CoCF₃⁺ Is Really (FCo⁺···F₂C)

Quan Chen, Chuan-Yuan Lin, Huiping Chen, and Ben S. Freiser*

H. C. Brown Laboratory of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received March 5, 19978

Summary: Gas-phase ion chemistry studies and density functional calculations reveal that the structure of $CoCF_3^+$ is really a [FCo⁺···F₂C] ion—dipole complex with electrostatic bonding between FCo⁺ and CF₂. The reactions of $CoCF_3^+$ with C_3-C_7 alkanes, alkenes, and other reagents, such as benzene, water, and acetonitrile, yield predominantly CF2 displacement products. This represents the first case of gas-phase C-F activation by bare cobalt ions.

Introduction

Previous studies have shown that the reactivity of a metal ion in the gas phase can be dramatically altered by the presence of a ligand.¹⁻⁵ In this paper we report on CF₃ as a ligand. CF₃, the fluorine-containing analog of methyl radical, is a stable functional group of most hydrofluorocarbons (HFCs), including CF₃CF₂H, CF₃CFH₂, and CF₃CH₃. However, in contrast to CH₃, little is known about the effect of CF₃ on the reactivity of bare metal ions. Since fluorine has the greatest electronegativity, it exhibits a strong electron-withdrawing effect. On the other hand, fluorine is also a good π -electron donor to carbon π -systems, due to the similar size of its lone-pair 2p orbital to that of carbon. Thus, the effect of fluorine substitution is a combination of inductively withdrawing and π donating.⁶ In particular, Halle, Armentrout, and Beauchamp have studied the effects of fluorine substitution on carbene stability, as well as the metathesis reactions of fluorinated olefins with NiCH₂⁺ and NiCF₂⁺. They determined that $D^0(Ni^+-CF_2) = 47 \pm 7$ kcal/mol, which is substantially lower than $D^0(Ni^+-CH_2) = 86 \pm 6$ kcal/mol. On a related topic, C-F activation by metal centers in solution, 8-10 on surfaces, 11 and in the gas phase 12-15 has attracted a great deal of interest due to the very strong C-F bond and the high electronegativity of fluorine. In this study, we report on the gas-phase reactions of CoCF₃⁺ with small aliphatic alkanes and alkenes, as well as with benzene, water, and acetonitrile. These reactions, together with density functional calculations and the corresponding thermochemistry, indicate that $CoCF_3^+$ is really the ion-dipole complex [FCo⁺···F₂C].

Results and Discussion

While CoCF₃⁺ was first assumed to consist of a trifluoromethyl-Co⁺ structure **1**, it soon became apparent that it might instead be a fluoro-difluorocarbene structure 2. Collision-induced dissociation (CID) and

$$Co^{\dagger}$$
— CF_3 F— Co^{\dagger} ... F_2C

sustained off-resonance irradiation (SORI) yield difluorocarbene loss as the major fragmentation pathway over the range of kinetic energies studied (5-80 eV in laboratory coordinates for CID and 3-5 eV for SORI), suggestive of a possible fluoro-difluorocarbene structure **2**. For comparison, CID and SORI of CoCH₃⁺ yield $Co^{+\ 2,3}$ exclusively by loss of an intact CH_3 . Even stronger evidence for structure 2 is the reactions of $CoCF_3^+$ with L = alkanes, alkenes, benzene, water, and acetonitrile, which generally result in a prominent CF₂ displacement product, CoFL⁺. These results strongly suggest that CF3 is not an intact ligand in this case and that the CF₂ group is bound weakly to Co⁺, in contrast to the Co⁺-methyl structure of CoCH₃⁺.^{2,3}

The primary reactions of CoCF₃⁺ with alkanes and alkenes are summarized in Table 1. Like Co⁺ and CoCH₃⁺, CoCF₃⁺ is unreactive with methane and ethane. Reactions with propane and other linear and branched alkanes up to C_7 , however, yield the displacement products $F-Co^+-(C_nH_{2n+2})$ as the predominant products, except for the reactions with 2-methylpropane and 2-methylbutane. CID of these product ions yields FCo⁺ exclusively, indicating that the alkane remains intact on the metal center. The displacement reaction implies that $D^0(FCo^+-F_2C) \leq D^0(FCo^+-C_3H_8)$. While the latter value is not known, $D^{0}(C_{0}^{+}-C_{3}H_{8}) = 30.9 \pm 1.4 \text{ kcal/}$

[®] Abstract published in Advance ACS Abstracts, August 1, 1997 (1) For reviews, see: (a) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. (b) Freiser, B. S. Acc. Chem. Res. 1994, 27, 353. (c) Organometallic Ion Chemistry, Freiser, B. S., Ed.; Kluwer Academic Publishers: Dordrecht, 1996. (d) Gas-Phase Inorganic Chemistry, Russell, D. H., Ed.; Plenum Press: New York, 1989. (e) Freiser, B. S. J. Mass Spectrom. 1996, 31, 703.

⁽²⁾ Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106,

⁽³⁾ Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107,

⁽⁴⁾ Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1986, 90, 5736.

⁽⁵⁾ Halle, L. F.; Armentrout, P. B.; Beauchamp, J. L. Organometallics 1983, 2, 1829.

^{(6) (}a) Dolbier, W. R. Chem. Rev. **1996**, *96*, 1557. (b) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. **1996**, *96*, 1585.

⁽⁷⁾ Freiser, B. S. *Talanta* **1985**, *32*, 697. (8) (a) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. *Chem. Rev.* 1994, 94, 373. (b) Harrison, R. G.; Richmond, T. G. J. Am. Chem. Soc.

 ^{(9) (}a) Burdeniuc, J.; Crabtree, R. H. J. Am. Chem. Soc. 1996, 118,
 2525. (b) Burdeniuc, J.; Crabtree, R. H. Science 1996, 271, 340.

^{(10) (}a) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674. (b) Aizenberg, M.; Milstein, D. Science 1994, 265, 359.

^{(11) (}a) Pradeep, T.; Ast, T.; Cooks, R. G.; Feng, B. J. Phys. Chem. 1994, 98, 9301. (b) Pradeep, T.; Riederer, D. E., Jr.; Hoke, S. H., II; Cooks, R. G.; Linford, M. R. J. Am. Chem. Soc. 1994, 116, 8658. (c) Chen, G.; Hoke, S. H., II; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1994, 139, 87.

(12) Dietz, T. G.; Chatellier, D. S.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 4005.

^{1978, 100, 4905.}

⁽¹³⁾ Bjarnason, A.; Taylor, J. W. *Organometallics* **1989**, *8*, 2020. (14) Garciá, E.; Huang, Y.; Freiser, B. S. *Inorg. Chem.* **1993**, *32*,

^{(15) (}a) Schröder, D.; Hrusák, J.; Schwarz, H. Helv. Chim. Acta 1992, 75, 2215. (b) Cornehl, H. H.; Hornung, G.; Schwarz, H. J. Am. Chem. Soc. 1996. 118. 9960.

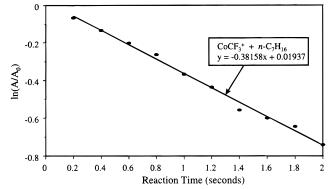

⁽¹⁶⁾ Cody, R. B.; Burnier, R. C.; Reents, W. D., Jr.; Carlin, T. J.; McCrery, D. A.; Lengel, R. K.; Freiser, B. S. Int. J. Mass Spectrom. Ion Processes 1980, 33, 37.

Table 1. Percentage Abundance of Primary Products Observed in the Reactions of CoCF₃⁺ with Various Alkanes and Alkenes

With vali	ous minumes	and miches	
alkane or alkene	neutral lost	products	rel %
methane		no reaction	
ethane		no reaction	
propane	CF_2	$CoF(C_3H_8)^+$	100
<i>n</i> -butane	CH_4	$CoCF_3(C_3H_6)^+$	75
	CF_2	$CoF(C_4H_{10})^{+}$	18
	-	$C_0CF_3(C_4H_{10})^+$	7
2-methylpropane	$CoCF_3H$	$C_4H_9^+$	70
3 1 1	CH₄	$CoCF_3(C_3H_6)^+$	18
	CF_2	$CoF(C_4H_{10})^+$	12
<i>n</i> -pentane	CF_2	$CoF(C_5H_{12})^+$	100
2-methylbutane	CoCF ₃ H	$C_5H_{11}^+$	71
3	CF_2	$CoF(C_5H_{12})^+$	29
2,2-dimethylpropane	CF_2	$CoF(C_5H_{12})^+$	71
311	-	$CoCF_3(C_5H_{12})^+$	29
<i>n</i> -hexane	CF_2	$CoF(C_6H_{14})^+$	100
<i>n</i> -heptane	CF_2	$CoF(C_7H_{16})^+$	100
ethene	CF_2	$CoF(C_2H_4)^+$	100
propene	CF_2	$CoF(C_3H_6)^+$	92
	CF_3H	$Co(C_3H_5)^+$	8
1-butene	CF_2	$CoF(C_4H_8)^+$	93
	CF_3H	$Co(C_4H_7)^+$	7
isobutene	CF_2	$CoF(C_4H_8)^+$	94
	CF_3H	$Co(C_4H_7)^+$	6
cis-2-butene	CF_2	$CoF(C_4H_8)^+$	100
1,3-butadiene	CF_2	$CoF(C_4H_6)^+$	100
		/	

mol²⁹ provides a useful estimate. Interestingly, the hydride abstraction products i- $C_4H_9^+$ and i- $C_5H_{11}^+$, which are stable tertiary carbocations, are dominant for the reactions of CoCF₃⁺ with 2-methylpropane and 2-methylbutane, respectively. Formation of i-C₄H₉⁺ suggests that $D^0(\text{CoCF}_3^+-\text{H}^-) > D^0(\text{C}_4\text{H}_9^+-\text{H}^-) = 376.1$ kcal/mol.³⁰ For comparison, CoCH₃⁺ reacts with alkanes larger than ethane by initial C-H insertion, followed by CH₄ and H₂ loss to yield Co(allyl)⁺ species.²

Pseudo-first-order kinetics are observed for the reactions of CoCF₃⁺ with propane, *n*-butane, *n*-pentane, *n*-hexane, and *n*-heptane. For example, the kinetics plot of CoCF₃⁺ with *n*-heptane at \sim 2.5 \times 10⁻⁷ Torr is shown in Figure 1. [A] is reactant ion intensity after time t, and $[A_0]$ is obtained by summing the intensities of the

Figure 1. Pseudo-first-order plot of the reaction of CoCF₃⁺ with *n*-heptane at 2.5×10^{-7} Torr.

Table 2. Rate Constants and Calculated Reaction Efficiencies for the Reactions of CoCF₃⁺ with Various Linear Alkanes^a

reagent	$k_{ m obs}$	$^{k}\mathrm{_{L}}$	reaction efficiency
propane n-butane n-pentane n-hexane n-heptane	$\begin{array}{c} 1.3\times10^{-12}\\ 4.8\times10^{-12}\\ 5.9\times10^{-11}\\ 2.0\times10^{-10}\\ 2.6\times10^{-10}\\ \end{array}$	$\begin{array}{c} 1.0\times 10^{-9}\\ 1.1\times 10^{-9}\\ 1.1\times 10^{-9}\\ 1.1\times 10^{-9}\\ 1.2\times 10^{-9}\\ \end{array}$	0.1% 0.5% 5.4% 17% 22%

^a Rate constants have the units of cm³ molecule^{−1} s^{−1}.

Table 3. Bond Lengths and Bond Angles for the Optimized Geometries of CoCF₃⁺ Using DFT with the Standard Effective Core Potential for Co⁺ and the Dunning-Hay Double-ζ Basis Set for C and F^a

species	bond length (Å)		bond angle (deg)	
CoCF ₃ ⁺	C-F(1) C-F(2) Co-F(2) Co-F(3)	1.291 1.629 1.948 1.726	F(1)-C-F(2) C-F(2)-Co F(2)-Co-F(3)	100.2 155.0 179.4

^a See Figure 2.

reactant ion and product ions at each time. The slopes of the pseudo-first-order plots are used with the calibrated reactant pressure to obtain the observed rate constants, k_{obs} . The Langevin rate constants, k_L , are also calculated to determine reaction efficiencies.³¹ The values obtained for k_{obs} , k_{L} , and the reaction efficiencies are listed in Table 2. The linear pseudo-first-order kinetics observed for each of the reactions suggest, although not unequivocally, that the CoCF₃⁺ ions are thermalized and consist of one isomeric structure. As the polarizability of the alkane increases, the reaction rates and efficiencies between CoCF₃⁺ and the alkane increase dramatically. These results are again consistent with a weakly bound FCo+···F₂C complex.

The reactions of CoCF₃⁺ and alkenes are also dominated by CF₂ displacement, in contrast to those of CoCH₃⁺, which proceed by initial elimination of methane to form an activated π -allyl complex.³ CID of the CoFL⁺ product ions gives FCo⁺ as the major fragment and loss of HF as the minor fragment. The CF₂ displacement reaction of CoCF₃⁺ with ethene suggests that $D^0(FC_0^+-F_2C) \le D^0(FC_0^+-C_2H_4) \approx D^0(C_0^+-C_2H_4)$ $= 42.9 \pm 1.6 \text{ kcal/mol.}^{29,32}$

In addition, we have performed density functional calculations on CoCF₃⁺. Four possible structures **3–6**

⁽¹⁷⁾ Collision Spectroscopy, Cooks, R. G., Ed.; Plenum: New York, 1978.

⁽¹⁸⁾ Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim. Acta 1991, 246, 211

⁽¹⁹⁾ Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998.
(20) Carlin, T. J.; Freiser, B. S. Anal. Chem. 1983, 55, 571.
(21) Comisarow, M. B.; Grassi, V.; Parisod, G. Chem. Phys. Lett.

⁽²²⁾ Bartmess, J. E.; Georgiadis, R. M. Vacuum 1983, 33, 149.
(23) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

⁽²⁴⁾ Dunning, T. H., Jr.; Hay, P. J. In *Modern Theoretical Chemistry*,
Schaefer, H. F., III, Ed.; Plenum: New York, 1976.
(25) (a)Becke, A. D. *Phys. Rev.* 1988, *A38*, 3098. (b) Becke, A. D. *J.*

Chem. Phys. 1993, 98, 1372. (c) Becke, A. D. J. Chem. Phys. 1993, 98,

⁽²⁶⁾ Kais, S.; Herschbach, N. C. H.; Murray, C. W.; Laming, G. J. J. Chem. Phys. 1993, 99, 417.

⁽²⁷⁾ Siegbahn, P. E. M. Adv. Chem. Phys. **1996**, 333. (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. W.; Ayala, Stefallov, B. D.; Ivaliajarkala, A., Glanaconno, Iv., Leng, C. W., Ly, Chen, W.; Wong, M. W.; Anfres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, revision D.1; Gaussian, Inc.: Pittsburgh PA, 1995.

⁽²⁹⁾ Armentrout, P. B.; Kickel, B. L. In *Organometallic Ion Chemistry*, Freiser, B. S., Ed.; Kluwer Academic Publishers: Dordrecht, 1996: Chapter 1.

⁽³⁰⁾ Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No.1.

⁽³¹⁾ Su, T.; Bowers, M. T. In Gas Phase Ion Chemistry; Bowers, M. T. Ed.; Academic Press: New York, 1979, Vol. 1, p 83.(32) Haynes, C. L.; Armentrout, P. B. Organometallics 1994, 13,

^{3480.} Note that the presence of fluorine on the cobalt center makes the equality strictly an estimate.

F₃ 1.726 Co 1.948
$$\downarrow$$
 F₃CoF₂= 179.4° \downarrow CoF₂C= 155.0° \downarrow F₁CF₂= 100.2°

Figure 2. Optimized geometry of $CoCF_3^+$ with Becke-3-LYP using the standard effective core potential for Co^+ and the Dunning–Hay double- ζ basis set for C and F. All distances are given in Å.

were proposed as the starting structures in this calculation. Only structure **4** is found to be a true minimum,

while the other minimum structures of CoCF₃⁺ were not detected. The ground state of Co⁺ is found to be ³F. Spin contamination is small in all of the calculations and the deviation of $\langle S^2 \rangle$ is less than 1%. The optimized parameters are presented in Table 3, and the optimized structure is shown in Figure 2. The optimized CoCF₃⁺ exhibits C_s symmetry with a Co-F(3) distance of 1.726 A and a slightly elongated CF₂ unit bound to Co through F(2) by a distance of 1.948 Å. The Mulliken population analysis gives the charge distribution as follows: q =+1.117 for Co, q = +0.578 for C, q = +0.015 for F(1), q= -0.326 for F(2), q = -0.383 for F(3). The calculated binding energy of FCo⁺-F₂C is 30.9 kcal/mol, which is in accordance with the experimental limit to a first approximation of 30.9 ± 1.4 kcal/mol. Interestingly, Paulino and Squires have reported a similar finding for CF₂Cl⁻, where the evidence points to a carbene-halide anion structure consisting of a free carbene moiety bound electrostatically through carbon to Cl⁻ with nearly a full -1 charge on Cl atom. 33,34 In a similar vein, recent theoretical calculations by Schleyer and coworkers indicate that AH_3^+ is actually $HA^+\cdots H_2$ for A = Sn and Pb, while CH₃⁺ and SiH₃⁺ are strongly bound D_{3h} structures.³⁵ Likewise, our calculations indicate that CoCF₃⁺ is a [FCo⁺···F₂C] ion-dipole complex.

Conclusions

Upon fluorine substitution, the structure and reactivity of $CoCF_3^+$ are dramatically different compared to $CoCH_3^+$. Both experimental and theoretical results show that the structure of $CoCF_3^+$ corresponds to a $[FCo^+\cdots F_2C]$ ion—dipole complex. The weak bonding between FCo^+ and CF_2 leads to predominant displacement of CF_2 by alkanes, alkenes, and other reagents. In contrast, our recent experiments and calculations indicate that $CoCF_2^+$ corresponds to a Co^+ = CF_2 structure with $D^0(Co^+$ - $CF_2)$ bracketed as 49 ± 7 kcal/mol

and calculated at $50.4 \text{ kcal/mol.}^{36}$ Thus, the bonding, bond strength, and reactivity of these two difluorocarbene complexes are quite different. To the best of our knowledge, this is also the first case of gas-phase C–F activation by bare Co⁺. Currently, we are examining the structural integrity of CF₃ bound to other metal ions, such as the first- and second-row transition metals.

Experimental Section

All of the experiments were performed with a Nicolet (now Finnigan FT/MS, Madison, WI) prototype FTMS-1000 Fourier transform mass spectrometer, equipped with a Walker Scientific 15-in. electromagnet maintained at 1 $T.^7$ Laser desorption ionization was used to generate Co^+ from the pure metal foil by focusing the 1064 nm wavelength of a Quanta-Ray Nd: YAG laser on the metal target. 16 Argon was present at a static background pressure of $\sim\!1.0\times10^{-5}$ Torr, serving as a cooling gas to thermalize the ions prior to reactions, as well as the collision gas in collision-induced dissociation (CID) 17 and sustained off-resonance irradiation (SORI) 18 experiments.

In analogy to the synthesis of CoCH₃⁺ from CH₃I,¹⁹ laser-desorbed Co⁺ was reacted with trifluoromethyl iodide, which was pulsed into the cell via a General Valve Series 9 solenoid pulsed valve.²⁰ This yielded three products, CoI⁺, CF₂I⁺, and CoCF₃⁺, reactions 1–3. The desired CoCF₃⁺ was then isolated

$$Co^{+} + CF_{3}I \xrightarrow{8\%} CoI^{+} + CF_{3}$$

$$CoF_{2}I^{+} + CoF$$

$$CoCF_{3}^{+} + I$$

$$(1)$$

$$(2)$$

$$(3)$$

by using swept double-resonance ejection techniques²¹ and cooled 400 ms prior to further reaction.

For the kinetics study, the alkane neutrals were introduced into the cell through a Varian leak valve and the reaction time was varied between 200 ms and 2 s. The pressure of the neutral reagent was kept at $\sim\!2.5\times10^{-7}$ Torr, and Ar was used as the cooling gas at a total pressure of $\sim\!1.0\times10^{-5}$ Torr. The pressure of the alkane neutral was measured using standard procedures for calibrating the ion gauge for the sensitivity toward the alkane. 22 The uncertainty in the pressure introduces an error of $\pm30\%$ into the measurement of the absolute reaction rate constants, while the relative reaction rate constants are more reliable. The branching ratios of primary product ions are reproducible to within $\pm10\%$.

Theoretical calculations were carried out first at the Hartree–Fock level for full geometry optimization of $CoCF_3^+$ using the standard effective core potential²³ for Co^+ , and the Dunning–Hay double- ζ basis set for C and F atoms.²⁴ In order to treat the effect of electron correlation, all of the calculations were repeated using DFT with Becke-3-LYP for the exchange correlation functional.²⁵ This functional has three fitted parameters and includes the Hartree–Fock exchange term. Although this functional is not exact,²⁶ it gives relatively accurate results for bond dissociation energies and geometries of transition metal compounds.²⁷ Corrections for zero point energy have been taken into account, as well as different spin configurations for Co^+ including 3F and 5F states. All of the calculations were performed with the Gaussian 94/DFT program package.²⁸

Acknowledgment is made to the Division of Chemical Sciences in the Office of Basic Energy Sciences in the United States Department of Energy (Grant No. DE-FG02-87ER13766).

OM970184Z

⁽³³⁾ Paulino, J. A.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 1845.
(34) Paulino, J. A.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5573.
(35) Kapp. J.; Schreiner, P. R.; Schlever, P. V. R. J. Am. Chem. Soc.

⁽³⁵⁾ Kapp, J.; Schreiner, P. R.; Schleyer, P. V. R. J. Am. Chem. Soc. 1996, 118, 12154.

⁽³⁶⁾ Chen, Q.; Auberry, K. J.; Freiser, B. S. *Int. J. Mass Spectrom. Ion Processes*, submitted for publication.