# **ORGANOMETALLICS**

Volume 19, Number 4, February 21, 2000

© Copyright 2000
American Chemical Society

### Communications

## Iridium-Catalyzed Dimerization of Terminal Alkynes to (*E*)-Enynes, (*Z*)-Enynes, or 1,2,3-Butatrienes

Toshimichi Ohmura, Syun-ichi Yorozuya, Yasunori Yamamoto, and Norio Miyaura\*

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Received November 19, 1999

Summary: The iridium complex generated in situ from [Ir(cod)Cl]<sub>2</sub> and a phosphine ligand catalyzed the dimerization of terminal alkynes to give (E)-enyne, (Z)-enyne, or 1,2,3-butatriene derivatives in the presence of triethylamine. The triarylphosphine complex selectively yielded linear (E)-enynes for silylethynes, while the tripropylphosphine complex provided linear (Z)-enynes for silylalkynes or 1,2,3-butatrienes for tert-alkylethynes.

A great deal of attention has been focused on the transition-metal-catalyzed dimerization of terminal alkynes as an efficient method for the synthesis of unsaturated four-carbon compounds, which are versatile intermediates for further organic transformation. The palladium complexes dimerize terminal alkynes to branched enynes, while rhodium, iridium, and ru-

thenium<sup>5</sup> catalysts provide linear (E)- or (Z)-enynes or a mixture of the two in most cases. On the other hand, the formation of 1,2,3-but atrienes has been reported in the ruthenium-catalyzed reaction of terminal alkynes. 5g.6 Although the regio- and stereoselectivities, including their mechanistic aspects, have been extensively studied for individual transition metals and alkynes, the factors influencing different dimeric product formations have not been clearly understood. We wish to report herein the regio- and stereoselectivity and the scope and limitations in the iridium-catalyzed dimerization of terminal alkynes (Scheme 1). The reaction was greatly accelerated in the presence of a base such as triethylamine, and the products and their stereoselectivity were highly dependent on the alkynes and the phosphine ligand on the iridium catalyst. One of the three possible

(6) (a) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. *J. Am. Chem. Soc.* **1991**, *113*, 9604. (b) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Johar, P. S. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 987.

Grotjahn, D. B. In Comprehensive Organometallic Chemistry II;
 Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 12.

<sup>(2)</sup> Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rühter, G. J. Am. Chem. Soc. 1997, 119, 698.

<sup>(3) (</sup>a) Singer, H.; Wilkinson, G. J. Chem. Soc. A 1968, 849. (b) Yoshikawa, S.; Kiji, J.; Furukawa, J. Makromol. Chem. 1977, 178, 1077. (c) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem. 1990, 55, 3277. (d) Kovalev, I. P.; Yevdakov, K. V.; Strelenko, Y. A.; Vinogradov, M. G.; Nikishin, G. I. J. Organomet. Chem. 1990, 386, 139. (e) Boese, W. T.; Goldman, A. S. Organometallics 1991, 10, 782.

<sup>(4)</sup> Jun, C.-H.; Lu, Z.; Crabtree, R. H. Tetrahedron Lett. 1992, 33, 7119.

<sup>(5) (</sup>a) Dahlenburg, L.; Frosin, K.-M.; Kerstan, S.; Werner, D. J. Organomet. Chem. 1991, 407, 115. (b) Echavarren, A. M.; Lopez, J.; Santos, A.; Montoya, J. J. Organomet. Chem. 1991, 414, 393. (c) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (d) Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Organometallics 1994, 13, 4984. (f) Matsuzaka, H.; Takagi, Y.; Ishii, Y.; Nishio, M.; Hidai, M. Organometallics 1995, 14, 2153. (g) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968. (h) Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 5275. (i) Yi, C. S.; Liu, N.; Rheingold, A. L.; Liable-Sands, L. M. Organometallics 1997, 16, 3910. (j) Qü, J.-P.; Masui, D.; Ishii, Y.; Hidai, M. Chem. Lett. 1998, 1003.

**Scheme 1. Dimerization of Terminal Alkynes** 

Table 1. Effect of Ligand and Base on Dimerization of 2  $(R = Me_2PhSi)^a$ 

|       |                  | base                    |        |              | isomeric ratio $^c$ |               |   |
|-------|------------------|-------------------------|--------|--------------|---------------------|---------------|---|
| entry | ligand           | (amt, equiv)            | time/h | yield/% $^b$ | (E)- <b>3</b>       | (Z)- <b>3</b> | 5 |
| 1     | PPh <sub>3</sub> | none                    | 36     | 26           | 75                  | 25            | 0 |
| 2     | $PPh_3$          | $Et_3N$ (0.03)          | 4      | 92           | 96                  | 4             | 0 |
| 3     | $PPh_3$          | $Et_3N (1.0)$           | 4      | 93           | 96                  | 4             | 0 |
| 4     | $PPh_3$          | $Et_3N$ (5.0)           | 4      | 93           | 96                  | 4             | 0 |
| 5     | $PPh_3$          | pyridine (5.0)          | 4      | 23           | 96                  | 4             | 0 |
| 6     | $PMePh_2$        | Et <sub>3</sub> N (5.0) | 4      | 71           | 95                  | 5             | 0 |
| 7     | $PMe_2Ph$        | $Et_3N$ (5.0)           | 4      | 23           | 87                  | 12            | 1 |
| 8     | $PMe_3$          | $Et_3N$ (5.0)           | 26     | 18           | 51                  | 49            | 0 |
| 9     | $PEt_3$          | $Et_3N$ (5.0)           | 26     | 45           | 20                  | 78            | 2 |
| 10    | $PPr_3$          | $Et_3N$ (5.0)           | 26     | 75           | 2                   | 96            | 2 |
| 11    | $PBu_3$          | $Et_3N$ (5.0)           | 26     | 51           | 16                  | 84            | 0 |
| 12    | $P(i-Pr)_3$      | $Et_3N$ (5.0)           | 26     | trace        |                     |               |   |
| 13    | $PCy_3$          | $Et_3N$ (5.0)           | 26     | trace        |                     |               |   |

<sup>a</sup> A mixture of [Ir(cod)Cl]<sub>2</sub> (1; 0.015 mmol), a phosphine ligand (0.06 mmol), and (dimethylphenylsilyl)ethyne (1 mmol) in cyclohexane (5 mL) was stirred at 50 °C in the presence or absence of a base.  $^b$  Isolated yields by chromatography over silica gel.  $^c$  Determined by <sup>1</sup>H NMR.

isomers ((E)-3, (Z)-3, or 5) was selectively synthesized by choosing an appropriate phosphine ligand and an alkyne, though formation of 4 was not observed under any reaction conditions.

The effects of a phosphine ligand and a base on the dimerization of Me<sub>2</sub>PhSiC≡CH are summarized in Table 1. The reaction suffered from low yields and low stereoselectivity (entry 1), but the presence of a catalytic amount or large excess of Et<sub>3</sub>N greatly improved the yields and the *E* selectivity (E:Z = 96:4); the reaction was complete within 4 h at 50 °C (entries 2-4). Diisopropylethylamine and diethylamine gave similarlygood results, but less basic pyridine and cyclohexylamine were not effective (entry 5). The reaction was fast in cyclohexane and toluene but very slow in THF and acetonitrile.

The catalyst exhibited a pronounced effect of the ligand, preferring a less basic triarylphosphine for yielding (*E*)-**3** (entries 4, 6, and 7). Although the reaction significantly slowed with donating trialkylphosphines, these ligands predominantly produced (Z)-3, in improved yields and Z selectivity with an increase in the carbon numbers of the phosphine ligand (entries 8-10). Finally, the best Z selectivity exceeding 96% was achieved by the tripropylphosphine complex (entry 10), whereas bulky trialkylphosphines such as triisopropylphosphine, which have been recommended for the ruthenium-catalyzed dimerization,5g,6 resulted in low yields or low selectivity (entries 11−13).

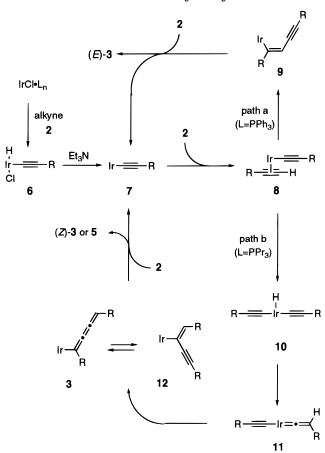

The dimerization of the representative alkynes catalyzed by the [Ir(cod)Cl]<sub>2</sub>/4PPh<sub>3</sub> or [Ir(cod)Cl]<sub>2</sub>/4PPr<sub>3</sub>

Table 2. Dimerization of 2<sup>a</sup>

|        |                                    |                  |        |              | isomeric ratio <sup>c</sup> |               |        |
|--------|------------------------------------|------------------|--------|--------------|-----------------------------|---------------|--------|
| entry  | R in <b>2</b>                      | ligand           | time/h | yield/% $^b$ | (E)- <b>3</b>               | (Z)- <b>3</b> | 5      |
| 1      | Ph <sub>2</sub> MeSi               | PPh <sub>3</sub> | 4      | 95           | 98                          | 2             | 0      |
| 2      | $Ph_2MeSi$                         | $PPr_3$          | 20     | 62           | 11                          | 89            | 0      |
| 3      | Me <sub>3</sub> Si                 | $PPh_3$          | 6      | 83           | 94                          | 6             | 0      |
| 4      | Me <sub>3</sub> Si                 | $PPr_3$          | 24     | 70           | 8                           | 91            | 1      |
| $5^d$  | <sup>i</sup> Pr <sub>3</sub> Si    | $PPh_3$          | 12     | 50           | 86                          | 14            | 0      |
| $6^d$  | <sup>i</sup> Pr <sub>3</sub> Si    | $PPr_3$          | 60     | 70           | 14                          | 86            | 0      |
| $7^d$  | $2-MeC_6H_4$                       | $PPh_3$          | 9      | 55           | 81                          | 19            | 0      |
| $8^d$  | $2-MeC_6H_4$                       | $PPr_3$          | 24     | 78           | 13                          | 87            | 0      |
| $9^d$  | $4-MeC_6H_4$                       | $PPh_3$          | 6      | 19           | 66                          | 34            | 0      |
| $10^d$ | $4-MeC_6H_4$                       | $PPr_3$          | 24     | 67           | 24                          | 76            | 0      |
| $11^d$ | $^t$ C <sub>4</sub> H <sub>9</sub> | $PPh_3$          | 18     | 36           | 94                          | 4             | 2      |
| 12     | $^{t}C_{4}H_{9}$                   | $PPr_3$          | 18     | 74           | 0                           | 7             | $93^e$ |
| $13^d$ | $Me_2PhC$                          | $PPh_3$          | 36     | 53           | 85                          | 10            | 5      |
| 14     | Me <sub>2</sub> PhC                | $PPr_3$          | 24     | 83           | 0                           | 16            | $84^f$ |
| $15^d$ | Me <sub>2</sub> (TBSO)C            | $PPh_3$          | 36     | 23           | 81                          | 16            | 3      |
| 16     | Me <sub>2</sub> (TBSO)C            | $PPr_3$          | 36     | 71           | 0                           | 22            | $78^f$ |
| $17^d$ | $C_6H_{13}$                        | $PPh_3$          | 36     | <10          |                             |               |        |

<sup>a</sup> A mixture of [Ir(cod)Cl]<sub>2</sub> (1; 0.015 mmol), a phosphine ligand (0.06 mmol), 2 (1 mmol), Et<sub>3</sub>N (5 mmol), and cyclohexane (3 mL) was stirred at 50 °C, unless otherwise noted. <sup>b</sup> Isolated yields by chromatography over silica gel. <sup>c</sup> Determined by <sup>1</sup>H NMR. <sup>d</sup> Reactions were conducted at 80 °C in a sealed tube. e Reaction gave (*Z*)-**5**. <sup>f</sup> The stereochemistry was not determined.

### Scheme 2. Catalytic Cycle



complex are summarized in Table 2.7 Silylacetylenes such as Ph<sub>2</sub>MeSiCCH and Me<sub>3</sub>SiCCH selectively yielded (E)-3 with the PPh<sub>3</sub> complex and (Z)-3 with the PPr<sub>3</sub> complex (entries 1-4). Both ligands revealed similar

<sup>(7)</sup> Typical procedure: A mixture of [Ir(cod)Cl]2 (0.015 mmol), a phosphine ligand (0.06 mmol), an alkyne (1 mmol), and Et<sub>3</sub>N (5 mmol) in cyclohexane (3 mL) was stirred at 50 °C under Ar. Evaporation of volatile materials followed by chromatography over silica gel afforded the product.

stereoselectivity for Pr<sub>3</sub>SiCCH, 2-MeC<sub>6</sub>H<sub>4</sub>CCH, and 4-MeC<sub>6</sub>H<sub>4</sub>CCH, though these reactions resulted in low yields and low selectivity due to the slow reaction, even at 80 °C (entries 5-10).

In contrast to the ligand-controlled reaction shown in entries 1-10, tert-alkylacetylenes exclusively produced 1,2,3-butatrienes 5 with the PPr<sub>3</sub> complex, 8 whereas the PPh<sub>3</sub> complex did not change the selectivity, giving (E)-3. (entries 11-16). The formation of 5 can be exclusive in bulky and presumably electron-rich alkynes, since they were in negligibly small amounts in silylacetylenes and arylacetylenes. On the other hand, all attempts at the dimerization of alkylacetylenes having propargylic hydrogens were unsuccessful (entry 17), whereas the Z-selective dimerization of 1-hexyne with a cationic iridium complex has been reported by Crabtree.4

A plausible mechanism involving two catalytic cycles (paths a and b) is shown in Scheme 2. Although the related dimerization reactions have been carried out under neutral conditions, 2-6 the phosphine ligand and the presence of a base were significant for achieving both product selectivity and fast reaction rate. The oxidative addition of the alkyne C-H bond to a lowvalent transition metal yields an RCC-M-H (M = Rh, Ir, Ru, Pd) complex, which leads to vinyl-metal species

through insertion of a coordinated alkyne into the M-H bond or the M-C bond, depending on the phosphine ligand on the metal catalyst. However, the addition of terminal alkyne **2** to the IrCl complex in the presence of Et<sub>3</sub>N may afford the alkynyl-iridium(I) complex 7, as an active species for dimerization. The phosphine ligand then controls the product selectivity either by leading to the insertion process ( $8 \rightarrow 9$ , path a) or by leading to the oxidative addition of a coordinated alkyne  $(8 \rightarrow 10)$ , path b). The "path a" giving (E)-3 is predominant when using the PPh<sub>3</sub> complex, 9c whereas the high electron-donating property of trialkylphosphines such as Pr<sub>3</sub>P favors the oxidative addition of the terminal C-H bond (path b)<sup>6,10</sup> rather than the insertion process. The formation of (Z)-3 through the alkynyl vinylidene complex 11 and the specific formation of (Z)-5 in tertbutylacetylene from the same intermediate has been amply demonstrated by Werner<sup>10</sup> and Wakatsuki<sup>6a</sup> in the rhodium and ruthenium complexes.

**Supporting Information Available:** Text giving details of the synthesis of all compounds reported in this paper. This material is available free of charge via the Internet at http://pubs.acs.org.

#### OM990912D

(9) Alkynyl-iridium(I) or -rhodium(I) complexes catalyze the polymerization of phenylacetylene through the cis-insertion process in the absence or the presence of an amine base: (a) Brown, C. K.; Georgiou, D.; Wilkinson, G. *J. Chem. Soc. A* **1971**, 3120. (b) Tabata, M.; Yang, W.; Yokota, K. *Polym. J.* **1990**, *22*, 1105. (c) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1994**, 116, 12131.

(10) Schäfer, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1315.

<sup>(8)</sup> tert-Butylacetylene gave (Z)-1,4-di-tert-butylbutatriene (Table 2, entry 12). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.52 (s, 2H), 1.13 (s, 18H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.5, 118.5, 35.1, 29.8. The stereochemistry was assigned by comparison of <sup>1</sup>H NMR spectra of the corresponding E and Z isomers obtained by the catalytic dimerization of tert-butylacetylene with  $RuH_2(CO)(PPh_3)_3$ . See also: Tigchelaar, M.; Kleijn, H.; Elsevier, C. J.; Meijer, J.; Vermeer, P. Tetrahedron Lett. **1981**, *22*, 2237.