

Three standard reflections measured every hour during the entire data collection period showed no significant trend in intensity. The raw step-scan data were converted to intensities using the Lehmann-Larsen method¹⁹ and then corrected for Lorentz, polarization, and absorption factors, the latter computed by interpolation in the tabulated tables²⁰ (transmission factors between 0.25 and 0.87). A unique data set of 1326 reflections having $I > 3\sigma(I)$ was used for determining and refining the structure.

The structure was solved by using the heavy-atom method. After refinement of the heavy atoms, a difference-Fourier map revealed maxima of residual electronic density close to the positions expected for hydrogen atoms; they were introduced in

structure factor calculations by their computed coordinates (C-H = 0.95 Å) and isotropic temperature factors of 1 Å² more than the bonded C atom, but not refined. Full least-squares refinement converged to $R(F) = 0.035$ and $R_w(F) = 0.048$ ($\omega = 1/(\sigma^2(\text{count}) + (pI)^2)$). The unit-weight observation was 1.04 for $p = 0.08$. A final difference map revealed no significant maxima.

Registry No. 4, 86272-21-1; 5, 30540-36-4; 6, 67918-40-5; 7 (charged form), 86272-22-2; 7 (uncharged form), 86272-23-3; 8, 37737-13-6; 9, 86272-18-6; 10, 86272-19-7; 11, 86272-20-0; 12, 86288-20-2; $\text{Fe}_2(\text{CO})_9$, 15321-51-4; $\text{Co}_2(\text{CO})_8$, 10210-68-1.

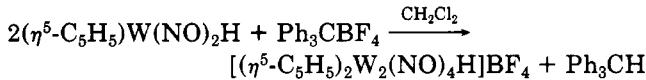
Supplementary Material Available: Tables of atomic coordinates and thermal parameters (Tables I and V) and a listing of observed and calculated structure factors ($\times 10$) (Table IV) (8 pages). Ordering information is given on any current masthead page.

(19) M. S. Lehmann and F. K. Larsen, *Acta Crystallogr., Sect A*, **A30**, 580 (1974).

(20) "International tables for X-ray crystallography", Vol. II, Kynoch Press, Birmingham, England, 1959, p 302.

Organometallic Nitrosyl Chemistry. 19.¹ Protonation vs. Oxidative Cleavage of the Isoelectronic Complexes $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2$ ($\text{M} = \text{Cr, Mn, or Fe; L = C or N; R = H or Me}$) by HBF_4

Peter Legzdins,* David T. Martin, Charles R. Nurse, and Berend Wassink


Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Y6

Received February 25, 1983

Treatment of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ with an equimolar amount of $\text{HBF}_4\text{-OMe}_2$ in CH_2Cl_2 results in the clean formation of $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Fe}_2(\text{CO})_4\text{H}]\text{BF}_4$ which may be isolated in good yield. In contrast, 2 equiv of the acid are required to consume completely $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$, the principal organometallic product being $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$. This latter complex is not isolable, but it can be identified spectroscopically and by its derivative chemistry. Some of the workup procedures employed also afford new organometallic nitrosyl complexes of chromium such as $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{OH}]\text{BF}_4$ and $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2(\text{OHBPh}_3)$ which have been characterized by conventional methods. Two equivalents of $\text{HBF}_4\text{-OMe}_2$ also consume $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{Mn}(\text{CO})(\text{NO})]_2$ ($\text{R} = \text{H or Me}$), but a complex mixture of products results. Two well-known (i.e., $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{Mn}(\text{CO})_2(\text{NO})]^+$ and $(\eta^5\text{-C}_5\text{H}_4\text{R})_2\text{Mn}_2(\text{NO})_3(\text{NO}_2)$) and two novel (i.e., $[(\eta^5\text{-C}_5\text{H}_4\text{R})_3\text{Mn}_3(\text{NO})_3\text{NH}]^+$ and $[(\eta^5\text{-C}_5\text{H}_4\text{R})_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)]^+$) types of manganese nitrosyl complexes are produced in each case, the novel cations being ultimately isolable in low yields as the BF_4^- and BPh_4^- salts, respectively. Cyclic voltammograms of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ and $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ recorded under identical experimental conditions reveal that the chromium dimer undergoes oxidation at a slightly more positive potential. The propensities of the $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2$ ($\text{M} = \text{Cr, Mn, or Fe; L = C or N; R = H or Me}$) dimers to undergo protonation or oxidative cleavage when treated with H^+ are thus rationalized in terms of the stabilities of the initially formed $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2\text{H}^+$ adducts. Interestingly, treatment of $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2$ with $\text{HBF}_4\text{-OMe}_2$ in CH_2Cl_2 results in simple oxidation, the known $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2\text{BF}_4$ complex being obtainable in good yield.

Introduction

We recently reported the preparation and characterization of the bimetallic cations $[(\eta^5\text{-C}_5\text{H}_5)_2\text{M}_2(\text{NO})_4\text{H}]^+$ ($\text{M} = \text{Mo or W}$).² Salts containing these cations were synthesized in good yields by treatment of the monomeric hydrides $(\eta^5\text{-C}_5\text{H}_5)\text{M}(\text{NO})_2\text{H}$ ($\text{M} = \text{Mo or W}$) with hydride-abstracting carbocations in nondonor solvents, e.g.

Unlike related carbonyl complexes, the bimetallic cations are not deprotonated by a variety of bases to afford the

as yet unknown $[(\eta^5\text{-C}_5\text{H}_5)\text{M}(\text{NO})_2]_2$ ($\text{M} = \text{Mo or W}$) dimers. Instead, they are cleaved to the monomeric products $(\eta^5\text{-C}_5\text{H}_5)\text{M}(\text{NO})_2\text{H}$ and $[(\eta^5\text{-C}_5\text{H}_5)\text{M}(\text{NO})_2(\text{B})]^+$ ($\text{B} = \text{base}$) by these reagents. In the light of these observations, two questions came to mind. (1) Can the analogous $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Cr}_2(\text{NO})_4\text{H}]^+$ cation be prepared by protonation of the well-known dimer $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$? (2) Is the protonation of the neutral chromium dimer a reversible process? Our initial experiments in this regard indicated that both questions could be answered in the negative.² We have now completed a more detailed investigation of the reaction of $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ with HBF_4 , and in this paper we present results that permit us to answer the above questions more fully.

Of continuing interest during our work with organometallic nitrosyl compounds is how the physical and chemical properties of the nitrosyl complexes differ from

(1) Part 18: Legzdins, P.; Nurse, C. R.; Rettig, S. J. *J. Am. Chem. Soc.* 1983, 105, 3727.

(2) Hames, B. W.; Legzdins, P. *Organometallics* 1982, 1, 116.

those exhibited by their isoelectronic and isostructural carbonyl analogues.³ Consequently, we have extended our study of the protonation of the chromium dimer to encompass the analogous reactions of H^+ with $[(\eta^5-C_5H_4R)Mn(CO)(NO)]_2$ ($R = H$ or Me) and $[(\eta^5-C_5H_5)Fe(CO)]_2$. The combined results of these investigations permit us to assess qualitatively the propensities of the three dimeric complexes to undergo protonation vs. oxidative cleavage under these experimental conditions.

Experimental Section

General procedures routinely employed in these laboratories have been described previously.²

Electrochemical Measurements. All operations were performed under an atmosphere of prepurified nitrogen. The CH_2Cl_2 solvent (Fisher Spectranalyzed) was first deaerated and then distilled from CaH_2 . The n - Bu_4NPF_6 supporting electrolyte was prepared by metathesis of n - Bu_4NI with NH_4PF_6 in refluxing acetone⁴ and was recrystallized thrice from ethanol (86% yield). The solutions employed during cyclic voltammetry studies were typically 5×10^{-4} M in the organometallic complex and 0.1 M in n - Bu_4NPF_6 .

Electrochemical measurements were effected with a Princeton Applied Research Model 173 potentiostat equipped with a Model 176 current-to-voltage converter and a Model 178 electrometer probe. The probe was mounted external to the potentiostat, the connection to the reference electrode being made by a minimum length of high impedance wire. Cyclic voltammograms were recorded on a Hewlett-Packard Model 7035B X-Y recorder. The electrochemical cell used was similar in design to that described by van Duyne and Reilley.⁵

Reaction of $[(\eta^5-C_5H_5)Fe(CO)]_2$ with $HBF_4 \cdot OMe_2$. To a stirred, dark red-violet solution of $[(\eta^5-C_5H_5)Fe(CO)]_2$ (1.0 g, 2.8 mmol) in CH_2Cl_2 (30 mL) was added 13.6 M $HBF_4 \cdot OMe_2$ (0.48 mL, 6.5 mmol) whereupon the solution lightened in color. The reaction mixture was stirred at ambient temperature for 30 min, and the final red solution was then filtered through a short (2 \times 3 cm) column of Celite. The volume of the filtrate was reduced to ~ 15 mL in vacuo, and Et_2O (40 mL) was then added. This resulted in the precipitation of 0.54 g (43% yield) of $[(\eta^5-C_5H_5)_2Fe_2(CO)_4H]BF_4$ as a red-violet, crystalline solid which was collected by filtration: IR (CH_2Cl_2) ν_{CO} 2068 (s), 2045 (s), 2008 (s) cm^{-1} ; 1H NMR (CD_2Cl_2) δ 5.32 (s, 10 H, C_5H_5), -26.61 (s, 1 H, Fe_2H).

Anal. Calcd for $C_{14}H_{11}Fe_2O_4BF_4$: C, 38.07; H, 2.51. Found: C, 37.77; H, 2.52.

Reaction of $[(\eta^5-C_5H_5)Cr(NO)]_2$ with $HBF_4 \cdot OMe_2$. A stirred, red-violet solution of (0.21 g, 0.60 mmol) in CH_2Cl_2 (25 mL) was treated with 13.6 M $HBF_4 \cdot OMe_2$ (0.09 mL, 1.2 mmol), whereupon the color of the solution changed to green-brown immediately and a small amount of a dark solid precipitated. An IR spectrum of the supernatant solution exhibited two strong, sharp absorptions at 1838 and 1728 cm^{-1} . The reaction mixture was then filtered through a column of Celite (2 \times 3 cm), and the volume of the filtrate was reduced in vacuo to ~ 10 mL. The nature of the organometallic products isolated from this dark green filtrate depended upon the workup procedures employed in the manner described below.

Procedure A. The filtrate was treated dropwise with Et_2O until the mixture became turbid, and it was then cooled at -10 $^{\circ}C$ for 48 h. Rapid filtration of the final, cooled mixture afforded variable amounts (typically 0.04–0.1 g, 15–36% yield) of analytically pure $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BF_4$ as a microcrystalline, dark green solid: IR (Nujol mull) ν_{NO} 1806 (s, br), 1677 (s, br) cm^{-1} , also 3505 (w, br), 3115 (w), 1088 (m, br), 1054 (m, br), 1014 (m), 846 (m) cm^{-1} ; IR (CH_2Cl_2) ν_{NO} 1820 (s), 1807 (sh), 1719 (s, br), 1698 (sh) cm^{-1} ; also 3484 (w, br), 3109 (w), 1076 (m, br), 845

(3) Cf. Kolthammer, B. W. S.; Legzdins, P. *J. Chem. Soc., Dalton Trans.* 1978, 31.

(4) Geiger, W. E., personal communication.

(5) Van Duyne, R. P.; Reilley, C. N. *Anal. Chem.* 1972, 44, 142.

(6) (a) Kolthammer, B. W. S.; Legzdins, P.; Malito, J. T. *Inorg. Synth.* 1979, 19, 208. (b) Hoyano, J. K.; Legzdins, P.; Malito, J. T. *Ibid.* 1978, 18, 126.

(m) cm^{-1} ; 1H NMR ($CDCl_3$) δ 5.78 (s, 10 H, C_5H_5), 0.11 (s, 1 H, OH); mp (in air) 130 $^{\circ}C$ dec.

Anal. Calcd for $C_{10}H_{11}Cr_2N_4O_5BF_4$: C, 26.22; H, 2.42; N, 12.23. Found: C, 25.87; H, 2.51; N, 12.26.

The same ultimate product was isolated in comparable yields even when 0.01 mL of H_2O was deliberately added to the initial reaction mixture.

Procedure B. The dark green filtrate was taken to dryness in vacuo, and the resulting residue was extracted with H_2O (3×10 mL). A solution of $NaBPh_4$ (0.60 g, 1.7 mmol) in H_2O (15 mL) was slowly added to the extracts to induce the formation of a finely divided yellow precipitate. The precipitate was collected by filtration, washed with H_2O (3×10 mL), and dried in vacuo (5×10^{-3} mmHg). Recrystallization of this solid from CH_2Cl_2 -hexanes produced 0.16 g (31% yield) of $(\eta^5-C_5H_5)Cr(NO)_2(OH)BPh_4$ as a fine green-brown powder: IR (Nujol mull) ν_{NO} 1813 (s), 1714 (s) cm^{-1} ; IR (CH_2Cl_2) ν_{NO} 1823 (s), 1712 (s) cm^{-1} ; 1H NMR (CD_3_2CO) δ 7.51–7.04 (m, 15 H, $B(C_6H_5)_3$), 5.60 (s, 5 H, C_5H_5), 3.13 (s, 1 H, OH); mp (in air) 104 $^{\circ}C$ dec.

Anal. Calcd for $C_{23}H_{21}CrN_2O_3B$: C, 63.33; H, 4.85; N, 6.42. Found: C, 63.23; H, 4.77; N, 6.37.

Procedure C. The dark green filtrate was treated with solid $[PPN]Br$ (0.76 g, 1.2 mmol), and the resulting mixture was stirred for 15 min. Volatile components were then removed under reduced pressure, and the residue was extracted with Et_2O (3×15 mL). The combined golden extracts were filtered through a short (2 \times 3 cm) column of Florisil supported on a medium-porosity frit. The volume of the filtrate was doubled by addition of hexanes. Slow concentration of the resulting solution in vacuo induced the crystallization of 0.19 g (63% yield) of golden $(\eta^5-C_5H_5)Cr(NO)_2Br$ which was identified by comparison of its spectroscopic properties with those of an authentic sample:⁸ IR (CH_2Cl_2) ν_{NO} 1819 (s), 1713 (s) cm^{-1} ; 1H NMR ($CDCl_3$) δ 5.75 (s, C_5H_5); low-resolution mass spectrum (probe 80 $^{\circ}C$), m/z 256 (P^+), 226 (($P - NO$) $^+$), 196 (($P - 2NO - C_5H_5$) $^+$), 131 (($P - 2NO - Br$) $^+$).

Alternate Preparation of $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BF_4$. To a stirred, golden solution of $(\eta^5-C_5H_5)Cr(NO)_2Cl$ ^{8b} (0.47 g, 2.2 mmol) in CH_2Cl_2 (25 mL) was added solid $AgBF_4$ (0.43 g, 2.2 mmol). A white precipitate formed immediately, and the supernatant solution became dark green. After being stirred for 15 min to ensure completion of the reaction, the mixture was filtered to obtain a dark green filtrate whose IR spectrum displayed strong nitrosyl absorptions at 1838 and 1728 cm^{-1} attributable to $(\eta^5-C_5H_5)Cr(NO)_2BF_4$.⁹ Treatment of the filtrate with H_2O (20 μ L, 1.1 mmol) and stirring of the resulting mixture for an additional 18 h produced no change in these absorptions. The mixture was then treated with ~ 5.4 M aqueous KOH (200 μ L, ~ 1.1 mmol), whereupon the mixture darkened in color and deposited a dark green oil. After 0.5 h, the final mixture was taken to dryness in vacuo, and the residue was extracted with CH_2Cl_2 (3×10 mL). The extracts were concentrated under reduced pressure to ~ 7 mL, and Et_2O was then added dropwise to induce the formation of a dark green microcrystalline precipitate. Collection of this solid by filtration afforded 0.21 g (41% yield based on Cr) of $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BF_4$ which was identified by its characteristic spectroscopic properties (vide supra).

The use of a stoichiometric amount of neat Et_3N in place of KOH in the above procedure resulted in the isolation of the identical product, but in only 12% yield.

Reaction of $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BF_4$ with $NaBPh_4$. A solution of $NaBPh_4$ (0.31 g, 0.90 mmol) in H_2O (70 mL) was added dropwise to a stirred suspension of $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BF_4$ (0.41 g, 0.90 mmol) in the same solvent (40 mL), whereupon a flocculent yellow-green precipitate formed. The final mixture was stirred for 0.5 h and was then filtered. The collected solid was dried in vacuo and recrystallized from CH_2Cl_2 - Et_2O to obtain 0.30 g (48% yield) of analytically pure $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH]BPh_4$ as a yellow-green solid: IR (CH_2Cl_2) ν_{NO} 1822 (s), 1812 (sh), 1721 (s), 1703 (sh) cm^{-1} , also 3505 (w, br), 836 (w); 1H NMR (CD_3_2CO) δ 7.47–6.77 (m, 20 H, $B(C_6H_5)_4$), 5.92 (s, 10

(7) Chemical Abstracts recommended name for $[PPN]^+$ is bis(tri-phenylphosphorane-diyl)nitrogen(1+).

(8) Piper, T. S.; Wilkinson, G. *J. Inorg. Nucl. Chem.* 1956, 2, 38.

(9) Cf. $(\eta^5-C_5H_5)Cr(NO)_2PF_6$ described by Regina and Wojciech.²¹

H, C₅H₅), 0.83 (s, 1 H, OH); mp (in air) 145 °C dec.

Anal. Calcd for C₃₄H₃₁Cr₂N₄O₅B: C, 59.15; H, 4.53; N, 8.12. Found: C, 59.13; H, 4.64; N, 8.02.

Reaction of $[(\eta^5\text{-C}_5\text{H}_5)\text{Mn}(\text{CO})(\text{NO})_2]$ with $\text{HBF}_4\text{-OMe}_2$. Typically, 13.6 M HBF₄OMe₂ (0.29 mL, 4.0 mmol) was added to a stirred, red-violet solution of $[(\eta^5\text{-C}_5\text{H}_5)\text{Mn}(\text{CO})(\text{NO})_2]$ ¹⁰ (0.71 g, 2.0 mmol) in CH₂Cl₂ (30 mL). The solution became brown in color immediately, and a brown solid precipitated. After being stirred for 2 h to ensure completion of the reaction, H₂O (60 mL) was added, and the mixture was concentrated in vacuo to remove the CH₂Cl₂. At this stage, the reaction mixture, which consisted of a black solid and a red-brown aqueous solution, was filtered through Celite (2 × 3 cm), and the collected solid was washed with H₂O (4 × 20 mL). The black solid and the combined red-brown filtrates were then worked up separately in the manner described below (see Scheme II).

Workup of the Black Solid. The collected solid was first dried for 2 h at room temperature and 5×10^3 mm pressure. It was then removed from the Celite column with CH₂Cl₂ (3 × 15 mL), a process that afforded a dark green solution which in turn was taken to dryness under reduced pressure. Extraction of this residue with toluene (3 × 2 mL) produced a brown solution which upon slow concentration in vacuo deposited a small amount of a brown solid. This solid was tentatively identified as $(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_3(\text{NO}_2)$ by IR spectroscopy [$(\text{CH}_2\text{Cl}_2) \nu_{\text{NO}} 1754$ (s), 1532 (s) cm⁻¹].¹¹

Further extraction of the residue with CH₂Cl₂ (3 × 10 mL) afforded a dark green solution. Addition of toluene (10 mL) to this solution and careful concentration of the resulting solution under reduced pressure caused the crystallization of ~80 mg (~10% yield) of black $[(\eta^5\text{-C}_5\text{H}_5)_3\text{Mn}_3(\text{NO})_3(\text{NH})]\text{BF}_4$ which was collected by filtration. This trimetallic complex was identified spectroscopically [IR (CH₂Cl₂) $\nu_{\text{NO}} 1586$ (s), 1532 (s) cm⁻¹; ¹H NMR ((CD₃)₂CO) δ 22.52 (t, 1 H, $J_{\text{H}-14\text{N}}$ = 62.5 Hz, NH), 5.59 (s, 15 H, C₅H₅)].¹²

Workup of the Red-Brown Aqueous Solution. The original combined filtrates were treated with a saturated aqueous solution of NaBPh₄ (1.03 g, 3.00 mmol) whereupon a brown solid precipitated, leaving an essentially colorless supernatant solution. The brown solid was collected by filtration, washed with H₂O (3 × 20 mL), and dried for 2 h at room temperature under high vacuum. Extraction of the dried solid with CH₂Cl₂ (3 × 20 mL) produced a brown solution which was concentrated to ~10 mL under reduced pressure. Dropwise addition of Et₂O (40 mL) to this solution caused the precipitation of a brown, microcrystalline solid in ~15% yield with respect to Mn. This solid was identified as $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)]\text{BPh}_4\text{-}0.5\text{CH}_2\text{Cl}_2$: IR (CH₂Cl₂) ν_{NH} 3330 (w), 3259 (w) cm⁻¹, ν_{CO} 1855 (m) cm⁻¹, ν_{NO} 1764 (s) cm⁻¹; IR (CH₃CN) ν_{CO} 1864 (m) cm⁻¹, ν_{NO} 1785 (m), 1759 (s) cm⁻¹; ¹H NMR ((CD₃)₂CO) δ 7.35–6.75 (m, 20 H, C₆H₅), 5.81 (s, 9 H, C₅H₅), 5.58 (s, 1 H, C₅H₅), 5.62 (s, 1 H, CH₂Cl₂).

Anal. Calcd for C₃₅H₃₃Mn₂N₃O₃BCl: C, 60.41; H, 4.71; N, 5.96. Found: C, 60.69; H, 4.85; N, 6.25.

When $[(\eta^5\text{-C}_5\text{H}_4\text{Me})\text{Mn}(\text{CO})(\text{NO})_2]$ was subjected to the identical experimental procedure, methylcyclopentadienyl analogues of the products described above were obtained in comparable yields. The spectroscopic properties of the C₅H₄Me-containing complexes are presented below.

$(\eta^5\text{-C}_5\text{H}_4\text{Me})_2\text{Mn}_2(\text{NO})_3(\text{NO}_2)$: IR (CH₂Cl₂) ν_{NO} 1744 (s), 1536 (s) cm⁻¹.¹¹

$[(\eta^5\text{-C}_5\text{H}_4\text{Me})_3\text{Mn}_3(\text{NO})_3(\text{NH})]\text{BF}_4$: IR (CH₂Cl₂) ν_{NH} 3275 (w) cm⁻¹, ν_{NO} 1574 (s), 1526 (s) cm⁻¹, ν_{BF} 1068 (s) cm⁻¹; ¹H NMR (CD₃Cl₂) δ 21.95 (t, 1 H, $J_{\text{H}-14\text{N}}$ = 61 Hz, NH), 5.26 (s, 6 H, C₅H₄Me), 5.18 (s, 6 H, C₅H₄Me), 1.80 (s, 9 H, C₅H₄Me).

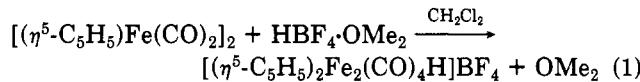
$(\eta^5\text{-C}_5\text{H}_4\text{Me})_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)]\text{BPh}_4$: IR (CH₂Cl₂) ν_{NO} 3336 (w), 3272 (w) cm⁻¹, ν_{CO} 1856 (m) cm⁻¹, ν_{NO} 1754 (s) cm⁻¹; IR (CH₃CN) ν_{CO} 1864 (m) cm⁻¹, ν_{NO} 1785 (m), 1754 (s) cm⁻¹; ¹H NMR ((CD₃)₂CO) δ 7.35–6.76 (m, 20 H, C₆H₅), 5.96 (s, 2 H, C₅H₄Me), 5.72 (s, 1 H, C₅H₄Me), 5.59 (s, 1 H, C₅H₄Me), 5.34 (s, 1 H, C₅H₄Me),

(10) King, R. B.; Bisnette, M. B. *Inorg. Chem.* 1964, 3, 791.

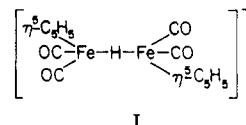
(11) Haines, B. W.; Kolthammer, B. W. S.; Legzdins, P. *Inorg. Chem.* 1981, 20, 650.

(12) By comparison with the spectroscopic properties of its methylcyclopentadienyl analogue, a complex that we have characterized completely.¹

5.19 (s, 2 H, C₅H₄Me), 4.99 (s, 1 H, C₅H₄Me), 2.38 (s, 3 H, C₅H₄Me), 2.26 (s, 3 H, C₅H₄Me).


Reaction of $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})_2]$ with $\text{HBF}_4\text{-OMe}_2$. A rapidly stirred brown solution of $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})_2]$ ¹³ (0.55 g, 1.8 mmol) in CH₂Cl₂ (30 mL) was treated with 13.6 M HBF₄OMe₂ (0.26 mL, 3.5 mmol). The solution immediately became red-violet, and a small amount of a dark solid precipitated. After being stirred for 30 min, the reaction mixture was filtered through a Celite column (2 × 3 cm) supported on a medium-porosity frit. The column was then washed with CH₂Cl₂ (3 × 15 mL), and the combined filtrates were concentrated under reduced pressure to a volume of ~15 mL. Dropwise addition of Et₂O (50 mL) to this solution induced the precipitation of 0.51 g (73% yield) of purple, microcrystalline $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})_2]\text{BF}_4$ which was collected by filtration: IR (CH₂Cl₂): ν_{NO} 1622 (m) cm⁻¹; ν_{BF} 1057 (m), 1034 (m) cm⁻¹.

Anal. Calcd for C₁₀H₁₀Co₂N₂O₂BF₄: C, 30.42; H, 2.55; N, 7.10. Found: C, 30.59; H, 2.75; N, 6.95.


Results and Discussion

The reactions of the isoelectronic $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]$ ₂ (M = Cr, Mn, or Fe; L = C or N; R = H or Me) complexes with HBF₄ are best systematized in terms of the individual organometallic reactants.

(A) $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]$ ₂. In accordance with the published observations of other investigators concerning the behavior of the iron dimer in strongly protic media,^{14–16} we find that treatment of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]$ ₂ with HBF₄OMe₂ in CH₂Cl₂ results in the clean formation of $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Fe}_2(\text{CO})_4\text{H}]\text{BF}_4$ which can be isolated in good yields, i.e., eq 1. The spectroscopic properties of this

red-violet, air-sensitive complex [IR (CH₂Cl₂) ν_{CO} 2068 (s), 2045 (s) cm⁻¹, ¹H NMR (CD₂Cl₂) δ 5.32 (s, 10 H, C₅H₅), -26.61 (s, 1 H, Fe₂H)] are consistent with the bi-metallic cation possessing, on average, the molecular structure I. Its ¹H NMR spectrum does not exclude the

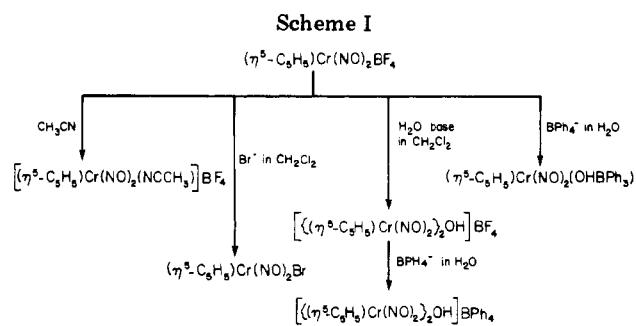
possibility that the closed three-center–two-electron Fe–H–Fe linkage may well be bent in instantaneous structures.¹⁷ However, its IR spectrum does reveal that in solutions the complex exists as a mixture of rotamers.¹⁶

Reaction 1 is reversible, the $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Fe}_2(\text{CO})_4\text{H}]^+$ cation being converted to the parent neutral dimer by a variety of Lewis bases such as aqueous acetone¹⁴ or Et₃N. This fact explains a previous report¹⁸ that acetone solutions of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]$ ₂ are virtually unchanged by the addition of aqueous HBF₄. Furthermore, in the light of reaction 1, it is clear why oxidations of the iron dimer in aqueous acetone to $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2\text{L}]^+$ (L = H₂O¹⁸ or η^2 -alkene¹⁹) species require molecular oxygen in addition to HBF₄ in order to be effected successfully.

(B) $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]$ ₂. The addition of HBF₄OMe₂ to a red-violet CH₂Cl₂ solution of $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]$ ₂ results in an immediate reaction, as evidenced by the so-

(13) Brunner, H. *J. Organomet. Chem.* 1968, 12, 517.

(14) Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. *J. Chem. Soc.* 1962, 3653.


(15) Symon, D. A.; Waddington, T. C. *J. Chem. Soc. A* 1971, 953.

(16) Harris, D. C.; Gray, H. B. *Inorg. Chem.* 1975, 14, 1215.

(17) Petersen, J. L.; Brown, R. K.; Williams, J. M.; McMullan, R. K. *Inorg. Chem.* 1979, 18, 3493 and references cited therein.

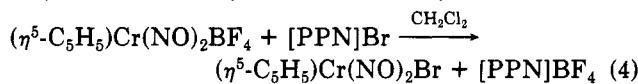
(18) Dombeck, B. D.; Angelici, R. J. *Inorg. Chim. Acta* 1973, 7, 345.

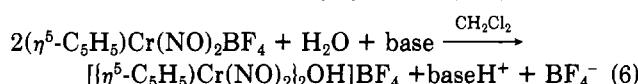
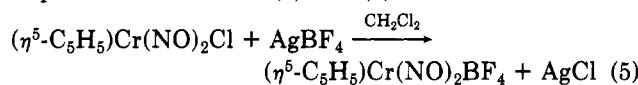
(19) Boyle, P. F.; Nicholas, K. M. *J. Organomet. Chem.* 1976, 114, 307.

lution becoming green-brown. Monitoring of the progress of the conversion by IR spectroscopy reveals that the strong nitrosyl absorptions due to the reactant at 1667 and 1512 cm^{-1} gradually diminish in intensity. Concomitantly, new absorptions attributable to terminal nitrosyl ligands appear and grow at 1838 and 1728 cm^{-1} . After 1 equiv of acid has been added, the reaction mixture appears to contain approximately equal amounts of the reactant and the new nitrosyl-containing species. Addition of a further equivalent of acid consumes completely the remaining $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ and doubles the concentration of the new species. Similar observations are made when the course of the reaction in CD_3NO_2 is monitored by ^1H NMR spectroscopy. Again, complete consumption of the nitrosyl dimer requires 2 equiv of acid, and the final reaction mixture contains predominantly one organometallic product. The spectrum of this mixture displays a strong, singlet resonance in the region characteristic of $\eta^5\text{-C}_5\text{H}_5$ protons. However, the position of this resonance (δ 6.03) is shifted down field considerably from that exhibited by $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ (δ 4.89). This indicates that there is less electron density on the cyclopentadienyl ligand in the former species.

The observed stoichiometry of the reactants and the spectroscopic properties of the organometallic product are consistent with the occurrence of a simple oxidative cleavage process, i.e., eq 2. Unfortunately, we have been

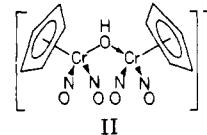
unable to isolate the $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ product as such (vide infra).²⁰ In this sense, as well as in its spectroscopic properties, this complex thus resembles the recently reported $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{PF}_6$ which may be generated by the protonation of $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{CH}_3$ in CH_3NO_2 .²¹ Completely analogously, we have verified spectroscopically that treatment of the methyl precursor with $\text{HBF}_4\cdot\text{OMe}_2$ in CH_2Cl_2 or CD_3NO_2 affords solutions containing $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$.


Our formulation of the organometallic product in reaction 2 is also supported by chemical evidence (summarized in Scheme I) which indicates that the BF_4^- group is weakly ligated. For instance, solvent removal from CH_2Cl_2 or CH_3NO_2 solutions of $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ produces a viscous, green oil. Dissolution of this oil in CH_3CN results in the clean formation of the previously prepared $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2(\text{NCCCH}_3)]\text{BF}_4$,²² i.e., eq 3. Furthermore, the



(20) A complex formulated as $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ has been isolated from the mixtures resulting after the sequential treatment of aqueous solutions of $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{Cl}$ with AgNO_3 and NaBF_4 .⁸ This compound is probably better formulated as $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2(\text{OH})]\text{BF}_4$.

(21) Regina, F. J.; Wojciecki, A. *Inorg. Chem.* 1980, 19, 3803.

addition of solid $[\text{PPN}] \text{Br}$ to CH_2Cl_2 solutions of $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ initiates the metathesis reaction (4) from which the well-known⁸ $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{Br}$ complex may be conveniently isolated in 63% yield.

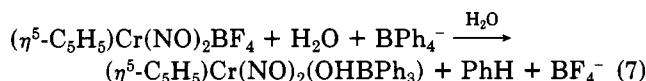


Our attempts to isolate $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ from reaction 2 have afforded other new organometallic nitrosyl complexes of chromium. Thus, addition of Et_2O to the final reaction mixture does not result in the precipitation of $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$ or even $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2(\text{OEt}_2)]\text{BF}_4$ but rather results in the deposition in low yields of $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2\text{OH}\text{BF}_4$ as a dark green, microcrystalline solid. This hydroxo complex is a byproduct of reaction 2 which, we believe, arises from further reactions of the initially formed $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{BF}_4$. Consistent with this view is the fact that $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2\text{OH}\text{BF}_4$ can also be synthesized directly by the sequential conversions (5) and (6) where base = OH^- or

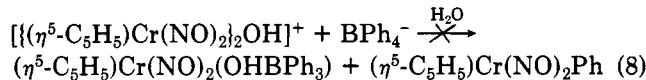
Et_3N . Significantly, a stoichiometric amount of base is essential for the progress of reaction 6, the dimetallic hydroxo complex not being formed in the presence of water alone. Nevertheless, the conditions extant during the progress and workup of reaction 2 are such that the occurrence of subsequent reaction 6 can account for the amounts of $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2\text{OH}\text{BF}_4$ eventually isolated.

The novel dichromium hydroxo complex is a dark olive-green, diamagnetic solid which can be handled in air for several hours without noticeable decomposition. It is soluble in CH_2Cl_2 , CH_3NO_2 , and acetone, sparingly soluble in H_2O , and virtually insoluble in Et_2O . Its IR spectrum as a Nujol mull displays two strong, broad absorptions at 1806 and 1677 cm^{-1} characteristic of terminal nitrosyl ligands,²³ and its ^1H NMR spectrum (in CDCl_3) exhibits two sharp resonances at δ 5.78 and 0.11 of relative intensity 10:1 attributable to the cyclopentadienyl and hydroxo protons, respectively. A static molecular structure (II) of

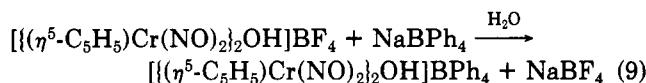
II


the cation which is consistent with these data is shown. The bimetallic cation can thus be viewed as resulting from adduct formation between the hard Lewis acid⁹ $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]^+$ and the hard donor site of the Lewis base $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{OH}$. The hydroxo cation thus resembles the recently reported $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2\text{Cl}^+$ cation.²⁴ That the hydroxo cation possesses lower symmetry in solution or exists as a mixture of rapidly equilibrating rotamers is suggested by its IR spectrum in CH_2Cl_2 which displays four nitrosyl absorptions at 1820, 1807, 1719, and 1698 cm^{-1} .

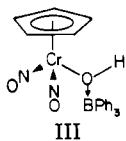
(22) Malito, J. T. Ph.D. Dissertation, University of British Columbia, 1976. The characteristic spectral properties of this complex are as follows: IR (CH_3NO_2) ν_{NO} 1846 (s), 1742 (s) cm^{-1} ; ^1H NMR ($(\text{CD}_3)_2\text{CO}$) δ 6.18 (s, 5 H, C_5H_5), 2.57 (s, 3 H, NCCCH_3).


(23) Connelly, N. G. *Inorg. Chim. Acta Rev.* 1972, 6, 47.

(24) Hartmann, G.; Froböse, R.; Mews, R.; Sheldrick, G. M. Z. *Naturforsch., B: Anorg. Chem., Org. Chem.* 1982, 37B, 1234.


Attempts to isolate the principal organometallic product of reaction 2 as its BPh_4^- salt by metathesis in aqueous solutions result instead in the formation of $(\eta^5-C_5H_5)Cr(NO)_2(OHBPh_3)$, i.e., eq 7, the final organometallic com-

plex being isolable in moderate yields. The same product results when $(\eta^5-C_5H_5)Cr(NO)_2BF_4$ generated by reaction 5 is treated with $NaBPh_4$ in H_2O . Conversion 7 probably proceeds via deprotonation of the coordinated aquo ligand in $[(\eta^5-C_5H_5)Cr(NO)_2(OH_2)]^+$ by BPh_4^- as one of its steps. It certainly does not involve unsymmetrical cleavage of preformed $[(\eta^5-C_5H_5)Cr(NO)_2]_2OH$ by BPh_4^- , i.e., eq 8,



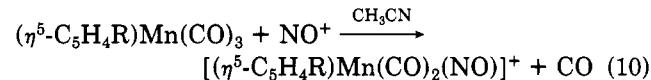
since we have established independently that these two reactants engage only in simple metathesis under these experimental conditions, i.e., eq 9. The organometallic

product of reaction 9 is an olive green, air-stable solid which is soluble in acetone and CH_2Cl_2 but is insoluble in H_2O . Its spectroscopic properties are similar to those exhibited by its BF_4^- analogue (vide supra).

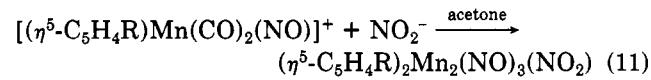
The new complex $(\eta^5-C_5H_5)Cr(NO)_2(OHBPh_3)$ resembles other $(\eta^5-C_5H_5)Cr(NO)_2X$ species which have been shown to have monomeric, three-legged piano-stool molecular structures.²⁵ It is a green-brown, air-stable solid whose IR spectra both in solution and in the solid state display two strong absorptions at ~ 1818 and ~ 1713 cm^{-1} due to terminal nitrosyl ligands. Furthermore, its 1H NMR spectrum (in $(CD_3)_2CO$) consists of signals readily attributable to Ph (δ 7.51–7.04), C_5H_5 (δ 5.60), and OH (δ 3.13) protons, as expected for III, which again involves a rela-

III

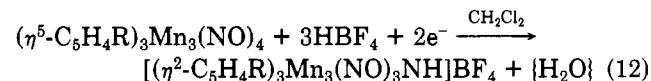
tively hard-hard Lewis acid-base interaction. However, this adduct linkage is not particularly strong as evidenced by the fact that the 70-eV mass spectrum of the complex only displays signals due to ions resulting from the fragmentation of the individual acid and base entities, the parent ion not being detectable.


These results verify that the two questions posed in the Introduction concerning the protonation of $[(\eta^5-C_5H_5)Cr(NO)_2]_2$ can indeed be answered in the negative. In addition, this work indicates that the unidentified solid which we isolated previously² from CH_2Cl_2 solutions of the dimer which had been treated with aqueous solutions of HPF_6 or $HBF_4 \cdot OMe_2$ does not correspond to any of the organometallic nitrosyl complexes of chromium described in this paper. Apparently, the former species requires an excess of the protic acid to be formed in significant amounts.

(C) $[(\eta^5-C_5H_4R)Mn(CO)(NO)]_2$ ($R = H$ or Me). Just as for the related iron and chromium dimers, treatment of red-violet $[(\eta^5-C_5H_4R)Mn(CO)(NO)]_2$ ($R = H$ or Me) with $HBF_4 \cdot OMe_2$ in CH_2Cl_2 results in an immediate re-

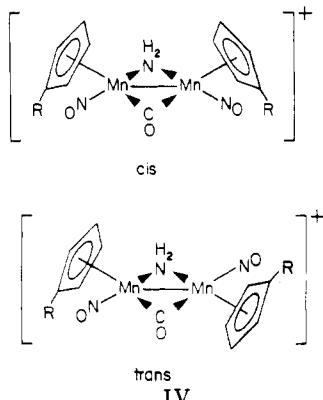


action, the mixture becoming brown in color. Again, 2 equiv of acid are required to consume completely the dimeric reactants. However, unlike the other two systems considered above, these reactions involving the manganese dimers afford a complex mixture of products. Fortunately, most of the organometallic products may be separated by virtue of their differing solubility properties in the manner summarized in Scheme II. Careful IR monitoring of the progress of the original reactions verifies that the nitrosyl-containing complexes indicated in Scheme II, as well as $[(\eta^5-C_5H_4R)Mn(CO)_2(NO)]^+$ ($R = H$ or Me) which probably ends up as a component of the yellow solid, are formed initially and not during the subsequent workup procedures.


The protonation of $[(\eta^5-C_5H_4R)Mn(CO)(NO)]_2$ ($R = H$ or Me) thus produces ultimately two well-known and two novel organometallic nitrosyl complexes of manganese in each case. The familiar $[(\eta^5-C_5H_4R)Mn(CO)_2(NO)]^+$ cations^{10,26} (IR (CH_2Cl_2) $R = H$, ν_{CO} 2125, 2075 cm^{-1} , ν_{NO} 1840 cm^{-1} , $R = Me$, ν_{CO} 2116, 2075 cm^{-1} , ν_{NO} 1846 cm^{-1}) have been synthesized by the high-yield reactions (10), and we

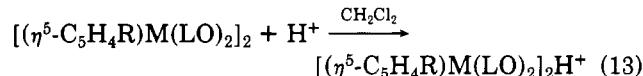
have previously reported¹¹ the subsequent conversion of these cations to $(\eta^5-C_5H_4R)_2Mn_2(NO)_3(NO_2)$ (IR (CH_2Cl_2) $R = H$, ν_{NO} 1754, 1532 cm^{-1} , $R = Me$, ν_{NO} 1744, 1536 cm^{-1}) in moderate yields, i.e., eq 11. Very recently we discov-

ered¹ that the novel trimetallic products $[(\eta^5-C_5H_4R)_3Mn_3(NO)_3NH]BF_4$ (IR (CH_2Cl_2) $R = H$, ν_{NO} 1586, 1532 cm^{-1} , $R = Me$, ν_{NO} 1574, 1526 cm^{-1}), which are isolable from this reaction in $\sim 10\%$ yields can also be prepared in comparable yields by the stoichiometric transformations

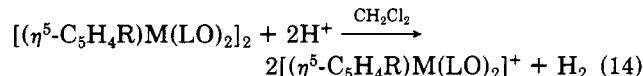

the requisite electrons probably being provided intermolecularly by the manganese atoms of the cluster. The triply bridging nature of the unique imido ligand in the trimetallic cations has been revealed spectroscopically and by a single-crystal X-ray crystallographic analysis of the PF_6^- salt of the methylcyclopentadienyl cation.¹

The previously unreported bimetallic amido complexes $[(\eta^5-C_5H_4R)_2Mn_2(NO)_2(CO)(NH_2)]BPh_4$ are obtainable in $\sim 15\%$ yield from the original protonation reaction, the cyclopentadienyl complex crystallizing from CH_2Cl_2 – Et_2O as the 0.5 M CH_2Cl_2 solvate. The compounds are brown, microcrystalline solids which dissolve in polar organic solvents to produce air-sensitive solutions. Their spec-

(25) Greenhough, T. J.; Kolthammer, B. W. S.; Legzdins, P.; Trotter, J. *Acta Crystallogr., Sect. B* 1980, B36, 795.

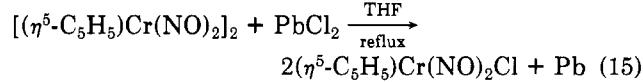

(26) Connelly, N. G. *Inorg. Synth.* 1974, 15, 91.

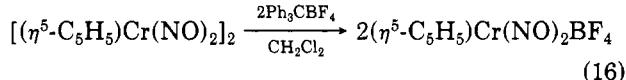
troscopic properties are consistent with the cations existing in solutions as a mixture of the diastereomers IV, the trans



form being predominant in less polar solvents and the cis isomer (an enantiomeric pair) becoming relatively more abundant in more polar solvents.²⁷ Thus, their CH_2Cl_2 solutions display IR absorptions attributable to bridging NH_2 groups ($\text{R} = \text{H}$, $\nu_{\text{NH}} 3330, 3259 \text{ cm}^{-1}$, $\text{R} = \text{Me}$, $\nu_{\text{NH}} 3336, 3272 \text{ cm}^{-1}$), bridging carbonyl ($\text{R} = \text{H}$, $\nu_{\text{CO}} 1855 \text{ cm}^{-1}$, $\text{R} = \text{Me}$, $\nu_{\text{CO}} 1856 \text{ cm}^{-1}$), and terminal nitrosyl ligands ($\text{R} = \text{H}$, $\nu_{\text{NO}} 1764 \text{ cm}^{-1}$, $\text{R} = \text{Me}$, $\nu_{\text{NO}} 1754 \text{ cm}^{-1}$). However, when dissolved in the more polar CH_3CN , the complexes exhibit two IR absorptions due to the NO groups ($\text{R} = \text{H}$, $\nu_{\text{NO}} 1785 \text{ (m), 1759 (s) cm}^{-1}$, $\text{R} = \text{Me}$, $\nu_{\text{NO}} 1785 \text{ (m), 1754 (s) cm}^{-1}$), the higher energy bands being assignable to the cis isomer. The ^1H NMR spectrum of the cyclopentadienyl compound in $(\text{CD}_3)_2\text{CO}$ (a solvent of intermediate polarity) reveals the presence of the CH_2Cl_2 of solvation and the tetraphenylborate anion but does not contain detectable signals due to the NH_2 group. Furthermore, it displays two sharp resonances in the cyclopentadienyl region at δ 5.81 and 5.58 of relative intensity 9:1 which we assign to the trans and cis isomers, respectively. The analogous spectrum of the methylcyclopentadienyl compound is more complex, exhibiting six distinct signals for the ring protons and two separate signals for the methyl protons in addition to the complex multiplet due to the BPh_4^- anion. While the exact assignment of these resonances due to the $\eta^5\text{-C}_5\text{H}_5\text{Me}$ ligands is not possible at the present time, this complexity is nevertheless indicative of each methylcyclopentadienyl ligand being bound to an asymmetric manganese center.¹¹

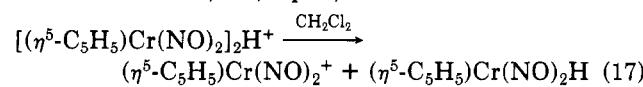
Protonation vs. Oxidative Cleavage. It is clear from the preceding results that treatment of the $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2$ ($\text{M} = \text{Cr, Mn, or Fe; L = C or N; R = H or Me}$) dimers with HBF_4OMe_2 in CH_2Cl_2 results in markedly different types of products. A possible explanation for these varied experimental observations is that entirely different reaction pathways are being followed during the various conversions. For instance, one pathway might involve initial proton transfer (protonation), i.e. eq 13,


whereas another might have electron transfer (oxidative cleavage) as the first step, i.e., eq 14. In other words, it


is possible that the differing chemical behavior of the

(27) We have previously established¹¹ that the cis:trans isomer ratio of the related $(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_3\text{X}$ complexes increases in more polar solvents.

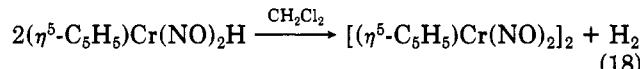
organometallic dimers toward H^+ may simply be a manifestation of their intrinsically differing tendencies to undergo oxidation. This view seems to be supported at first glance by previously documented chemistry of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ and $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ which indicates that the Cr-Cr bond in the chromium dimer is more readily cleaved by electrophiles. Thus, while reaction


proceeds cleanly, the iron dimer apparently does not react with PbCl_2 .³ In similar fashion, the chromium complex dehalogenates vicinal or benzylic organic halides whereas the iron complex does not.²⁸ Furthermore, $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ is oxidized rapidly ($\sim 10 \text{ min}$) by 2 equiv of Ph_3CBF_4 , i.e., eq 16, whereas when $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ in

CH_2Cl_2 is treated with approximately 3 equiv of Ph_3CF_4 ,¹⁹ the dimer is only slowly consumed in $\sim 45 \text{ h}$.²⁹

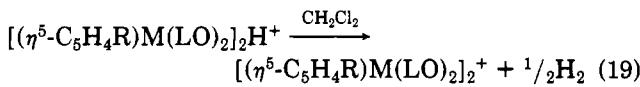
To gain some quantitative information about the redox properties of the reactant dimers, we have initiated electrochemical investigations. Although these studies are presently at a relatively early stage, some interesting and pertinent results have begun to emerge. Thus, employing a platinum bead electrode with $n\text{-Bu}_4\text{NPF}_6$ as the supporting electrolyte, $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ in CH_2Cl_2 exhibits a cyclic voltammogram having a high degree of reversibility with $E_{1/2} = +0.68 \text{ V}$ (vs. SCE) and a peak separation (ΔE_p) of 100 mV at a scan rate of 0.067 V s^{-1} .³¹ In contrast, the isoelectronic $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ is oxidized irreversibly under the same experimental conditions, E_{pa} being $+0.85 \text{ V}$ at a scan rate of 0.077 V s^{-1} . Although a direct comparison of $E_{1/2}$ values cannot be made, it is clear that the chromium complex undergoes oxidation at a more positive potential. In the context of the reactions being considered in this paper, this observation indicates that if H^+ is a sufficiently strong oxidant to oxidize $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$ in CH_2Cl_2 according to eq 14, then it should certainly be sufficiently potent to effect the same oxidative cleavage of $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$. The fact that the iron dimer is simply protonated instead (eq 13) suggests that viewing the reaction of the $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2$ dimers with HBF_4OMe_2 in CH_2Cl_2 as involving simple electron transfer is too simplistic.

On the basis of the currently available data, we believe that a more unified rationale of the reactions of the dimers with H^+ is as follows. The first step consists of adduct formation to produce the cationic $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{M}(\text{LO})_2]_2\text{H}^+$ species as summarized in eq 13. This adduct may prove to be sufficiently stable to be isolable (as in the case of $\text{M} = \text{Fe}$). Alternatively, the adduct may undergo unsymmetrical dissociation. For instance, in the case of $\text{M} = \text{Cr}$, such dissociation, i.e., eq 17, would afford the ultimate

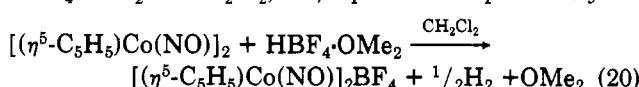

(28) Kolthammer, B. W. S.; Legzdins, P.; Martin, D. T. *Tetrahedron Lett.* 1978, 323.

(29) It is tempting to formulate the organometallic product formed in this reaction as $(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2\text{BF}_4$. However, the IR data reported¹⁹ for this species ($(\text{CH}_2\text{Cl}_2)_2 \nu_{\text{CO}} 2050, 2010 \text{ cm}^{-1}$) do not agree with those displayed by authentic $(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2\text{BF}_4$ ($(\text{CH}_2\text{Cl}_2) \nu_{\text{CO}} 2078, 2032 \text{ cm}^{-1}$) recently isolated by Mattson and Graham.³⁰

(30) Mattson, B. M.; Graham, W. A. G. *Inorg. Chem.* 1981, 20, 3186.


(31) For ferrocene under the same conditions, $E_{1/2} = +0.47 \text{ V}$ and $\Delta E_p = 80 \text{ mV}$.

$(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2^+$ product and the neutral hydrido complex $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{H}$. However, this latter compound is thermally unstable³² and reverts to the original dimeric reactant via eq 18. Sequential recycling of conversions


13, 17, and 18 finally results in the net transformation (2) which is observed experimentally. In a similar manner when $M = \text{Mn}$, the initial $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{Mn}(\text{CO})(\text{NO})]_2\text{H}^+$ adduct could cleave in a number of ways. One such unsymmetrical cleavage would produce the observed $[(\eta^5\text{-C}_5\text{H}_4\text{R})\text{Mn}(\text{CO})_2(\text{NO})]^+$ cations and $(\eta^5\text{-C}_5\text{H}_4\text{R})\text{Mn}(\text{NO})\text{H}$, the latter complexes being logical precursors for the trimetallic reactants of reaction 12. Nevertheless, the origins of the bimetallic nitrosyl products presented in Scheme II remain to be ascertained, reactions 10 and 11 being unlikely in this system.

One final point merits mention. In principle, the initial cationic adducts formed via reaction 13 could also undergo inner-sphere electron-transfer processes, i.e., eq 19, the net

result being formation of the bimetallic monocations. We have not found any direct physical evidence for the existence of such bimetallic species in the iron, chromium, or manganese systems. Interestingly, however, we have observed this to be the principal mode of reaction when

$[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2$ is treated with a slight excess of $\text{HBF}_4\cdot\text{OMe}_2$ in CH_2Cl_2 , i.e., eq 20. The previously re-

ported,³³ paramagnetic $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2\text{BF}_4$ may be easily isolated as a purple microcrystalline solid in 73% yield from the final reaction mixture.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for support of this work in the form of a grant (No. A5885) to P.L. and a predoctoral fellowship to B.W. We also thank The University of British Columbia for the award of graduate fellowships to D.T.M. and C.R.N. and Mr. David J. Tannar for experimental assistance.

Registry No. $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Fe}_2(\text{CO})_4\text{H}] \text{BF}_4$, 86365-53-9; $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{OH}] \text{BF}_4$, 86365-55-1; $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2(\text{OHPh}_3)$, 86365-56-2; $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{Br}$, 77662-15-8; $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2\text{OH}] \text{BPh}_4$, 86365-57-3; $(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_3(\text{NO}_2)$, 36534-34-6; $[(\eta^5\text{-C}_5\text{H}_5)_3\text{Mn}_3(\text{NO})_3(\text{NH})] \text{BF}_4$, 86365-59-5; $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)] \text{BPh}_4$ (cis isomer), 86365-61-9; $(\eta^5\text{-C}_5\text{H}_4\text{Me})_2\text{Mn}_2(\text{NO})_3(\text{NO}_2)$, 75847-53-9; $[(\eta^5\text{-C}_5\text{H}_4\text{Me})_3\text{Mn}_3(\text{NO})_3(\text{NH})] \text{BF}_4$, 85649-58-7; $[(\eta^5\text{-C}_5\text{H}_4\text{Me})_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)] \text{BPh}_4$ (cis isomer), 86365-63-1; $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2 \text{BF}_4$, 84577-24-2; $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$, 12154-95-9; $[(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})_2]_2$, 36607-01-9; $[(\eta^5\text{-C}_5\text{H}_5)\text{Mn}(\text{CO})(\text{NO})]_2$, 69120-59-8; $[(\eta^5\text{-C}_5\text{H}_5)\text{Co}(\text{NO})]_2$, 51862-20-5; $[(\eta^5\text{-C}_5\text{H}_5)_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)] \text{BPh}_4$ (trans isomer), 86391-48-2; $(\eta^5\text{-C}_5\text{H}_4\text{Me})_2\text{Mn}_2(\text{NO})_2(\text{CO})(\text{NH}_2)] \text{BPh}_4$ (trans isomer), 86391-50-6.

(33) Wochner, F.; Keller, E.; Brintzinger, H. H. *J. Organomet. Chem.* 1982, 236, 267.

Communications

Catalytic Effect of Bases on the Formation of $\text{HCo}(\text{CO})_4$ from $\text{Co}_2(\text{CO})_8$ and H_2

A. Sisák, F. Ungváry,* and L. Markó

Research Group for Petrochemistry
of the Hungarian Academy of Sciences
H-8201 Veszprém, Hungary

Received February 2, 1983

Summary: The hydrogenation of $\text{Co}_2(\text{CO})_8$ to $\text{HCo}(\text{CO})_4$ is catalyzed by tertiary amines, nitrogen heterocycles, tertiary phosphorus bases (with $\text{pK}_a \geq 5$), and halide ions. For example, with 28 mol % of pyridine based on $\text{Co}_2(\text{CO})_8$, the rate of $\text{HCo}(\text{CO})_4$ formation may be increased about 300-fold at 40 °C.

The stoichiometric reaction of $\text{HCo}(\text{CO})_4$ with olefins to yield aldehydes proceeds smoothly at room temperature and atmospheric pressure.^{1,2} However, cobalt-catalyzed hydroformylation is generally carried out at high pressures and temperatures.³ Obviously, only the formation of

$\text{HCo}(\text{CO})_4$ from $\text{Co}_2(\text{CO})_8$ by H_2 needs drastic conditions. Consequently the catalytic hydroformylation should be possible under much milder conditions if the very slow hydrogenation of $\text{Co}_2(\text{CO})_8$ to $\text{HCo}(\text{CO})_4$ could be accelerated.⁴

The effect of bases on hydroformylation was already the subject of numerous studies. Experiments were carried out under "hydroformylation conditions", and in most cases an inhibition or only a moderate activation was found.^{3,5} The most detailed study was carried out by Iwanaga,⁶ who observed that the effect of nitrogen bases depends on their basicity, pyridine and its derivatives giving the best results. In all these works, however, relatively large amounts of additives were used (above 1 mol/mol Co) which inevitably leads to $[\text{Co}(\text{CO})_4]^-$ formation due to the disproportionation of $\text{Co}_2(\text{CO})_8$.⁷ Since

(3) Pino, P.; Piacenti, F.; Bianchi, M. "Organic Syntheses via Metal Carbonyls"; Wender, I., Pino, P., Eds.; Wiley: New York, 1977, Vol. 2, pp 43-135 and references therein.

(4) To this question, see: Ungváry, F. *J. Organomet. Chem.* 1972, 36, 363.

(5) Hasek, H.; Wayman, W. US Patent 2820059, 1958, assigned to Eastman Kodak Co.; *Chem. Abstr.* 1959, 53, 13040. Botteghi, C.; Braca, M.; Marchetti, M.; Saba, A. *J. Organomet. Chem.* 1978, 161, 555. Murata, K.; Matsuda, A. *Bull. Chem. Soc. Jpn.* 1980, 53, 214.

(6) Iwanaga, R. *Bull. Chem. Soc. Jpn.* 1962, 35, 865.

(1) Ungváry, F.; Markó, L. *J. Organomet. Chem.* 1981, 219, 397.

(2) Ungváry, F.; Markó, L. *Organometallics* 1982, 1, 1120.