

The lack of formation of dodecatriene having deuterium bonded to the terminal carbon atoms upon reaction of 2 with DCl (eq 3) apparently rules out a simple deuteriolysis of the Pd-C bond in this case. The deuterium in this reaction is found exclusively at C-3 and C-10 of the triene suggesting either that the reaction with acid is preceded by a rearrangement similar to that shown in eq 5 or, alternatively, that the acid attacks the allylic double bond directly.

Registry No. 1, 96165-40-1; 2 (R = Me), 96193-93-0; 2 (R = *i*-Pr), 96165-41-2; 2 (R = Cy), 96165-42-3; PdCl₂(Me₂PC₂H₄PM₂)₂, 15559-64-5; PdCl₂((*i*-Pr)₂PC₂H₄P(Pr-*i*)₂)₂, 96165-43-4; PdCl₂((Cy₂PC₂H₄PCy₂)₂, 96165-44-5; [P(dba)₂]₂, 32005-36-0; [Pd(bpy)(dba)], 52462-56-3; Me₂PC₂H₄PM₂, 23936-60-9; (*i*-Pr)₂PC₂H₄P(*i*-Pr)₂, 87532-69-2; Cy₂PC₂H₄PCy₂, 23743-26-2; *cis*-1,6,11-dodecatriene, 96165-45-6; butadiene, 106-99-0; dodecatriene, 33637-94-4; *n*-dodecane, 112-40-3.

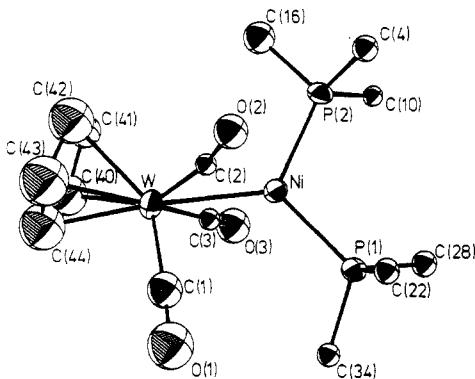
(18) (a) Büch, H. M.; Binger, P.; Benn, R.; Krüger, C.; Rufinska, A. *Angew. Chem.* 1983, 95, 814. (b) Büch, H. M. Dissertation Univ. Kaiserslautern, 1982.

Preparation, Structure, and Properties of Paramagnetic, Heterobinuclear Complexes Containing Nickel and Molybdenum or Tungsten. X-ray Crystal Structure of [NiW(CO)₃(PPh₃)₂(η -C₅H₅)]

Laurence Carlton, W. Edward Lindsell,* Kevin J. McCullough,* and Peter N. Preston

Chemistry Department, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom

Received January 23, 1985


Summary: New paramagnetic complexes [MNi(CO)₃(PPh₃)₂(η -C₅H₅)] (M = Mo, W) have been characterized and studied by ESR spectroscopy, EHMO calculations, and cyclic voltammetry; the structure of crystalline [NiW(CO)₃(PPh₃)₂(η -C₅H₅)] has been determined by X-ray diffraction.

Current interest in heteronuclear derivatives containing both early and late transition metals^{1,2} prompts us to report new, neutral, paramagnetic binuclear complexes of nickel with molybdenum or tungsten. Binuclear derivatives containing nickel bonded to a range of metals (e.g., Cr, Mo, W, Mn, Fe, Co)^{1,3} are known, but these are all diamagnetic and mainly contain the entity Ni(η -C₅H₅). Also, the diamagnetic complexes [MnNi{ μ -C(OMe)Ph}(CO)₂(PM₃)₂-(η -C₅H₅)]⁴ and [NiW₂(η -CC₆H₄Me-4)₂(CO)₄(η -C₅H₅)]⁵ have

(1) Roberts, D. A.; Geoffroy, G. L. "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford 1982; Chapter 40 and references therein.

(2) See for examples: Casey, C. P.; Bullock, R. M.; Nief, F. *J. Am. Chem. Soc.* 1983, 105, 7574. Casey, C. P.; Jordan, R. F.; Rheingold, A. L. *Ibid.* 1983, 105, 665. Finke, R. G.; Gaughan, G.; Pierpont, C.; Noordik, J. H. *Organometallics* 1983, 2, 1481. Barr, R. D.; Green, M.; Howard, J. A. K.; Marder, T. B.; Moore, I.; Stone, F. G. A. *J. Chem. Soc., Chem. Commun.* 1983, 746. Awang, M. R.; Jeffery, J. C.; Stone, F. G. A. *Ibid.* 1983, 1426. Breen, M. J.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. *J. Am. Chem. Soc.* 1983, 105, 1069. Farr, J. P.; Olmstead, M. M.; Rutherford, N. M.; Wood, F. E.; Balch, A. L. *Organometallics* 1983, 2, 1758. Bender, R.; Braunstein, P.; Judd, J. M.; Dusausoy, Y. *Inorg. Chem.* 1983, 22, 3394.

(3) Madach, T.; Fischer, K.; Vahrenkamp, H. *Chem. Ber.* 1980, 113, 3235. Madach, T.; Vahrenkamp, H. *Ibid.* 1980, 113, 2675. (b) Stevens, F. S. *J. Chem. Soc., Dalton Trans.* 1974, 1067. Campbell, I. L. C.; Stevens, F. S. *Ibid.* 1975, 337, 340. (c) McArdle, P.; Manning, A. R. *J. Chem. Soc. A* 1971, 717.

Figure 1. X-ray crystal structure of [NiW(CO)₃(PPh₃)₂(η -C₅H₅)] (2). Apart from the carbon atoms bonded to phosphorus, the remaining phenyl group carbons have been omitted for clarity. Some important geometrical parameters: W-Ni = 2.584 (3) Å, W-C(1) = 1.87 (3) Å, W-C(2) = 1.924 (20) Å, W-C(3) = 1.958 (21) Å, Ni-P(1) = 2.270 (7) Å, Ni-P(2) = 2.277 (7) Å, Ni-C(2) = 2.071 (20) Å, Ni-C(3) = 2.050 (21) Å; C(2)-W-C(3) = 103.2 (9)°, Ni-W-C(1) = 87.0 (9)°, Ni-W-C(2) = 52.2 (6)°, Ni-W-C(3) = 51.4 (6)°, W-Ni-P(1) = 121.01 (20)°, W-Ni-P(2) = 127.72 (19)°.

been reported by Stone and co-workers. Several higher nuclearity heteroclusters containing nickel exist^{1,6} including a few paramagnetic systems.⁷ However, although the neutral d⁹ Ni(I) complexes [NiXL₃] (L = phosphorus ligand) are well established,⁸ the incorporation of such a center into a simple bimetallic complex has not been reported.

Reaction of Na[M(CO)₃(η -C₅H₅)] (M = Mo or W) with [NiCl₂(PPh₃)₂] in tetrahydrofuran at ambient temperature (2–10 min), followed by addition of water, filtration, and careful washing of the resulting solid with acetone gives crude product [MNi(CO)₃(PPh₃)₂(η -C₅H₅)], which may be recrystallized from dichloromethane–hexane (M = Mo (1), ca. 20%; M = W (2), 53%). Both 1 and 2 form deep green crystals, moderately stable on short exposure to air but very air-sensitive in solution. In these syntheses Ni(II) is reduced to a formal Ni(O) state, although, with the heterometallic Ni–M bond, the Ni may be considered to be analogous to Ni(I) in complexes [NiXL_n]; other products isolated from the reaction mixtures include [M₂(CO)₆(η -C₅H₅)₂] (M = Mo or W), [Ni(CO)₂(PPh₃)₂] (3) and [Ni(W(CO)₃(η -C₅H₅))₂(PPh₃)₂] (4).⁹

The IR spectra⁹ of 1 and 2 suggest the presence of bridging and terminal carbonyl groups. ¹H and ³¹P NMR investigations of these complexes afforded either broad-

(4) Berry, M.; Howard, J. A. K.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* 1980, 1601.

(5) Ashworth, T. V.; Chetcuti, M. J.; Howard, J. A. K.; Stone, F. G. A.; Wisbey, S. J.; Woodward, P. *J. Chem. Soc., Dalton Trans.* 1981, 763.

(6) See for examples: Müller, M.; Vahrenkamp, H. *Chem. Ber.* 1983, 116, 2765. Carty, A. J.; Taylor, N. J.; Sappa, E.; Tiripicchio, A. *Inorg. Chem.* 1983, 22, 1871. Lavigne, G.; Papageorgiou, F.; Bergounhou, C.; Bonnet, J. *J. Inorg. Chem.* 1983, 22, 2485. Shore, S. G.; Hsu, W. L.; Weisenberger, C. R.; Caste, M. L.; Churchill, M. R.; Bueno, C. *Organometallics* 1982, 1, 1405.

(7) Castiglioni, M.; Sappa, E.; Valle, M.; Lanfranchi, M.; Tiripicchio, A. *J. Organomet. Chem.* 1983, 241, 99.

(8) (a) Heimbach, P. *Angew. Chem., Int. Ed. Engl.* 1964, 3, 648. Porri, L.; Gallazzi, M. C.; Vitulli, G. *Chem. Commun.* 1967, 228. (b) Sacconi, L.; Midollini, S. *J. Chem. Soc., Dalton Trans.* 1972, 1213. (c) Mealli, C.; Dapporto, P.; Sriyungwatt, V.; Albright, T. A. *Acta Crystallogr., Sect. C, Cryst. Struct. Commun.* 1983, C39, 995.

(9) Anal. Calcd C₄₄H₃₈O₃P₂MoNi (1): C, 63.80; H, 4.26; P, 7.48. Found: C, 63.69; H, 4.36; P, 7.56. Anal. Calcd C₄₄H₃₈O₃P₂NiW (2): C, 57.68; H, 3.85; P, 6.76; Ni, 6.4; W, 20.1. Found: C, 57.51; H, 3.94; P, 6.61; Ni, 6.9; W, 20.9. Anal. Calcd C₅₂H₄₀O₆P₂NiW₂ (4): C, 50.0; H, 3.22. Found: C, 49.0; H, 3.45. IR spectra (CO, cm⁻¹): (1) 1891, 1779, 1739 (Nujol); (2) 1895, 1770, 1730 (Nujol), 1892, 1769, 1741 (CH₂Cl₂); (4) 1935, 1917 (sh), 1870, 1840 (Nujol). ESR spectra (2-methyltetrahydrofuran, 10 °C): (1) g_{iso} = 2.118, A_{iso}(³¹P) = 7.49, 5.49 mT; (2) g_{iso} = 2.128, A_{iso}(³¹P) = 7.63, 5.89 mT.

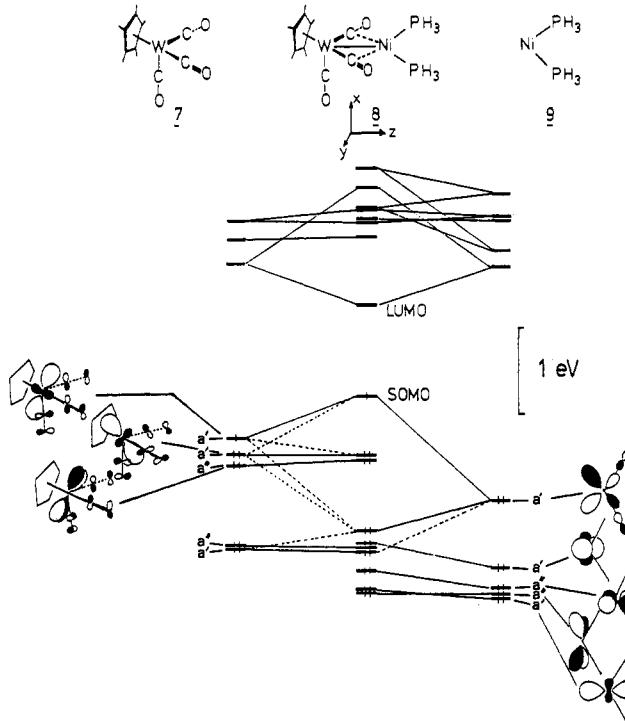


Figure 2. Interaction diagram for complex 9. (Orbital correlations derived by using program FMO.)

ened resonances or the absence of signals and a determination of the magnetic susceptibility of **2** in benzene by Evans' method¹⁰ gave $\mu_{\text{eff}} = 2.2 \pm 0.2 \mu_{\text{B}}$ (22 °C). Both **1** and **2** in solution exhibit ESR spectra (dd)⁹ showing coupling of the unpaired electron to two inequivalent ³¹P nuclei; any coupling to ^{95/97}Mo or ¹⁸³W, respectively, is obscured by the line widths of the signals ($\Delta\omega_{1/2} \approx 2$ mT), but this must be relatively small. ESR spectra of frozen solutions have also been analyzed in terms of three anisotropic *g* tensors with coupling to two inequivalent ³¹P nuclei.

A crystal of **2** was subjected to X-ray analysis.¹¹ The molecular structure so determined (Figure 1) shows normal η^5 -coordination of the cyclopentadienyl group to tungsten and typical Ni–PPh₃ interactions with Ni–P distances intermediate between those in **3**¹² and in [NiBr(PPh₃)₃].^{8c} The carbonyl groups approach linear coordination to W; C(1)–O(1) is terminal to W but both C(2)–O(2) and C(3)–O(3) interact with Ni and may be considered to be "semibridging". The bridging Ni–C separations are longer than in [Ni₂(μ -CO)₂(η -C₅H₅)₂]^{3a,13} significantly shorter than in [CrNi(μ -CO)₂(CO)(η -C₅H₅)₂]^{3a} and comparable to those in [NiW₂(μ -CC₆H₄Me-4)(μ -CO)₂(CO)₂(η -C₅H₅)₂]⁵ (**5**). The nickel atom is virtually in the plane of the W(μ -CO)₂ unit

(10) Evans, D. F. *J. Chem. Soc.* 1959, 2003.

(11) Crystal data for complex **2**: C₄₄H₃₅NiO₃P₂W, $M_r = 916.2$, monoclinic space group P2₁/c (No. 14), $a = 17.873$ (9) Å, $b = 10.156$ (6) Å, $c = 21.249$ (7) Å, $\beta = 105.05$ (3)°, $U = 3725$ Å³, $Z = 4$, $D_{\text{calcd}} = 1.634$ g cm⁻³, $F(000) = 1820$, $\mu(\text{Mo K}\alpha) = 38.98$ cm⁻¹, crystal dimensions ca. 0.2 × 0.3 × 0.08 mm, [ω – 2θ scans, $\theta < 23$ °, Enraf–Nonius CAD4 diffractometer, Mo K α radiation ($\lambda = 0.71069$ Å)]. The structure was solved by standard Patterson–Fourier difference map methods. Least-squares refinement, using anisotropic temperature factors for the W, Ni, and P atoms only, reduced the conventional *R* factor to a current value of 0.072 ($R_w = 0.114$) for 2896 absorption corrected intensity data [$I > 2.5\sigma(I)$]. The comparatively high current *R* factor results from (i) the weakness of the data set [only 2896 out of 5122 unique reflections had $I > 2.5\sigma(I)$] probably arising from the thinness of the data crystal (<0.1 mm) and (ii) the failure of absorption corrections to account for several residual peaks (>1 e Å⁻³) close to the W atoms; the C and O atoms of the carbonyl ligands could not consequently be refined anisotropically.

(12) Kruger, C.; Tsay, Y.-H. *Cryst. Struct. Commun.* 1974, 4, 455.
(13) Byers, L. R.; Dahl, L. F. *Inorg. Chem.* 1980, 19, 680.

(angle W–C(2)–Ni/W–C(3)–Ni = 171.4°), and **2** is structurally analogous to the red/orange isomer of [CuW(CO)₃(PPh₃)₂(η -C₅H₅)]¹⁴ (**6**). The Ni–W distance [2.584 (3) Å] is consistent with a significant metal–metal interaction, being shorter by ca. 0.2 Å than Cu–W in **6**¹⁴ and comparable to Ni–W in **5**—some multiple-bond character was suggested in this latter complex.⁵

To understand better the metal–metal interaction in complexes **1** and **2** and in related binuclear complexes [MM'(CO)₃(PPh₃)₂(η -C₅H₅)] (M = Mo, W; M' = Rh, Cu)¹⁴ which have increasing number of valence shell electrons M' = Rh < Ni < Cu, we have carried out EHMO calculations.^{15,16} Figure 2 shows the interaction diagram of fragments [W(CO)₃(η -C₅H₅)] (**7**) and [Ni(PPh₃)₂] (**8**) to form [NiW(CO)₃(PPh₃)₂(η -C₅H₅)] (**9**), in idealized C_s symmetry. The frontier orbitals of both fragments are related to previously described systems.^{17,18} The SOMO of **9** is antibonding with respect to fragments **7** and **8**; it has a' symmetry and is composed mainly of W and Ni d_{z2} orbitals with delocalization on to CO groups and a little on to P atoms consistent with the low $A_{\text{iso}}(^{31}\text{P})$ values in the ESR spectrum of **2**. Overall, the EHMO study shows no strong, direct Ni–W bonding, and **7** and **8** appear to be held together by a combination of relatively weak Ni–W and C–Ni interactions (reduced orbital overlap populations: Ni–W, 0.134; C(2)/C(3)–Ni, 0.240). Comparable studies on complex **6** also indicate negligible Cu–W and weak C–Cu interactions. These results reflect similar theoretical studies of binuclear bridged systems in which minimal direct metal–metal bonding has been proposed.^{18,19}

The antibonding nature of the SOMO of **9** suggests that ready oxidation of complex **2** might occur. Cyclic voltammetric studies of **2** in CH₂Cl₂ show an essentially reversible one-electron oxidation at $E_{1/2} = -0.15$ V.²⁰ The primary product [NiW(CO)₃(PPh₃)₂(η -C₅H₅)]⁺ is electronically related to [RhW(CO)₃(PPh₃)₂(η -C₅H₅)].¹⁴ Further irreversible oxidation of **2** occurs at higher potentials.

In solution, complexes **1** and **2** decompose on contact with air with the rupture of the binuclear unit. The only identifiable nickel product is **3**, and this suggests an unsymmetrical cleavage of the M(CO)₂Ni systems. Photolysis ($\lambda > 300$ nm) of **1** in the absence of air but in the presence of nitrosodurene (CH₂Cl₂, -40 °C) forms the paramagnetic nitroxide with solution ESR parameters identical with those assigned to species [Mo(NOC₆Me₄H-4)(CO)_n(η -

(14) Carlton, L.; Lindsell, W. E.; McCullough, K. J.; Preston, P. N. *J. Chem. Soc., Dalton Trans.* 1984, 1693.

(15) Howell, J.; Rossi, A.; Wallace, D.; Haraki, K.; Hoffmann, R. *QCPE* 1977, 10, 344 (ICON 8).

(16) EHMO calculations were carried out on the simplified complex [NiW(CO)₃(PPh₃)₂(η -C₅H₅)] with a molecular geometry based on the X-ray crystal structure of **2**, idealized to C_s symmetry, with the following structural parameters: W–Ni = 2.58 Å, W–C(1) = 1.95 Å, W–C(2) = 1.96 Å, W–C(Cp) = 2.34 Å, Ni–P = 2.27 Å, P–H = 1.42 Å, C–C(Cp) = 1.42 Å, C–H = 1.08 Å; Ni–W–C(1) = 90°, C(2)–W–C(3) = 105°, C(2)–W–C(1) = 90°, P(1)–Ni–P(2) = 111°, Ni–P–H = 109.47°, H–P–H = 109.47°. Values for H_{ii} and orbital exponents were taken from: Kubaček, P.; Hoffmann, R. *J. Am. Chem. Soc.* 1981, 103, 4320. Hoffman, D. M.; Hoffmann, R.; Fiszel, C. R. *Ibid.* 1982, 104, 3858. The complex was divided into [η -C₅H₅W(CO)₃] and [Ni(PPh₃)₂] fragments on the basis that the semibridging carbonyl groups remained attached to the metal to which they show a greater degree of terminal character as judged from the crystal structure of **2**.

(17) Albright, T. A.; Hoffman, R.; Thibeault, J. C.; Thorn, D. L. *J. Am. Chem. Soc.* 1979, 101, 3801. Eisenstein, O.; Hoffmann, R. *Ibid.* 1981, 103, 4308.

(18) Barr, R. D.; Marder, T. B.; Orpen, A. G.; Williams, I. D. *J. Chem. Soc. Chem. Commun.* 1984, 112.

(19) Jemmis, E. D.; Pinhas, A. R.; Hoffmann, R. *J. Am. Chem. Soc.* 1980, 102, 2576. Kostic, N. M.; Fenske, R. F. *Inorg. Chem.* 1983, 22, 666. Bottomley, F. *Ibid.* 1983, 22, 2656.

(20) At platinum microelectrodes in CH₂Cl₂ (18 °C) and 0.1 M NBu₄[PF₆], scan rate = 0.05 V s⁻¹ ($E_{1/2}$ vs. SCE). ($E_{1/2}$ for [Fe(η -C₅H₅)₂]⁺/[Fe(η -C₅H₅)₂] = 0.385 V.)

C_5H_5)] ($n \leq 3$);²¹ again cleavage of the metal–metal system must occur.

Acknowledgment. We thank the Royal Society and the SERC for support and are grateful to Dr. A. J. Welch (Edinburgh University) for assistance with the X-ray data collection and helpful discussion.

Registry No. 1, 96109-94-3; 2, 96109-95-4; 3, 13007-90-4; 4, 96109-96-5; 9, 96109-97-6; $[Mo_2(CO)_6(\eta-C_5H_5)_2]$, 12091-64-4; $[W_2(CO)_6(\eta-C_5H_5)_2]$, 12091-65-5; $Na[Mo(CO)_3(\eta-C_5H_5)]$, 12107-35-6; $Na[W(CO)_3(\eta-C_5H_5)]$, 12107-36-7; $[NiCl_2(PPh_3)_2]$, 14264-16-5.

Supplementary Material Available: Listings of positional and thermal parameters, bond lengths, bond angles, and observed and calculated structure factor amplitudes for 2 (21 pages). Ordering information is given on any current masthead page.

(21) Hudson, A.; Lappert, M. F.; Nicholson, B. K. *J. Chem. Soc., Dalton Trans.* 1977, 551.

Uranium–Carbon Multiple-Bond Chemistry. 5.¹ Carbon–Oxygen Bond Cleavage in a Uranium Phosphonium Enolate Manganese Complex

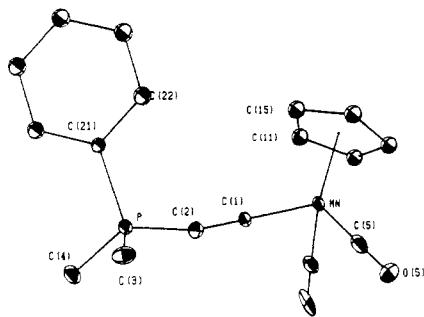
Roger E. Cramer,* Kelvin T. Higa, and John W. Gilje*

Department of Chemistry, University of Hawaii
Honolulu, Hawaii 96822

Received December 4, 1984

Summary: Upon heating, the carbon–oxygen bond in $Cp(OC)_2MnC(OUCp_3)CHPMe_2Ph$ can be cleaved to form $Cp(OC)_2MnC\equiv CPMMe_2Ph$, 3. Crystals of 3 belong to space group $P2_1/c$, with unit cell parameters of $a = 10.611$ (2) Å, $b = 18.603$ (3) Å, $c = 8.193$ (2) Å, $\beta = 102.55$ (2)°, $Z = 4$, and $V = 1578.7$ (6) Å³. The structure of 3 shows it to be a phosphonium acetylide.

We have proposed^{1,2} that coordinated carbon monoxide can be activated by reaction with the uranium–carbon multiple bond in $Cp_3U=CHPMe_2PhR^{3-5}$ (1a, R = Me; 1b, R = Ph), where $Cp = \eta-C_5H_5$, Me = CH_3 , and Ph = C_6H_5 . An example² of this is a carbonyl coupling which results in allyl formation during the reaction of 1 with $[CpFe(CO)_2]_2$. We postulated² that the initial step of this process is the insertion of a terminal carbonyl into the uranium–carbon multiple bond. In the previous paper of this series¹ such an insertion was documented in a reaction of $CpMn(CO)_3$ with 1a which produces $Cp(OC)_2MnC(OUCp_3)CHPMe_2Ph$, 2. We argued that the organouranium compound had activated the carbon–oxygen bond by decreasing its bond order through the strong tendency of U(IV) to accept electrons from oxygen. In this communication we report that the carbon–oxygen bond in 2 can be cleaved under fairly mild conditions to form a complex, $Cp(OC)_2MnCCPMe_2Ph$, 3, containing a zwitterionic phosphonium acetylide ligand. The overall re-


(1) Part 4 of this series: Cramer, R. E.; Higa, K. T.; Gilje, J. W. *J. Am. Chem. Soc.* 1984, 106, 7245–7247.

(2) Cramer, R. E.; Higa, K. T.; Pruskin, S. L.; Gilje, J. W. *J. Am. Chem. Soc.* 1983, 105, 6749–6750.

(3) Cramer, R. E.; Maynard, R. B.; Gilje, J. W. *Inorg. Chem.* 1981, 20, 2466–2470.

(4) Cramer, R. E.; Maynard, R. B.; Paw, J. C.; Gilje, J. W. *J. Am. Chem. Soc.* 1981, 103, 3589–3590.

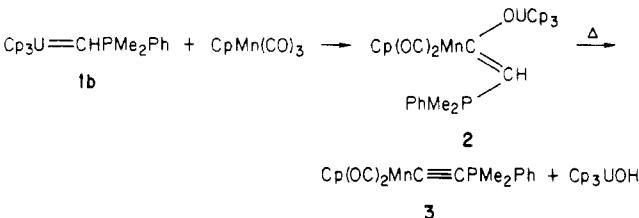

(5) Cramer, R. E.; Maynard, R. B.; Paw, J. C.; Gilje, J. W. *Organometallics* 1983, 2, 869–871.

Figure 1. An ORTEP drawing of $Cp(OC)_2MnCCPMe_2Ph$, 3. Some important bond distances (Å) and angles (deg): Mn–C(1) = 1.895 (5), Mn–C(5) = 1.744 (7), Mn–C(6) = 1.742 (6), C(1)–C(2) = 1.221 (7), P–C(2) = 1.683 (6); Mn–C(1)–C(2) = 179.6 (4), P–C(2)–C(1) = 166.6 (5).

action is the formation of a new carbon–carbon triple bond accompanied by the deoxygenation of a terminal carbonyl.

As previously described¹ an equimolar mixture of 1b and $CpMn(CO)_3$ in THF produced 2. After evaporation of the THF, the remaining red-brown solid was dissolved in toluene, refluxed for 1 h, and filtered. Upon addition of an equal volume of heptane and cooling to room temperature, translucent yellow crystals of 3 formed in 55% yield.⁶

The structure of 3, belongs to the monoclinic space group $P2_1/c$, with unit cell parameters of $a = 10.611$ (2) Å, $b = 18.603$ (3) Å, $c = 8.193$ (2) Å, $\beta = 102.55$ (2)°, $Z = 4$, and $V = 1578.7$ (6) Å³, was determined by X-ray diffraction.⁷ An ORTEP drawing is shown in Figure 1; a summary of crystal and data collection parameters and listings of bond distances and angles, positional and thermal parameters, and the observed and calculated structure factors can be found as supplementary material.

The molecular structure of 3 reveals a zwitterionic phosphonium acetylide ligand coordinated to $Cp(OC)_2Mn$. The $MnC\equiv CPMMe_2Ph$ unit is rare, the only other structure determination being $Br(OC)_4MnC\equiv CPh_3$.^{8,9} 4. A Re analogue of 4,⁹ $(OC)_5WC\equiv CPh_3$,¹⁰ and $(CH_3C_5H_4)-(OC)_2MnC\equiv CPMMe_3$,¹¹ 5, have also been synthesized. As expected for an acetylide, the Mn–C(1)–C(2) angle, 179.6

(6) NMR (C_6D_6 , chemical shifts in ppm from Me_4Si): CH_3P 1.90 (6 H, d, $J_{PCH} = 14.0$ Hz); Cp 4.43 (5 H, s); Ph 7.60 (1 H, m), 7.93 (2 H, m), 8.08 (2 H, m). IR (Nujol mull, 1800–2000 cm^{-1}): 1972 vs, 1887 vs, 1852 vs. Two of these IR bands will arise from CO stretches and the third from the C≡C stretch. The assignment of a particular vibration to a specific frequency is not certain.^{9,11}

(7) A single crystal was mounted in a glass capillary and sealed under nitrogen. X-ray data was collected by using a Syntex P1 diffractometer and processed as previously described.²¹ The structure was solved with SHELX-76, a system of computer programs for X-ray structure determination by G. M. Sheldrick, 1976, using Patterson methods to locate the uranium, followed by refinements and Fourier maps to locate the remaining atoms. The Cp and Ph groups were refined as rigid bodies with H atoms included, using the standard parameters included in SHELX-76.

(8) Goldberg, S. Z.; Duesler, E. N.; Raymond, K. N. *Inorg. Chem.* 1972, 11, 1397–1401.

(9) Kaska, W. C.; Mitchell, D. K.; Reichelderfer, R. F.; Korte, W. D. *J. Am. Chem. Soc.* 1974, 96, 2847–2854.

(10) Kaska, W. C.; Mitchell, D. K.; Reichelderfer, R. F. *J. Organomet. Chem.* 1973, 47, 391–402.

(11) Blau, H.; Griessman, K.-H.; Malisch, W. *J. Organomet. Chem.* 1984, 263, C5–C9.