0-GHz-band grooved
waveguide polarizers. SGCWP: single-grooved circular waveguide. DGCWehcular waveguide polarizer. (a) Return loss. (b) Axial ratio.

double-grooved circular waveguide. (a) Return loss. (b) Axial ratio.

(voltage standing wave ratio (VSWRY 1.06) and a pure
circular polarization (axial ratiec 0.3 dB) over the frequency
range between 20.0-21.5 GHz. The total length of the designed
polarizer is 55 mm, and the diameter of the circular common
waveguide is 13 mm. The size of two end grooves and two
center grooves ard’: 1.7 mmx L: 11.7 mmsx D: 2.6 mmM:

46 mm=« L: 11.7 mm= D: 2.8 mm, respectively, and the
space between grooved waveguide centers grooves is 14 mm
(=3X\,4/4). The 30-GHz-band polarizer is designed to obtain
high performance (VSWR: 1.06, axial ratio< 0.5 dB) over

the frequency range between 29.0- 32.0 GHz. The total length
of the designed polarizer is 40 mm, and the diameter of the
circular common waveguide is 9 mm. The size of two end
grooves and two center grooves &e 1.1 mm= L: 8.1 mm:x
D:1.8mmM: 3.2 mmx L: 8.1 mmx D: 1.9 mm, respectively,

and the space between grooved waveguide centers grooves is
9 mm (=3X,/4). Figs. 7 and 8 show the reflection and axial

Fig. 6. 20- and 30-GHz-band double-grooved circular waveguide poIarizerFatio characteristics of the 20-GHz band and 30-GHz-band

grooved circular waveguide polarizers. A good agreement

above-mentioned design and analysis techniques. Fig. 6 shisvobtained between the experimental and calculated data
a photograph of the fabricated polarizers. Both of the polarizdvseth in Figs. 7 and 8. The fabricated 20-GHz-band polarizer
are composed of four double-grooved circular waveguides. Thas realized excellent performance without tuning elements,
20-GHz-band polarizer is designed to provide a good mattch., the VSWR less than 1.06 and the axial ratio less than
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0 ey techniques have realized excellent performance without tuning
- 3 elements. The theory has been verified by a good agreement
-10E ©  Measured 3 with measurements.
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