
2254 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

Macro-Elements for Efficient FEM Simulation
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Abstract—This paper introduces a novel class of specially con-
structed elements aimed at the expedient finite-element modeling
of waveguide components containing fine geometric/material fea-
tures such as dielectric and conducting posts. Instead of utilizing
a very fine grid to resolve such fine features, special elements are
constructed that capture accurately the electromagnetic proper-
ties of the fine features. Since the size of these macro-elements is
commensurate with the size of the elements of the grid used to dis-
cretize the volume in which the fine features are embedded, their
use results in significant reduction in the number of unknowns in
the finite-element approximation of the electromagnetic problem
without sacrificing solution accuracy. The numerical implementa-
tion and effectiveness of the proposed macro-elements are demon-
strated through several numerical experiments.

Index Terms—Finite-element method, macro-element, model
order reduction.

I. INTRODUCTION

CONDUCTING and dielectric posts of small size are uti-
lized extensively in the design of waveguide passive com-

ponents [1], [2]. Typically, the cross sections of such posts are
much smaller than the guide wavelength at the operating fre-
quency of interest. Therefore, when finite methods are used for
the analysis of such components, a very fine grid is required in
the vicinity of the post in order to model accurately its impact on
the electromagnetic performance of the component. This results
in a significant increase in the number of degrees of freedom in
the discrete problem and penalizes simulation efficiency.

In this paper, a new methodology is proposed for the mod-
eling of fine material and geometry features inside waveguides.
The basic idea behind this new method is the development
of special elements that enclose the small feature of interest
and, through a properly constructed transfer function, capture
accurately the electromagnetic behavior of the small feature
by describing the relationship between tangential electric and
magnetic fields on the surface of the small feature domain.
These special elements are calledmacro-elements[3], and their
transfer function matrix representation is frequency-dependent
and generated in such a way that the macro-elements can be
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used with any one of several popular finite methods or integral
equation methods. We will refer to such a transfer function
matrix as ageneralized impedance matrix(GIM).

The incorporation of the macro-elements into the global elec-
tromagnetic solver is effected through the matching of the tan-
gential electric and magnetic fields on the boundary shared by
the macro-elements and their exterior regions. Instead of im-
posing this boundary condition one element at a time, the fields
on the boundary could be expanded using global basis func-
tions. For the purposes of this paper, we will refer to such global
basis functions asgeneralized modes. Compared with the ele-
ment-by-element imposition, this method allows for a different
mesh to be used inside and outside the macro-elements, and thus
eliminates the need for the meshes interior and exterior to their
boundary to coincide. Another advantage is that the number of
generalized modes considered is, usually, much smaller than
that of the elements on the boundary of the macro-element.
Thus, the transfer function matrices that describe the macro-ele-
ments are of small size. The choice of the generalized modes de-
pends on the shape of the small-feature domain. Although a sep-
arable surface, such as a sphere, might be appealing at first sight
for use as the macro-element boundary, generality and mesh
generation simplicity make the use of a rectangular box a better
choice. Then, orthonormal polynomial functions are the most
convenient choice for the generalized modes on the macro-ele-
ment rectangular boundaries.

To conclude this introductory summary of the proposed idea
of the macro-element, we mention that the frequency depen-
dence of its GIM suggests that a different transfer function ma-
trix will need to be constructed for each different frequency over
the bandwidth of interest. We will show that this apparent incon-
venience can be handled by casting the elements of the GIM in
closed form. In particular, our development of the transfer func-
tion matrix utilizes model order reduction techniques [7]–[9] to
construct a broadband transfer function matrix in a computa-
tionally efficient manner.

In the first part of this paper, the methodology for the devel-
opment of the macro-elements is presented. Next, the incorpora-
tion of the generated macro-elements in a finite-element model
of the structure that includes the features described in terms of
macro-elements is discussed. This paper concludes with a se-
ries of numerical examples that demonstrate the validity of the
proposed macro-element concept and highlight the reduction in
computational complexity resulting from their implementation.
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Fig. 1. The domain
 encloses a small feature in the FEM region
 .

II. DEVELOPMENT OF THEMACRO-ELEMENTS

For the purposes of this paper, it is assumed that the finite-el-
ement method (FEM) is used for the discretization of the elec-
tromagnetic boundary value problem of interest.

Consider a source-free region , as shown in Fig. 1.
This region is bounded by surface, which is the outermost
surface of the computational domain. Inside, there is a small
feature domain , which is surrounded by the boundary.
More specifically, the termsmall featureis used in this paper
to refer to material or geometry features of cross-sectional size
comparable to the size of the elements used for the discretization
of the domain . The electric field in obeys the vector
wave equation [6]

(1)

where and are the permeability and permittivity, respec-
tively. Multiplying (1) with an arbitrary weighting function
and integrating over the computational domain, the weak
form of (1) is obtained

(2)

The corresponding matrix form of the finite-element approxi-
mation obtained from (1) is

(3)

where is the expansion coefficients for

(4)
and the right-hand side of (3) is understood as the matrix form
of the forcing term.

Clearly, the domain is not included in the FEM formu-
lation. Thus, there is no need for the use of a fine grid in the
neighborhood of the small feature domain. Instead, the im-
pact of the material/geometry characteristics insidewill be
taken into account through the surface integral term overin
(2). The way this is done using the concept of macro-elements
is explained next.

The development begins by considering Maxwell’s equations
in the Laplace domain inside [3]

(5)

where . The semidiscrete form of the two curl equa-
tions is obtained through the discretization of the domain
and the expansion of and in their appropriate basis func-
tion spaces. More specifically, vector basis functions will be
used. is expanded in the tangentially continuous vector space
(Whitney1-form) [5], while is in the normally continuous
vector space (Whitney2-form) [4].

Let denote the basis functions in and denote the
basis functions in . Application of Galerkin’s method, where
the curl equations (5) are multiplied by and , respectively,
and integrated over the domain , yields

(6)

where unit normal points into . From these equations, the
matrix form of the FEM approximation is obtained

(7)

where and are expansion coefficients for and , respec-
tively, and

(8)

At this point, it is worth noting that the finite-element for-
mulation of the electromagnetic problem given in (7) and (8) is
equivalent to the more traditional formulation associated with
the weak form (3). This equivalence stems from the special re-
lationship between Whitney-1 form ( ) and Whitney-2 form
( ) as pointed out in [4]

(9)

In words, this equation states that the curl of the th order
Whitney-1 form belongs to theth order Whitney-2 form. From
this relationship, it can be shown (through some matrix manip-
ulation) that

(10)

where

(11)
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Thus, (7) can be reduced to the form of (3) through elimination
of the magnetic field coefficient vector.

Note that the matrix in (7) can be used to impose boundary
conditions on the surface of the domain. More specifically,
let us assume that a natural boundary condition is imposed on

. Instead of expanding using edge basis functions ,
an orthonormal set of global vector functions on the sur-
face of domain is used for the expansion of the tangential
magnetic field

(12)

where is the expansion coefficient for theth function. As
discussed in the introduction, the two primary attributes of this
choice of expansion functions are the decoupling of the inte-
rior and exterior finite-element grids and the compact size of
the resulting GIM. With taken to be a rectangular box, the
bounding surfaces are of planar rectangular shapes. On these
surfaces, orthonormal Legendre polynomials are used as the ex-
pansion functions .

In compact form, the discrete system of (7) is given by

(13)

where

(14)

and contains the coefficients in the expansion of .
From the vector of unknowns , the desired outputs are the

expansion coefficients for the tangential electric fields on.
Let

(15)

be the expansion of these tangential electric field onin terms
of the vector global basis function , where are the ex-
pansion coefficients. These coefficients can be extracted by mul-
tiplying with the conjugate transpose of. More specifically,
let denote the vector containing the expansion coefficients

. It is then

(16)

This last equation defines the desired GIM that captures the
electromagnetic properties of the structure inside the volume
through a global impedance relationship between the tangen-
tial magnetic and electric fields on . It is shown in [10] that
the skew symmetry of , the positive definiteness of , and
the nonnegative definiteness ofensure that the semidiscrete
system resulting from the spatial discretization of Maxwell’s
equations maintains the passive character of the original con-
tinuous electromagnetic system. It is this GIM that constitutes
the proposed macro-element. The way it is incorporated in the
finite-element solution of the exterior domain will be dis-
cussed in the next section.

III. B ROADBAND CLOSED-FORM EXPRESSION OF THEGIM

Clearly, the GIM of (16) is a function of frequency. Thus,
once generated, it can be used for the solution of the electro-
magnetic problem in at any frequency of interest. A more
convenient form of the matrix can be ob-
tained through an eigen-decomposition of the matrix .
This would lead to a matrix form where the matrix
has been replaced by the inverse of a diagonal matrix ,
where is the diagonal matrix containing the eigenvalues of

and is the identity matrix. Consequently, its inversion
is trivial, and a closed-form representation of the elements of the
GIM becomes possible in a pole-residue form. The order of this
pole-residue form is equal to the number of degrees of freedom
in the FEM discretization of . Since the discretization of is
driven by the need to resolve accurately the fine features inside
this volume, the number of degrees of freedom is often much
higher than that needed for a transfer impedance description of
the electromagnetic properties of the structure inside the volume
as seen from its exterior. This suggests the development of a re-
duced-order model of the transfer impedance matrix using, for
example, the passive model order reduction algorithm PRIMA
[8].

The model order reduction process in PRIMA is based on the
congruence transformation

(17)

where is the reduced state vector. Its lengthis much smaller
that the length of the original vector . The transforma-
tion matrix is generated using the Arnoldi algorithm and is
chosen to be orthonormal bases for the block Krylov subspace

[8]

(18)

where , , ,
, and is properly selected complex expansion

frequency.
Substitution of (17) into (13) and multiplication on the left by

yields

(19)

Thus the transfer function matrix of the reduced system is given
by

(20)

where the matrices in the reduced-order system are

(21)

A more convenient form of (20) is obtained through the eigen-
decomposition [3]

(22)

where diag . Substitution of (22) in (20)
yields

(23)
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Let denote the th row vector of and the th
column vector of . Then, the th element of the
transfer impedance matrix assumes the pole-residue form

(24)

It should be mentioned the main cost of the development of
the reduced-order form of the macro-element GIM is the inver-
sion of matrix that is required for the construction of

. Since the volume of the small-feature domain is
small, the cost is acceptable, especially in view of the fact that
it yields a closed-form broadband expression for the GIM of the
macro-element. The choice of the expansion frequencyde-
pends on the bandwidth of interest [7]. More specifically, if the
maximum frequency of interest is , we set .
The order depends on the complexity of the structure inside
the macro-element and its impact on the field variation with fre-
quency. For the electrically small domains considered here, the
order is less than ten.

This completes the development of the macro-element of the
domain through the reduced-order pole-residue representa-
tion of its GIM. Its incorporation into the global FEM model is
presented in the following section.

IV. I NCORPORATION OFMACRO-ELEMENTS IN THE GLOBAL

FEM MATRIX

The integration of the proposed macro-element into the
global FEM simulation is effected through the surface integral
over in (3). On

...

...
(25)

where

(26)

Substitution of (25) into the surface integral over in (3)
yields

...

(27)

where is an matrix

(28)

Fig. 2. Vertical posts inside a rectangular waveguide.

The matrix form in (27) will be added to the external global
FEM system matrix to account for the electromagnetic effects
of the small features.

To summarize, the basic idea discussed in this paper is the de-
velopment of a macro-element description of a fine feature in-
side a domain, via the generation of the generalized impedance
matrix (GIM) on the surface of small volume that encloses the
fine feature. GIM provides a rigorous frequency-dependent rela-
tionship between the tangential electric and magnetic fields. The
construction of the GIM was based on a finite-element formula-
tion of the electromagnetic problem that is compatible with pas-
sive model order reduction techniques, and thus enables the di-
rect development of broadband closed-form pole-residue repre-
sentations of the frequency-dependent elements of GIM of order
small enough to make its subsequent utilization in the external
finite-element problem computationally efficient. It is empha-
sized that the incorporation of the macro-element into the fi-
nite-element formulation of the external problem is effected in
a straightforward fashion through (27). Thus, once the GIM de-
scription of the macro-element has been obtained, the electro-
magnetic properties of the fine feature are rigorously described
by it, and the integration of the macro-element into its environ-
ment depends solely on the footprint of the exterior grid on the
surface of the macro-element.

V. NUMERICAL EXAMPLES

The following numerical examples focus on the specific
cases where thin vertical dielectric or conducting posts of con-
stant cross section are present inside a rectangular waveguide,
as shown in Fig. 2. It is assumed that the incident (excitation)
mode is the TE mode. Due to the post orientation and
geometry, only TE modes are excited by their presence.
Consequently, there is no field variation in thedirection, and
a two-dimensional grid is needed for the numerical solution
of this class of structures. All numerical studies focus on the
calculation of the reflection and transmission coefficients for
the dominant TE mode, caused by the presence of geometric
or material discontinuities inside the waveguide.

We consider first the case of a single vertical metallic wire
inside a rectangular waveguide. A FEM modeling of the struc-
ture requires an average grid size in the order of one-twentieth
of the wavelength at the maximum frequency. The size of the
wire is assumed to be comparable to the size of the FEM cell.
A FEM cell is used to enclose a post, as shown in the figure.
Without loss of generality, the cell is assumed to have a rectan-
gular cross section. The region inside the cell around the thin
wire is discretized using a finer grid, as shown in Fig. 3, for the
purpose of developing the GIM for its macro-element descrip-
tion. The region outside the macro-element is discretized using
a regular grid.
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Fig. 3. Top view of the finite-element grid used for the discretization of the
waveguide containing a single metallic post. The fine grid used in the interior
of the rectangular macro-element that encloses the post is shown on the right.

Since the fields areinvariant, one-dimensional Legendre ex-
pansions on each of the four surfaces of the rectangular cell are
sufficient. Furthermore, the small electrical size of the cell sug-
gests that a zeroth-order Legendre polynomial expansion should
be sufficient. Thus, on each side of the rectangular box that en-
closes the wire, tangential electric and magnetic fields are taken
to be constant

(29)

Consequently, the GIM representation of the macro-element
description of the thin wire assumes the simple form

(30)

The aforementioned impedance relationship is incorporated
in the external finite-element model of the waveguide through
the surface integral term associated with the macro-element
boundary as described by (27). More specifically, since the cell
used in this example is itself an element of the external mesh,
the relevant degrees of freedom are the electric field nodes at
the four corners and the tangential magnetic fields along the
four sides (see Fig. 4). Thus, the matrix in (27) assumes the
simple form

node
node
node
node

(31)

Finally, the matrix is added to the global FEM
system matrix.

Fig. 5 depicts the magnitude of the reflection coefficients for
a single cylindrical metallic wire versus frequency and for three
different values of its radius. The largest value of the wire radius
is taken to be 0.015 cm. The waveguide is air-filled of width
(along ) of 1 cm. As indicated in Fig. 4, the cell that includes
the wire is square of side 0.05 cm. This value represents also the
average size of the elements in the finite-element grid used for
the discretization of the waveguide.

For each radius, the calculated reflection coefficient is com-
pared with the analytic solution [1], depicted in the figure (using

for cm, for cm, and for
cm). In all cases, very good agreement is observed over the en-

Fig. 4. Development of the macro-element for the vertical post.

Fig. 5. Reflection coefficient of a single metallic post placed vertically inside
a rectangular waveguide.

Fig. 6. Reflection and transmission coefficients for two metallic posts placed
vertically inside a rectangular waveguide.

tire bandwidth. Clearly, the wire radius has a significant effect
on the reflection coefficient and cannot be ignored. The approx-
imation of the thin circular post as a wire of zero thickness can
lead to significant error in the solution.

The second numerical example deals with the case where two
thin metallic posts are present inside the waveguide of example
1. The two posts are identical, and thus the same macro-element
description is used for each one of them. Fig. 6 depicts the mag-
nitude versus frequency for the reflection and transmission co-
efficients for the case where the radius of each post is 0.01 cm.
The results obtained using the macro-element formulation are
in very good agreement with those obtained using a brute-force
FEM solution with a much finer grid, capable of modeling ac-
curately the finite radius of the two posts.
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Fig. 7. Reflection and transmission coefficients for an 8� 10 array of
dielectric posts with� = 20 placed inside a rectangular waveguide.

Fig. 8. Reflection and transmission coefficients for an 8� 10 array of
dielectric posts with� = 50 placed inside a rectangular waveguide.

The final example considers the case of dielectric posts in-
serted in waveguides. More specifically, a finite array of 8
10 dielectric posts, with relative dielectric constant , is
placed inside the waveguide. The average grid size of the global
finite element mesh is 0.05 cm, while the cross section of each
dielectric post is square of size 0.020.02 cm . The insert in
Fig. 7 depicts the configuration of the array. The separation be-
tween adjacent columns of dielectric posts is 0.1 cm. Each one
of the ten columns has eight posts, which split into two groups
of four posts each. The separation between the two groups of
four posts is 0.15 cm. In each group, the separation between ad-
jacent posts is 0.1 cm; the separation of each group of four posts
from the side waveguide walls is 0.125 cm.

Since all posts are identical, only a single macro-element
needs to be generated to capture the electromagnetic proper-
ties of each post. As can been seen from Fig. 7, the reflec-
tion and transmission coefficients obtained using the macro-ele-
ments match those obtained using a fine-grid FEM model. Very
good agreement is also obtained for the case where (see
Fig. 8). When use is made of the macro-element representation
of each post, the number of unknowns in the global FEM model
is equal to 960. If the macro-elements are not utilized, a much

finer FEM grid is required. For the case of dielectric posts of
relative dielectric constant of 50, the number of unknowns used
in the fine grid is 96 000, two orders of magnitude larger than
that for the case when macro-elements are implemented.

VI. CONCLUDING REMARKS

A methodology has been proposed for the enhancement
of the computational efficiency with which fine material and
geometry features are modeled inside passive waveguide
components using the method of finite elements. The emphasis
is on features smaller in size than the average grid size required
for the discretization of the global waveguide geometry.
Metallic and dielectric posts and thin slots are typical examples
of such fine structures. Instead of using a locally refined grid
in the vicinity of the fine feature, the proposed methodology
generates a transfer impedance matrix representation of the
volume containing the fine feature. This matrix representation
is called the generalized impedance matrix of the fine feature
and provides a frequency-dependent impedance relationship
between the tangential electric and magnetic fields over the
surface that encloses the fine feature. Once generated, the
GIM can be stamped directly in the finite-element matrix that
describes the discretized electromagnetic problem of the global
volume exterior to the volume enclosing the fine feature. Thus,
such a GIM acts in effect as a macro-element description of the
electromagnetic behavior of the fine feature.

The generated GIM description of the macro-elements is
frequency dependent. In particular, a model order reduction
methodology was introduced to cast each element of the GIM in
a pole-residue form with the frequency as a parameter. In other
words, each element of the GIM is available in a frequency-de-
pendent closed-form expression. The maximum frequency of
validity of the closed-form expression is dictated by the grid
size of the finite-element mesh used to discretize the volume
that contains the fine feature. The proposed macro-elements
were used in the finite-element modeling of metallic and di-
electric posts inside rectangular waveguides. Calculated results
for reflection and transmission coefficients were in excellent
agreement with those obtained either from analytic solution or
brute-force finite-element modeling of these structures using
very fine grids. Use of the macro-elements results in significant
reduction in the number of unknowns required for the finite-el-
ement approximation of the geometries considered using grid
refinement in the vicinity of the fine features. In addition to
savings in memory and computational efficiency, the use of
macro-elements facilitates finite-element grid generation. The
idea is applicable to other finite methods (e.g., finite difference
and finite volume methods).

The concept of the macro-element paves the way toward the
systematic development of an electromagnetic response library
for small features used frequently in the design of passive mi-
crowave components. This library of electromagnetic responses
can be used in conjunction with the most common finite-ele-
ment or finite-difference based electromagnetic solvers and can
have a significant impact on reducing the modeling and dis-
cretization complexity of waveguide structures populated with
a large number of fine-feature components.
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