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Macro-Elements for Efficient FEM Simulation
of Small Geometric Features In
Waveguide Components
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Abstract—This paper introduces a novel class of specially con- used with any one of several popular finite methods or integral

structed elements aimed at the expedient finite-element modeling equation methods. We will refer to such a transfer function
of waveguide components containing fine geometric/material fea- matrix as ageneralized impedance mati&IM)
tures such as dielectric and conducting posts. Instead of utilizing )

a very fine grid to resolve such fine features, special elements are ~ The incorporation of the macro-elements into the global elec-
constructed that capture accurately the electromagnetic proper- tromagnetic solver is effected through the matching of the tan-
ties of the fine features. Since the size of these macro-elements igyential electric and magnetic fields on the boundary shared by

commensurate with the size of the elements of the grid used to dis- : . . .
cretize the volume in which the fine features are embedded, their the macro-elements and their exterior regions. Instead of im-

use results in significant reduction in the number of unknowns in  POsing this boundary condition one element at a time, the fields
the finite-element approximation of the electromagnetic problem on the boundary could be expanded using global basis func-
without sacrificing solution accuracy. The numerical implementa-  tions. For the purposes of this paper, we will refer to such global
tion and effectiveness of the pr_oposed m_acro-elements are demon-yy55is functions ageneralized mode€€ompared with the ele-
strated through several numerical experiments. ) o . .
ment-by-element imposition, this method allows for a different
Index Terms—Finite-element method, macro-element, model mesh to be used inside and outside the macro-elements, and thus
order reduction. eliminates the need for the meshes interior and exterior to their
boundary to coincide. Another advantage is that the number of
I. INTRODUCTION generalized modes considered is, usually, much smaller than
that of the elements on the boundary of the macro-element.

ONDUCTING and dielectric posts of small size are uti-

) ) . . . . Thus, the transfer function matrices that describe the macro-ele-
lized extensively in the design of waveguide passive com-

ponents [1], [2]. Typically, the cross sections of such posts arrneents are of small size. The choice of the generalized modes de-

much smaller than the guide wavelength at the operating flpqnds on the shape of the small—feaFure domain. A_Ithough asep-
rable surface, such as a sphere, might be appealing at first sight

guency of interest. Therefore, when finite methods are used for .
. ) L .~ for use as the macro-element boundary, generality and mesh

the analysis of such components, a very fine grid is required In : L
L . o eneration simplicity make the use of a rectangular box a better

the vicinity of the postin order to model accurately its impact Oglnoice Then. orthonormal polviomial functions are the most

the electromagnetic performance of the component. This reSLﬁts y o polync

. U . . convenient choice for the generalized modes on the macro-ele-

in a significant increase in the number of degrees of freedom in ;
) . . ; _ ment rectangular boundaries.

the discrete problem and penalizes simulation efficiency. o )

In this paper, a new methodology is proposed for the mod- T° conclude this introductory summary of the proposed idea
eling of fine material and geometry features inside waveguid&¥. the macro-element, we mention that the frequency depen-
The basic idea behind this new method is the developméjrpltnce of its GIM suggests that a different transfer function ma-
of special elements that enclose the small feature of inter&& Will need to be constructed for each different frequency over
and, through a properly constructed transfer function, captdf§ Pandwidth ofinterest. We will show that this apparent incon-
accurately the electromagnetic behavior of the small featdfgniénce can be handled by casting the elements of the GIM in
by describing the relationship between tangential electric afSed form. In particular, our development of the transfer func-
magnetic fields on the surface of the small feature domaiiien matrix utilizes model order reduction techniques [7]-{9] to
These special elements are caltedcro-elementts], and their construct a broadband transfer function matrix in a computa-
transfer function matrix representation is frequency-dependdignally efficient manner.

and generated in such a way that the macro-elements can blé‘ the first part of this paper, _the methodology for the devel-
opment of the macro-elements is presented. Next, the incorpora-
"  received March 3. 2000: revised AUGUSt 21. 2000, Th ) tion of the generated macro-elements in a finite-element model
anuscriptreceive: arc y , revise ugus y . IS WOrK Wi : . .
supported by the Motorola Center for Communications, College of Engineerir%sf, the structure that I_nC|UdeS the f_eatures described in t_erms of
University of lllinois at Urbana-Champaign. macro-elements is discussed. This paper concludes with a se-
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wheres = jw. The semidiscrete form of the two curl equa-
tions is obtained through the discretization of the donfajn
and the expansion af and B in their appropriate basis func-
tion spaces. More specifically, vector basis functions will be
used.E is expanded in the tangentially continuous vector space
(Whitneyl-form)W, [5], while Bisinthe normally continuous

Fig. 1. The domainf, encloses a small feature in the FEM region. vector space (Whitney2-foran [4].
Let 5, denote the basis functions . and«,; denote the
Il. DEVELOPMENT OF THEMACRO-ELEMENTS basis functions ifi¥’;. Application of Galerkin’s method, where

For the purposes of this paper, it is assumed that the finite-#1e curl equations (5) are multiplied by; andd., respectively,
ement method (FEM) is used for the discretization of the ele@nd integrated over the domdin, yields
tromagnetic boundary value problem of interest. - 1
Consider a source-free regiéhy + 1, as shown in Fig. 1. VX E-—wydv
This region is bounded by surfack, which is the outermost & s 1
surface of the computational domain. Insfdg there is a small = —3/ Wy — Bdv
feature domairf2;, which is surrounded by the boundasy. it r
More specifically, the ternsmall featureis used in this paper VYV xg- EB’ dv +7§ A x H 1. ds
to refer to material or geometry features of cross-sectional size Q M Sy
comparable to the size of the elements used for the discretization o oA - =
of the domairt2,. The electric fieldE in £, obeys the vector = /Q1 We - eB dv + /Q1 We - o dv ©)

wave equation [6 . S .
q [6] where unit normah points into£2;. From these equations, the

V x 1 VxFB_w2E =0 1) matrix form of the FEM approximation is obtained

- e 0 D b P, 0 b 0
where, and e are the permeability and permittivity, respec- | _pT g )= *\o p 2] T\nB (@)
tively. Multiplying (1) with an arbitrary weighting functiod’ . ' ° .
and integrating over the computational dom&ip, the weak where& andb are expansion coefficients f& and B, respec-

form of (1) is obtained tively, and
o d 1 — — — 1
/ <V><F-—V><E—w2F-eE> dv Dij:/wa€7i~—wf7jdv
N K ol H
—jwj[ AxH-Fds=0. (2) si]:/ Do, i - o, dv
So+51 Q
. . - . . 1
The_ correspondmg matrix form of the finite-element approxi- Pyij = / Wy ;- — by, dv
mation obtained from (1) is ol
(Sq, — w*Ta,) Ezjwf Ax H-Fds (3) Peij = /Q W, i - €We, j dv
So+51 ! .
whereé is the expansion coefficients fd& B; = jil 0% H e ; ds. (8)
Sa, ij = VX F- 1 YV x f} dv, Tay,i; :/ F, eﬁj dv At t_his point, it is worth not?ng that the finitg—element for—.
Qo Iz Q mulation of the electromagnetic problem given in (7) and (8) is

) _ _ _ equivalent to the more traditional formulation associated with
and the right-hand side of (3) is understood as the matrix folRe weak form (3). This equivalence stems from the special re-

of the forcing term. _ _ lationship between Whitney-1 forn¥i(.) and Whitney-2 form
Clearly, the domairf2; is not included in the FEM formu- (W) as pointed out in [4]

lation. Thus, there is no need for the use of a fine grid in the
neighborhood of the small feature doméln. Instead, the im- V x WPt ¢ WJ{’. 9)

pact of the material/geometry characteristics ingidewill be . .
taken into account through the surface integral term &yen In words, this equation states that the curl of (he- 1)th order

(2). The way this is done using the concept of macro—elemeé@@imey'.l form bglongs to theth order Whitney-2 form._ From .
is explained next. this relationship, it can be shown (through some matrix manip-

The development begins by considering Maxwell’s equatioHéation) that

in the Laplace domain inside; [3] DTP,~'D = S, (10)
1
VxE=-sB
where
B = = 1
V x E =sebE+ ok (5) Sa,,ij = wa’e,i-—wa’E,jdv. (12)
Q #
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Thus, (7) can be reduced to the form of (3) through eliminationlll. B ROADBAND CLOSED-FORM EXPRESSION OF THEGIM
of the magnetic field coefficient vector

Note that the matrix3 in (7) can be used to impose boundar
conditions on the surface of the domdk. More specifically,
let us assume that a natural boundary condition is imposed
S1. Instead of expanding x H using edge basis functioni.
an orthonormal set of global vector functioﬁ,s(sl) on the sur-
faceS; of domain§?; is used for the expansion of the tangenti
magnetic field

Clearly, the GIM of (16) is a function of frequency. Thus,
nce generated, it can be used for the solution of the electro-
magnetic problem if}y at any frequency of interest. A more
&hvenient form of the matrixB? (G + sC)~'B can be ob-
tained through an eigen-decomposition of the ma@ix'G.
his would lead to a matrix form where the mati% + sC)~!
as been replaced by the inverse of a diagonal méatrix sU),
where A is the diagonal matrix containing the eigenvalues of
p—1 C~1G andl is the identity matrix. Consequently, its inversion
Ax H= Z inﬁ(Sl) (12) istrivial, and a closed-form representation of the elements of the
=0 GIM becomes possible in a pole-residue form. The order of this
wherei, is the expansion coefficient for theth function. As Pole-residue form is equal to the number of degrees of freedom
discussed in the introduction, the two primary attributes of thi8 _the FEM discretization d?, . Since the d|scre_t|zat|on 61 IS
choice of expansion functions are the decoupling of the intQ[_'VGn by the need to resolve accurately the fine f_eatures inside
rior and exterior finite-element grids and the compact size BiiS volume, the number of degrees of freedom is often much

the resulting GIM. With¢, taken to be a rectangular box théﬂigher than that needed for a transfer impedance description of

bounding surfaces are of planar rectangular shapes. On thg@eelectromagnetic properties of the structure inside the volume

surfaces, orthonormal Legendre polynomials are used as the&%S€€N from its exterior. This sugggsts the develop.ment. ofare-
pansion functiongZ;(Sl). duced-order model of the transfer impedance matrix using, for

example, the passive model order reduction algorithm PRIMA

[8].

In compact form, the discrete system of (7) is given by

(G+sC) X =B I(s) (13)  The model order reduction process in PRIMA is based on the
where congruence transformation
(0 D (P 0 X=WwX (17)
(o §) o=(T )

whereX is the reduced state vector. Its lengtis much smaller
_ o > _ b that the lengthV of the original vectorX. The transforma-
Bij = jél We,i~ f5(S1) ds, X= <5> (14) tion matrix W is generated using the Arnoldi algorithm and is

) o ) ) _.  chosen to be orthonormal bases for the block Krylov subspace
andi(s) contains the coefficients, in the expansion of x H. Kr(A, R, q) [8]

From the vector of unknown&’, the desired outputs are the

expansion coefficients for the tangential electric fieldssn Kr(A, R, q) =colsp[R, AR, A’R, ..., A""'R,

Let Airg, Ay, 4] (1)
T _ —1 - 1B n=
B=S onfals) (15) e o o oo el

[ = q — np, andsg is properly selected complex expansion
frequency.

be the expansion of these tangential electric fieldom terms  Substitution of (17) into (13) and multiplication on the left by
of the vector global basis functigfy,(S1), wherev,, are the ex- wH yields

pansion coefficients. These coefficients can be extracted by mul- .

tiplying X with the conjugate transpose Bf More specifically, WTGW +sWH W)X =WH BI(s).  (19)
let V(s) denote the vector containing the expansion coefficie
v, Itis then

n=0

"$ius the transfer function matrix of the reduced system is given

by

V(s) =B (G4 s C)*BI(s) = Z(s)I(s). 16 . e
This last equation defines the desired GIM that captures the _ _

electromagnetic properties of the structure inside the voldme Where the matrices in the reduced-order system are

through a global impedance relationship between the tangen- » .. g 5 W 5 o H

tial magnetic and electric fields afy. It is shown in [10] that G=WIGW, C=WICW, B=W=B (1)

the skew symmetry of7, the positive definiteness af, and A more convenient form of (20) is obtained through the eigen-

the nonnegative definiteness &fensure that the semidiscretedecompositionrd = C~1G [3]

system resulting from the spatial discretization of Maxwell's . o

equations maintains the passive character of the original con- A=QAQ (22)

tinuous electromagnetic system. It is thl_s _GI_M that CO”St'_tUI%hereAq = diagA1, Ma, ... \,). Substitution of (22) in (20)

the proposed macro-element. The way it is incorporated in tpﬁelds

finite-element solution of the exterior domatty will be dis- N N o

cussed in the next section. Z(s)=BTQ(sU+A)" Q7' C'B. (23)
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Let u(® denote theith row vector of B @ andv¥) the jth
column vector of~*C~1B. Then, the(i, j)th element of the
transfer impedance matrix assumes the pole-residue form

1o o)

Zifs) =

(24)

n=1

It should be mentioned the main cost of the development o
the reduced-order form of the macro-element GIM is the inve{.—
sion of matrix(G' + soC) that is required for the construction of
Kr(A, R, q). Since the volume of the small-feature domain ig
small, the cost is acceptable, especially in view of the fact that
it yields a closed-form broadband expression for the GIM of trv}e

macro-element. The choice of the expansion frequepaye-

pends on the bandwidth of interest [7]. More specifically, if th

maximum frequency of interest i§,ax, We setsg = 27 fiax.
The orderg depends on the complexity of the structure insi

the macro-element and its impact on the field variation with fr

quency. For the electrically small domains considered here,
order is less than ten.

This completes the development of the macro-element of the
domain$?; through the reduced-order pole-residue represen

tion of its GIM. Its incorporation into the global FEM model i
presented in the following section.

IV. INCORPORATION OFMACRO-ELEMENTS IN THE GLOBAL
FEM MATRIX

S
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Fi]g. 2. \ertical posts inside a rectangular waveguide.

he matrix form in (27) will be added to the external global
FEM system matrix to account for the electromagnetic effects
f the small features.
To summarize, the basic idea discussed in this paper is the de-
lopment of a macro-element description of a fine feature in-
side a domain, via the generation of the generalized impedance
fhatrix (GIM) on the surface of small volume that encloses the
fine feature. GIM provides arigorous frequency-dependent rela-
fonship between the tangential electric and magnetic fields. The
onstruction of the GIM was based on a finite-element formula-
i5h of the electromagnetic problem that is compatible with pas-
ive model order reduction techniques, and thus enables the di-
tt development of broadband closed-form pole-residue repre-
gaéntations of the frequency-dependent elements of GIM of order
small enough to make its subsequent utilization in the external
finite-element problem computationally efficient. It is empha-
sized that the incorporation of the macro-element into the fi-
nite-element formulation of the external problem is effected in
a straightforward fashion through (27). Thus, once the GIM de-

The integration of the proposed macro-element into treeription of the macro-element has been obtained, the electro-
global FEM simulation is effected through the surface integradagnetic properties of the fine feature are rigorously described

overS; in (3). OnS;

~ . ~ ~ ~ Zl
nXH:[anfla"'afp—l} :
ip_1
Vo
[ - =1 U1
= [fo, fioo, fp—1:| Z(s) : (25)
Up—1
where
v =¢ f-Eds. (26)
S1

Substitution of (25) into the surface integral over in (3)
yields

j{ ﬁxﬁ~ﬁds:j§
St

Folfor fivooos o] ds 205)7

j{ f_2 -Eds
St .
fp—l
=M Z(s)"* MT¢e (27)
whereM is anN x p matrix

Sy

by it, and the integration of the macro-element into its environ-
ment depends solely on the footprint of the exterior grid on the
surface of the macro-element.

V. NUMERICAL EXAMPLES

The following numerical examples focus on the specific
cases where thin vertical dielectric or conducting posts of con-
stant cross section are present inside a rectangular waveguide,
as shown in Fig. 2. It is assumed that the incident (excitation)
mode is the Tk mode. Due to the post orientation and
geometry, only TE,; modes are excited by their presence.
Consequently, there is no field variation in thelirection, and
a two-dimensional grid is needed for the numerical solution
of this class of structures. All numerical studies focus on the
calculation of the reflection and transmission coefficients for
the dominant Tk, mode, caused by the presence of geometric
or material discontinuities inside the waveguide.

We consider first the case of a single vertical metallic wire
inside a rectangular waveguide. A FEM modeling of the struc-
ture requires an average grid size in the order of one-twentieth
of the wavelength at the maximum frequency. The size of the
wire is assumed to be comparable to the size of the FEM cell.
A FEM cell is used to enclose a post, as shown in the figure.
Without loss of generality, the cell is assumed to have a rectan-
gular cross section. The region inside the cell around the thin
wire is discretized using a finer grid, as shown in Fig. 3, for the
purpose of developing the GIM for its macro-element descrip-
tion. The region outside the macro-element is discretized using
a regular grid.
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Fig. 4. Development of the macro-element for the vertical post.
Fig. 3. Top view of the finite-element grid used for the discretization of the

waveguide containing a single metallic post. The fine grid used in the interio ! N ! ’ i
of the rectangular macro-element that encloses the post is shown on the righi NN gy -
oof N\ MO . o _—
S NIRN .

Since the fields arginvariant, one-dimensional Legendre ex- o NN » I |
pansions on each of the four surfaces of the rectangularcella S °'\~b\_ e —
sufficient. Furthermore, the small electrical size of the cell sug z .| TN i
gests that a zeroth-order Legendre polynomial expansion shou 3 el o
be sufficient. Thus, on each side of the rectangular box that er &6} ... ..... . e Y i i

. . . . g = : ~ . .8
closes the wire, tangential electric and magnetic fields are take . Y . e
to be constant osp : » R S T
IO oo T
N o r. | | t 2 0.015 om
ann:Ln—ly 04l o
. 1 ‘ .
o1 sl : . . . ; ;
En =Un \/Z y. (29) 1.6 1.8 2 Fm;.‘incy (GHz)ZA 26 2.8 o 3

Consequently, the GIM representation of the macro-element

L . . . Fig. 5. Reflection coefficient of a single metallic post placed vertically inside
description of the thin wire assumes the simple form a rectangular waveguide.

v1 il 1
V2 = Z(S) 712 . (30) 09
U3 i3

V4 14 o8

The aforementioned impedance relationship is incorporate *'f
in the external finite-element model of the waveguide throug os+
the surface integral term associated with the macro-elemeﬁ osk
boundary as described by (27). More specifically, since the cef
used in this example is itself an element of the external mes >
the relevant degrees of freedom are the electric field nodes °3f
the four corners and the tangential magnetic fields along tt .2}

four sides (see Fig. 4). Thus, the matfix in (27) assumes the iy T iy

. R e - =—  ITItrom macromode! 7
simple form , o ITiby FEM
i ; i
1 1 — nodei 1.6 1.8 2 Frsgﬁzency (GHz)zA 286 28 . 103
M- Vi1 1 — node2 31
9 1 1 — node3 (31) Fig. 6. Reflection and transmission coefficients for two metallic posts placed
1 1 — nodei vertically inside a rectangular waveguide.

Finally, the matrixAM Z(s)~* M7 is added to the global FEM tire bandwidth. Clearly, the wire radius has a significant effect
system matrix. on the reflection coefficient and cannot be ignored. The approx-
Fig. 5 depicts the magnitude of the reflection coefficients famation of the thin circular post as a wire of zero thickness can
a single cylindrical metallic wire versus frequency and for thrdead to significant error in the solution.
different values of its radius. The largest value of the wire radius The second numerical example deals with the case where two
is taken to be 0.015 cm. The waveguide is air-filled of widtthin metallic posts are present inside the waveguide of example
(alongz) of 1 cm. As indicated in Fig. 4, the cell that includedl.. The two posts are identical, and thus the same macro-element
the wire is square of side 0.05 cm. This value represents also tlescription is used for each one of them. Fig. 6 depicts the mag-
average size of the elements in the finite-element grid used fatude versus frequency for the reflection and transmission co-
the discretization of the waveguide. efficients for the case where the radius of each postis 0.01 cm.
For each radius, the calculated reflection coefficient is corithe results obtained using the macro-element formulation are
pared with the analytic solution [1], depicted in the figure (usinip very good agreement with those obtained using a brute-force
o for » = 0.005 cm, x for » = 0.01 cm, ando for » = 0.015 FEM solution with a much finer grid, capable of modeling ac-
cm). In all cases, very good agreement is observed over the enrately the finite radius of the two posts.
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v . ! finer FEM grid is required. For the case of dielectric posts of
ey Ce-EreTere e ] relative dielectric constant of 50, the number of unknowns used
in the fine grid is~96 000, two orders of magnitude larger than
that for the case when macro-elements are implemented.

08

o
®

VI. CONCLUDING REMARKS

Magnitude

o
Y

A methodology has been proposed for the enhancement
of the computational efficiency with which fine material and
geometry features are modeled inside passive waveguide
components using the method of finite elements. The emphasis
- : | is on features smaller in size than the average grid size required
; ; ; ; for the discretization of the global waveguide geometry.
a8 a8 . Metallic and dielectric posts and thin slots are typical examples

of such fine structures. Instead of using a locally refined grid
Fig. 7. Reflection and transmission coefficients for anx810 array of jn the vicinity of the fine feature, the proposed methodology
dielectric posts withe,. = 20 placed inside a rectangular waveguide. generates a transfer impedance matrix representation of the
volume containing the fine feature. This matrix representation
is called the generalized impedance matrix of the fine feature
and provides a frequency-dependent impedance relationship
between the tangential electric and magnetic fields over the
surface that encloses the fine feature. Once generated, the
GIM can be stamped directly in the finite-element matrix that
describes the discretized electromagnetic problem of the global
volume exterior to the volume enclosing the fine feature. Thus,
such a GIM acts in effect as a macro-element description of the
electromagnetic behavior of the fine feature.

The generated GIM description of the macro-elements is

02 '[—iRi from macromodel

x iRl by total FEM
= = |Tt from macromodel
O__ [Tl by total FEM

1
16 18 2 22 24
Fraquency {GHz)

Magnitude

— IRI from macromadel

, R remodel frequency dependent. In particular, a model order reduction

O Tl by total FEM

5 ‘ : - k methodology was introduced to cast each element of the GIM in

‘ , , , , , ; a pole-residue form with the frequency as a parameter. In other

words, each element of the GIM is available in a frequency-de-

pendent closed-form expression. The maximum frequency of

Fig. 8. Reflection and transmission coefficients for anx810 array of validity of the closed-form expression is dictated by the grid

dielectric posts withe,. = 50 placed inside a rectangular waveguide. size of the finite-element mesh used to discretize the volume
that contains the fine feature. The proposed macro-elements

The final example considers the case of dielectric posts mere used in the finite-element modeling of metallic and di-
serted in waveguides. More specifically, a finite array ok 8 electric posts inside rectangular waveguides. Calculated results
10 dielectric posts, with relative dielectric constant= 20, is  for reflection and transmission coefficients were in excellent
placed inside the waveguide. The average grid size of the globgreement with those obtained either from analytic solution or
finite element mesh is 0.05 cm, while the cross section of ealotute-force finite-element modeling of these structures using
dielectric post is square of size 0.620.02 cn?. The insert in very fine grids. Use of the macro-elements results in significant
Fig. 7 depicts the configuration of the array. The separation breduction in the number of unknowns required for the finite-el-
tween adjacent columns of dielectric posts is 0.1 cm. Each omment approximation of the geometries considered using grid
of the ten columns has eight posts, which split into two groupsfinement in the vicinity of the fine features. In addition to
of four posts each. The separation between the two groupssafiings in memory and computational efficiency, the use of
four posts is 0.15 cm. In each group, the separation between adcro-elements facilitates finite-element grid generation. The
jacent posts is 0.1 cm; the separation of each group of four postsa is applicable to other finite methods (e.qg., finite difference
from the side waveguide walls is 0.125 cm. and finite volume methods).

Since all posts are identical, only a single macro-elementThe concept of the macro-element paves the way toward the
needs to be generated to capture the electromagnetic proggstematic development of an electromagnetic response library
ties of each post. As can been seen from Fig. 7, the refldor small features used frequently in the design of passive mi-
tion and transmission coefficients obtained using the macro-eteewave components. This library of electromagnetic responses
ments match those obtained using a fine-grid FEM model. Vecan be used in conjunction with the most common finite-ele-
good agreement is also obtained for the case where50 (see ment or finite-difference based electromagnetic solvers and can
Fig. 8). When use is made of the macro-element representati@mve a significant impact on reducing the modeling and dis-
of each post, the number of unknowns in the global FEM modeletization complexity of waveguide structures populated with
is equal to 960. If the macro-elements are not utilized, a muaHarge number of fine-feature components.

22 24
Frequency (GHz}
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