# Palladium(II) Complexes of Chiral 1,2-Diiminophosphoranes: Synthesis, Structural Characterization, and Catalytic Activity for the Allylic Alkylation

Mathieu Sauthier, Jorge Forniés-Cámer, Loïc Toupet, and Régis Réau\*

Organométalliques et Catalyse, Chimie et Electrochimie Moléculaires, UMR 6509, CNRS-Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Received October 4, 1999

Chiral 1,2-bis[tris(dimethylamino)phosphinimino]cyclohexane (7a, 80% yield), 1,2-bis[tris-(dimethylamino)phosphinimino]-1,2-diphenylethane (7b, 74% yield), 1,2-bis[triphenoxyphosphinimino]cyclohexane (9a, 85% yield), and 1,2-bis[triphenoxyphosphinimino]-1,2-diphenylethane (9b, 70% yield) have been prepared using (1R,2R)-1,2-diaminocyclohexane or (1R,2R)-1,2-diphenylethylenediamine and the corresponding phosphine dibromide derivatives (the Kirsanov route). 1,2-Bis[triphenylphosphinimino]cyclohexane (2), 1,2-bis[triphenylphosphinimino]-1,2-diphenylethane (3), and 1,2-diiminophosphoranes 7b and 9b reacted with  $[Pd(\eta^3-C_3H_5)Cl]_2$  in the presence of a silver salt in  $CH_2Cl_2$  at room temperature to afford the cationic complexes 10 (81% yield), 11 (84% yields), 15 (78% yield), and 16 (74% yield), respectively. According to the same general procedure, palladium complexes [(\eta^3-PhCHCHCHPh)(2)Pd]TfO (13, 88% yield) and  $[(\eta^3 - PhCHCHCHPh)(3)Pd]$ TfO (14, 86% yield) have been prepared. Single-crystal X-ray diffraction studies of derivatives 10, 11, and 13 have been carried out. They revealed that  $C_2$  symmetry was retained for derivative 3 upon coordination, but lost for 2 in the coordination sphere of the metal. <sup>13</sup>C NMR chemical shifts for the terminal C atoms of the allyl moiety of these complexes indicate that the donor ability of 1,2-diiminophosphoranes varies with the nature of the P-substituents and is comparable to that of other sp<sup>2</sup>-hybridized nitrogen ligands. 1,2-Diiminophosphoranes were evaluated as ligands for the Pd-catalyzed enantioselective allylic substitution reaction of rac-1,3diphenylprop-2-enyl acetate with the anion of dimethyl malonate. Ligands 3 and 7a,b induce good catalytic activities compared with other N,N-ligands but moderate ee's (10-77%) at 36 °C. Higher ee's (85%) were obtained at room temperature with ligand 3 but at the expense of the catalytic activity. This study revealed that 1,2-diimonophosphoranes are able to stabilize Pd(0) species during a catalytic process and to induce notable levels of enantioselectivity.

## Introduction

In recent years, optically active bidentate donor species containing  $\mathrm{sp^2}$ -hybridized nitrogen atoms have attracted much attention as ligands for transition-metal-catalyzed asymmetric transformations. For example, enantiomerically pure  $C_2$ -symmetric bis-oxazolines have afforded high levels of enantioselectivity in a number of asymmetric processes such as the Diels—Alder or the Mukaiayma reactions and in two important palladium-catalyzed processes, namely allylic alkylation and alternating copolymerization of substituted styrenes with CO. 2f

Iminophosphoranes (phosphazenes), compounds with the general structure  $R_3P=N-R$ , date back to 1919, <sup>3a</sup> but their chemistry has only really been explored in the last three decades. They have found numerous applications, which include their use as ylides in organic synthesis (aza-Wittig reaction) or as building blocks for P-N-backbone polymers (polyphosphazenes). <sup>3</sup> Iminophosphoranes possess a highly polarized P=N bond and have been shown to coordinate to transition metals via the approximately  $sp^2$ -hybridized nitrogen atom to give stable complexes. <sup>3,4</sup> In recent years, the most studied ligands incorporating the iminophosphorane moiety have been the homobidentate and heterobidentate derivatives A-D (Scheme 1). To the best of our knowl-

<sup>\*</sup> Corresponding author. E-mail: regis.reau@univ-rennes.1.fr. (1) (a) Togni, A.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 497. (b) Wills, M.; Tye, H. J. Chem. Soc., Perkin Trans. 1999, 1109. (2) (a) Evans, D. A.; Johnson, J. S. J. Am. Chem. Soc. 1998, 120, 4895. (b) Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. J. Am. Chem. Soc. 1997, 119, 7893. (c) Pfaltz, A. Acc. Chem. Res. 1993, 26, 399. (d) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 395. (e) Hoarau, O.; Ait-Haddou, H.; Daran, J. C.; Cramailière, D.; Balavoine, G. A. Organometallics 1999, 23, 4712. (f) Brookhart M.; Wagner M. I. J. Am. Chem. Soc. 1996, 118, 7219.

<sup>(3) (</sup>a) Staudinger, H.; Meyer, J. J. Helv. Chim. Acta 1919, 2, 635. (b) Johnson, A. W.; Kaska, W. C.; Astoja Stanzewski, K. A.; Dixon, D. A. Ylides and Imines of Phosphorus; Wiley-Interscience Publication, John Wiley and Sons: New York. 1993. (c) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353. (d) The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; John Wiley and Sons: Baffins Lane, England, 1994; Vol. 3. (e) Allcock, H. R. Science 1992, 255, 1106. (4) (a) Dehnicke, K.; Krieger, M.; Massa, W. Coord. Chem. Rev. 1999, 182, 19. (b) Roesky, H. W.; Witt, M. Chem. Rev. 1994, 94, 1163.

#### Scheme 1

edge, before 1998,5 there has been only one report of transition metal complexes of bis-iminophosphoranes A (Scheme 1,  $Y = -CH_2 - CH_2 - CH_2$ of type B have been studied in depth, with bis(iminophosphoranyl)methane derivatives ( $Y = CH_2$ , CHLi, C:) proving to be versatile ligands. 6b-f Another class of wellstudied ligands are difunctional compounds C and D that contain a second donor site, which, in most cases, is a phosphino group. 6g-q These heteroatomic donor ligands possess both "hard" nitrogen and "soft" phosphorus(III) centers. Quite surprisingly, iminophosphorane-containing species have received very little attention as ligands for homogeneous catalysis<sup>5a,7</sup> probably because they are believed to be relatively hard donors capable only of stabilizing metals in medium to high oxidation states.

Our research has focused on the synthesis of chiral 1,2-diiminophosphoranes of type A possessing a chiral backbone as ligands for asymmetric catalysis. We anticipated that these 1,2-diiminophosphoranes should act as tightly binding chelates and thus would be capable of stabilizing metal centers involved in catalytic cycles, even in rather low oxidation states. Furthermore,

(5) (a) Reetz, M. T.; Bohres, E.; Goddard, R. Chem. Commun. 1998, 935. (b) Tardif, O.; Donnadieu, B.; Réau, R. C. R. Acad. Sci. Paris. **1998**, *1*, II, 661.

(6) (a) Appel, R.; Volz, P. Z. *Anorg. Allg. Chem.* **1975**, *413*, 45. (b) Avis, M. W.; Vrieze, K.; Ernsting, J. E.; Elsevier, C. J.; Veldman, N.; Spek, A. L.; Katti, K. V.; Barnes, C. L. *Organometallics* **1996**, *15*, 2376. (c) Avis, M. W.; Vrieze, K.; Kooijman, H.; Spek, L.; Elsevier, C. J.; Veldman, N.; Spek, A. L.; Katti, K. V.; Barnes, C. L. *Inorg. Chem.* **1995**, *24*, 4002. (d) Implify R.; Neffens, S.; Elsevier, C. L. *Constant*, V.; Step. 34, 4092. (d) Imhoff, P.; Nefkens, S.; Elsevier, C.; Goubitz, K.; Stam, H. Organometallics 1991, 10, 1421. (e) Imhoff, P.; Elsevier, C. J. J. Organomet. Chem. 1989, 367, C61. (f) Cavell, R. G.; Babu, R. P. K.; Kasani, A.; McDonald, R. J. Am. Chem. Soc. 1999, 121, 5802. (g) Katti, K. V.; Cavell, R. G. Inorg. Chem. 1989, 28, 413. (h) Katti, K. V.; Cavell, R. G. Inorg. Chem. 1989, 28, 3033. (i) Katti, K. V.; Cavell, R. G. Organometallics 1989, 8, 2147. (j) Katti, K. V.; Batchelor, R. J.; Einstein, F. W. B.; Cavell, R. G. Inorg. Chem. 1990, 29, 808. (k) Katti, K. V.; Cavell, R. G. *Organometallics* **1991**, *10*, 539. (l) Katti, K. V. Santarsiero, B. D.; Pinkerton, A. A.; Cavell, R. G. Inorg. Chem. 1993, 32, 5919. (m) Balakrishna, M. S.; Santarsiero, B. D.; Cavell, R. G. Inorg. Chem. 1994, 33, 3079. (n) Liu, C. Y.; Chen, D. Y.; Cheng, M. C.; Peng, S. M.; Liu, S. T. Organometallics 1995, 14, 1983. (o) Reed, R. W.; Santarsiero, B. D.; Cavell, R. G. *Inorg. Chem.* **1996**, *35*, 4292. (p) Crociani, L.; Tisato, F.; Refosco, F.; Bandoli, G.; Corain, B.; Venanzi, L. M. *J. Am. Chem. Soc.* **1998**, *120*, 2973. (q) Molina, P.; Arques, A.; Garcia, A.; de Arellano, M. C. R. Eur. J. Inorg. Chem. 1998, 1359.

(7) (a) Keim, W.; Appel, R.; Storeck, A.; Kruger, C.; Goddard, R. Angew. Chem., Int. Ed. Engl. 1981, 20, 116. (b) Brunel, J. M.; Legrand, O.; Reymond, S.; Buono, G. J. Am. Chem. Soc. 1999, 121, 5807. N-metalated iminophosphoranes (phosphoraneiminato complexes) have been more widely used in homogeneous catalysis. See for example: (c) Cavell, R. G.; Katti, K. V. US 005352813 A, Oct. 4, 1994. (d) Somogybari, A. F.; Creed, B. L.; Nicola, A. P.; Sanger, A. R.; Law, D. J.; Cavell, R. G. US 005557023 A, Sep. 17, 1996. (e) Law, D. J.; Cavell, R. G. *J. Mol. Catal.* **1994**, *91*, 175. (f) Stephan, D. W.; Guérin, F.; Spence, R.; Koch, L.; Gao, X.; Brown, S. J.; Swabey, J. W. Wang, Q.; Xu, W.; Zoricak, P.; Harrison, D. G. Organometallics 1999, 18, 2046. (g) Stephan, D. W.; Stewart, J. C.; Guérin, F.; Spence, R.; Xu, W.; Zoricak, P.; Harrison, D. G. Organometallics 1999, 18, 1116. (h) Vollmerhaus, R. Shao, P.; Taylor, N. J.; Collins, S. Organometallics 1999. 18. 2731.

chelating ligands are supposed to accomplish higher optical inductions in asymmetric reactions. The ability to access a series of related ligands possessing various steric and electronic properties is often a key factor in their selection for catalytic applications. From a design standpoint, strategic variations of both the steric and electronic properties of derivatives A can be envisaged by changing either the substituents at phosphorus or the nature of the carbon backbone.

The first examples of chiral derivatives **A** have recently been reported by Reetz and co-workers<sup>5a</sup> (Scheme 1, compounds 1, 2) and by our group<sup>5b</sup> (compounds 2-4). In this paper, the syntheses of new chiral 1,2-diiminophosphoranes containing various P-substituents are described. The coordination behavior of 1,2diiminophosphoranes toward cationic (allylic)Pd(II) moieties and their first application in palladium-catalyzed allylic alkylation, a classical and useful carbon—carbon bond forming process involving both Pd(II) and Pd(0) complexes,8 are presented.

#### **Results and Discussion**

Synthesis of New Chiral 1,2-Diiminophosphoranes. The steric demand of derivatives A should be directly influenced by the nature of the carbon backbone (cyclic versus acyclic, bulkiness of the substituents) and the steric hindrance of the P-substituents. The Psubstituents will also concurrently influence the electronic properties of ligands A since it is well-known that their nature has a significant influence on the basicity of these ylides.<sup>3b-d</sup> For example, Schwesinger has shown that the basicity of certain P-amino-substituted iminophosphoranes is nearly 10<sup>4</sup> times stronger than DBU [1,8-diazabicyclo[5.4.0]undec-7-ene, p $K_a(CH_3CN) = 24$ ],  $^{9a,b}$ whereas P-alkoxy-substituted iminophosphoranes are weaker bases than Et<sub>3</sub>N.<sup>9c</sup> Thus, in the present study, these two types of P-substituents were selected with the goal of obtaining ligands possessing very different electronic properties.

Iminophosphoranes are best prepared through one of two major routes, namely the reaction of azides with phosphines (the Staudinger reaction) and the reaction of phosphine dibromides with amines followed by treatment with a base (the Kirsanov reaction). 3b,c We selected this second route, which has previously been used to prepare 1,2-diiminophosphoranes **1–4**,<sup>5</sup> since it avoids the use of hazardous azides and since optically active 1,2-diamines<sup>10</sup> are now readily accessible.

Optically active diamines 5a,b reacted slowly with 2 equiv of Br<sub>2</sub>P(NMe<sub>2</sub>)<sub>3</sub>, in neat triethylamine at room temperature, to give the corresponding diphosphonium salts 6a,b along with 2 equiv of triethylammonium bromide (Scheme 2). Compounds 6a,b were character-

<sup>(8) (</sup>a) Prévos, R.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 323. (b) Selvakumar, K.; Valentini, M.; Wörle, M.; Pregosin, P. Organometallics 1999, 18, 1207. (c) Kudis, S.; Helchem, G. Angew. Chem., Int. Ed. Engl. 1998, 37, 3047. (d) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 815. (e) Shibasaki, M. In Advances in Metal-Organic Chemistry, Liesbeskind, L. S., Ed.; JAI Press: Greenwich, 1996; Vol. 5, p 119. (f) Tsuji, J. *Palladium Reagents and Catalysts*; John Wiley: Chichester, 1995.

<sup>(9) (</sup>a) Schwesinger, R. Chimia 1985, 39, 269. (b) Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H. Chem. Ber. 1994, 127, 2435. (c) Alkhathlan, H.; Al-Lohedan, H. A. Phosphorus, Sulfur, Silicon 1991, 63, 301.

<sup>(10) (</sup>a) Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161. (b) Corey, E. J.; Pikul, S. Org. Synth. 1992, 71, 22.

Scheme 2

ized in solution by multinuclear NMR spectroscopy and high-resolution FAB mass spectrometry. Their <sup>31</sup>P NMR chemical shifts are typical for tetrakisaminophosphonium salts<sup>11</sup> (**6a**, +38.7; **6b**, +39.7), and according to NMR spectroscopy, they were obtained in almost quantitative yields. Note that these derivatives are air-stable and can be stored for weeks. No purification is needed prior to carrying out the subsequent deprotonation step. Indeed, addition at room temperature of an excess of NaH to THF solutions of crude 6a and 6b gave rise to the corresponding 1,2-diiminophosphazenes 7a and 7b, which were isolated, after purification, in 80% and 74% overall yields, respectively. As usually observed, 3b,11 their <sup>31</sup>P chemical shifts appeared at lower field than those of the corresponding phosphonium salts ( $\Delta \delta$ : **6a**/ 7a, 24.6 ppm; **6b/7b**, 19.8 ppm). The simplicity of the <sup>13</sup>C NMR spectra of **7a,b** is in favor of symmetric structures; the PNCH resonances appear as doublets (7a, 58.25,  $J_{PC} = 18.0 \text{ Hz}$ ; 7b, 67.94,  $J_{PC} = 25.0 \text{ Hz}$ ) with P-C coupling constants significantly superior to those observed for the corresponding phosphonium salts (6a, 55.51,  $J_{PC} = 11.7$  Hz; **6b**, 63.10,  $J_{PC} = 11.0$  Hz). Derivatives 7a,b have been characterized by highresolution mass spectrometry and gave satisfactory elemental analyses.

These new chiral phosphazenes can be kept under an inert atmosphere at room temperature for weeks. In marked contrast, the related P-phenoxy-substituted derivatives **9a**,**b** prepared according to the same route (Scheme 2) are extremely air- and water-sensitive. They decomposed rapidly in THF or CH<sub>2</sub>Cl<sub>2</sub> solutions, giving rise to complicated mixtures of products according to <sup>31</sup>P NMR spectroscopy. Only the 1,6-diphosphonium salt 8a and 1,2-diiminophosphorane 9a (80% yield) (Scheme 2) possessing the cyclohexyl skeleton are stable enough to be fully characterized by multinuclear NMR spectroscopy in solution; derivative **8a** was also characterized by high-resolution mass spectrometry.

As expected, these P-phenoxy derivatives give <sup>31</sup>P NMR signals at rather high field, the 1,2-diiminophosphorane being the most shielded (8a, -0.9; 9a, -36.7). Once again, in the <sup>13</sup>C NMR spectra, the PNCH resonances appear as doublets with a larger coupling constant for the phosphazene 9a compared with the

(11) Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data; CRC Press Inc.: Boca Raton, 1991.

phosphonium salt **8a** (**8a**, 57.81,  $J_{PC} = 10.9$  Hz; **9a**, 58.81,  $J_{PC} = 15.6$  Hz). Derivative **9b** is highly unstable, it has been observed only by <sup>31</sup>P NMR spectroscopy (-35.2 ppm) in the free state, but has been fully characterized following its coordination to a Pd(II) center (vide infra, complex 16). The target ligands 9a,b are best prepared in a "one-pot" procedure using NaH with neither isolation nor purification of the intermediate diphosphonium salts (Scheme 2). This method allows derivatives 9a and 9b to be obtained in 85% (isolated) and 70% (according to <sup>31</sup>P NMR spectroscopy) yields, respectively.

Complex Formation and Crystal Structures. The enantioselective palladium-catalyzed alkylation of allylic acetates is a powerful synthetic tool for the enantioselective construction of carbon-carbon or carbon-heteroatom bonds and has proved to be a useful testing ground for the evaluation and design of new ligands. 2c-d,8 The generally accepted mechanism with "soft" nucleophiles such as stabilized carbanions involves a Pd(0) species which is thought to displace the allylic leaving group to give a cationic [Pd(II)( $\eta^3$ -allyl)] complex. This species is then subjected to a nucleophilic attack resulting in the formation of the organic substitution product with concomitant regeneration of the catalytically active Pd(0) species. 2c-d,8 As a result, this reaction was selected in order to evaluate the ability of 1,2-diiminophosphoranes to stabilize the reduced transition metal intermediates formed during the catalytic cycle and also to access the efficiency of these ligands at inducing a certain degree of enantioselectivity. Thus, with this in mind, it was first of primary interest to elucidate the coordination behavior of 1,2-diiminophosphoranes toward cationic (allylic)palladium fragments.

The study of the coordination chemistry of 1,2diiminophosphoranes is practically a virgin area. Solidstate structures are known for only three complexes featuring 2 as a ligand [2·Rh(cod)+,5a 2·CoCl2,5a and 2· PdCl<sub>2</sub><sup>5b</sup>]. These studies have revealed that derivative **2** always loses its  $C_2$  symmetry upon coordination. It is quite clear that this surprising behavior could strongly influence the chirality transfer during catalytic processes. This poses the important question: to what extent does the nature of the carbon backbone of 1,2diiminophosphoranes influence the loss of  $C_2$  symmetry in the coordination sphere of a metal? To probe this influence, complexes were prepared using derivatives 2 and 3, which are the most easily accessible ligands.

Complexes 10 and 11 were obtained using a standard procedure from the corresponding dimeric bridged palladium chloride complex via abstraction of the Cl ligand in CH<sub>2</sub>Cl<sub>2</sub> at room temperature by a silver salt in the presence of a slight excess of the 1,2-diiminophospho-

### Scheme 3

rane (Scheme 3). The trifluoromethanesulfonate (TfO<sup>-</sup>) and tetrafluoroborate (BF<sub>4</sub><sup>-</sup>) salts were isolated in 81% and 84% yields, respectively, after purification by column chromatography on silica gel or by crystallization. It is noteworthy that, in contrast to the free ligands 2 and 3, these complexes are air- and moisture-stable.

The <sup>31</sup>P NMR spectra of complexes **10** and **11** consisted of two sharp lines (10, +25.6, +26.5; 11, +34.0, +35.1) and revealed a large coordination shift effect ( $\Delta\delta$ = 25-35 ppm) similar to those observed for other iminophosphoranes.<sup>5,6</sup> According to <sup>13</sup>C NMR spectroscopy, all the carbon atoms of the phosphazene skeleton in both complexes are inequivalent. The presence of two phosphorus centers was clearly indicated by the multiplicity of the NCH resonances which appeared as doublets of doublets in the <sup>13</sup>C NMR spectra (complex **10**: 67.42,  $J_{PC} = 14.1$  and 3.0 Hz; 68.55,  $J_{PC} = 14.9$  and 3.1 Hz) or in the <sup>1</sup>H NMR spectra (complex **11**: 4.04,  $J_{\text{PH}} = 16.3$  and 3.6 Hz; 4.14,  $J_{\text{PH}} = 16.3$  and 3.6 Hz). No fluxional behavior of complexes 10 and 11 was observed between room temperature and −80 °C in CD<sub>2</sub>-Cl<sub>2</sub> solutions, although a rapid apparent rotation of the allyl ligand is very likely. 12 The CH<sub>2</sub> protons from the allylic ligands of complexes 10 and 11 (Hanti, 1.12-2.23; H<sub>syn</sub>, 2.22-2.86) are notably more shielded than in the related cationic  $\eta^3$ -allylic palladium complexes, 12 this effect being more pronounced for the H<sub>anti</sub> atoms. It is quite likely that these unusual <sup>1</sup>H NMR chemical shifts are due to the anisotropic field provided by the phenyl groups of the  $-N=PPh_3$  moieties.

The crystal structures of the trifluoromethanesulfonate complex 10 (Figure 1, Table 1) and tetrafluoroborate complex 11 (Figure 2, Table 1) were determined by X-ray crystallographic analyses at room temperature (Table 2). Both structures gave relatively high weighted R values (10, 0.0802; 11, 0.0911), and the allyl ligands are disordered, with the central atom occupying two positions. This type of disorder is quite common. For example, it has been observed by high-quality X-ray diffraction studies (weighted R values of less than 2%) performed on related cationic palladium complexes featuring bis-oxazoline ligands. 12a

As expected, these new complexes show a slightly distorted square-planar geometry around the palladium atoms. The maximum deviations from the best plane

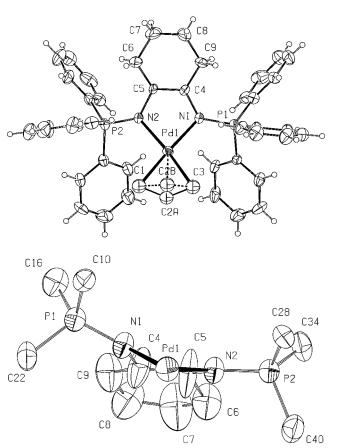



Figure 1. ORTEP drawing (thermal ellipsoid 40% probability) of the cation of complex **10**: (top) general view a, (bottom) view *b* along the N(1)-Pd-N(2) axis.

Table 1. Selected Bond Lengths (Å) and Bond Angles (deg) for Complexes 10, 11, and 13

|                 | 10        | 11        | 13         |
|-----------------|-----------|-----------|------------|
| Pd(1)-N(1)      | 2.127(7)  | 2.112(12) | 2.133(3)   |
| Pd(1)-N(2)      | 2.119(7)  | 2.097(12) | 2.161(3)   |
| Pd(1)-C(1)      | 2.146(11) | 2.17(3)   | 2.136(4)   |
| Pd(1)-C(2a)     | 2.117(15) | 2.09(3)   | 2.109(4)   |
| Pd(1)-C(2b)     | 2.12(4)   | 2.02(5)   | -          |
| Pd(1)-C(3)      | 2.129(11) | 2.14(2)   | 2.203(4)   |
| N(1)-C(4)       | 1.446(11) | 1.452(19) | 1.480(5)   |
| C(5)-N(2)       | 1.465(11) | 1.50(2)   | 1.472(5)   |
| N(1)-P(1)       | 1.593(7)  | 1.584(13) | 1.593(3)   |
| N(2)-P(2)       | 1.595(7)  | 1.585(13) | 1.582(3)   |
| N(1)-Pd(1)-C(3) | 107.3(4)  | 108.0(7)  | 103.05(14) |
| C(3)-Pd(1)-C(1) | 68.2(4)   | 67.4(9)   | 68.41(17)  |
| C(1)-Pd(1)-N(2) | 105.4(3)  | 103.8(8)  | 112.56(15) |
| N(2)-Pd(1)-N(1) | 79.0(3)   | 81.0(4)   | 76.97(12)  |
| Pd(1)-N(1)-C(4) | 106.7(6)  | 111.4(9)  | 110.4(2)   |
| N(1)-C(4)-C(5)  | 115.9(8)  | 109.7(13) | 108.2(3)   |
| C(4)-C(5)-N(2)  | 114.9(8)  | 108.1(14) | 108.1(3)   |
| C(5)-N(2)-Pd(1) | 110.4(5)  | 111.1(9)  | 96.9(2)    |
| P(1)-N(1)-Pd(1) | 123.0(4)  | 126.7(7)  | 125.58(17) |
| P(1)-N(1)-C(4)  | 128.3(6)  | 121.7(10) | 119.6(2)   |
| P(2)-N(2)-Pd(1) | 123.0(4)  | 125.4(6)  | 132.1(2)   |
| P(2)-N(2)-C(5)  | 126.5(6)  | 122.6(10) | 130.4(3)   |

defined by Pd, the two N-atoms of the phosphazene moieties, and the two terminal allylic C atoms are 0.027  $\hbox{\AA}$  for  ${f 10}$  and 0.055  $\hbox{\AA}$  for  ${f 11}$ . The bond lengths and bond angles of the (n3-C3H5)Pd cores are consistent with known literature values for palladium complexes involving  $\pi$ -allyl ligands. <sup>12a,13</sup> The Pd-C allylic terminal bond length differences are not significant ( $\Delta = 0.03 \text{ Å}$ ), given the rather large experimental uncertainties characteristic of these values in the present study (0.011 Å).

<sup>(12) (</sup>a) von Matt, P.; Lloyd-Jones G. C.; Minidis, A. B. E.; Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.; Rüegger, H.; Pregosin, P. S. *Helv. Chim. Acta* **1995**, *78*, 265. (b) Breutel, C.; Pregosin, P. S.; Salzmann, R.; Togni, A. *J. Am. Chem. Soc.* **1994**, *116*, 4067. (c) Sprinz, J.; Kiefer, M.; Helmchem, H.; Reggelin, M.; Huttner, G.; Walter, O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 1523.

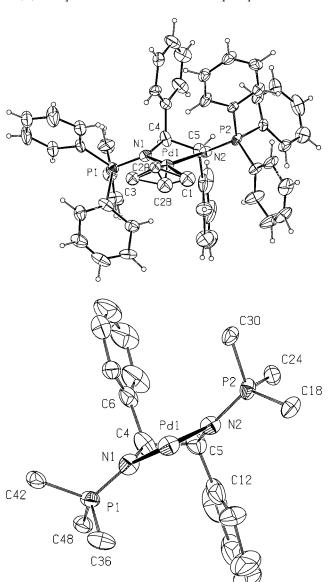



Figure 2. ORTEP drawing (thermal ellipsoid 40% probability) of the cation of complex **11**: (top) general view *a*, (bottom) view *b* along the N(1)-Pd-N(2) axis.

In both cases, the Pd-coordinated nitrogen atoms are almost planar (sum of angles around N atoms > 358°) and the P-N distances [1.595(7)-1.584(13) Å] are short but normal values for coordinated iminophosphoranes. 6b-r The N(1)-Pd-N(2) angles [10,  $79.0(3)^{\circ}$ ; 11,  $81.0(4)^{\circ}$ ] and the N-Pd bond lengths [2.097(12)-2.127(7) Å] are very similar for both derivatives and are consistent with those recorded for other chelating nitrogen donor ligands forming five- or six-membered metallacycles such as alkaloid-sparteine [86.1(5)°; 2.14(1)-2.16(1) Å],14 bipyridine [78.67(10)°; 2.085(2)-2.089(3) Å], 13a and bisoxazolines [84–87°; 2.075(3), 2.099(3) Å], 12a respectively. The C-N bond lengths [1.44-1.50 Å] are also typical. These data as a whole clearly indicate that the fivemembered metallacycles of complexes 10 and 11 are strain-free. The only dramatic difference between the

two structures is the conformation of the five-membered metallacycles and the relative positions of the two phosphorus moieties. For complex 10, the C(4), C(5), N(2), and Pd atoms lie almost in the same plane [maximum deviation, 0.04 Å], with the N(1) atom being out of this plane  $[Pd-N(1)-C(4)-C(5), 37.2(13)^{\circ}; N(2)-C(5), 37.2(13)^{\circ}]$ Pd-N(1)-C(4), -31.4(7)°]. As already observed for other complexes of 2,5a,b the five-membered metallacycle of complex 10 adopts a slightly distorted envelope conformation, with the two phosphino groups in a mutually cis configuration (Figure 1, view b). These structural features induce a loss of the  $C_2$  symmetry for ligand 2. In marked contrast, the five-membered metallacycle of complex **11** adopts a half-chair conformation [C(4)– C(5)-N(2)-Pd35.7(16)°; C(5)-C(4)-N(1)-Pd, 37.4(18)°], with the two phosphino groups in a mutually trans configuration (Figure 2, view b); ligand 3 retains its  $C_2$  symmetry in the coordination sphere of the metal.

The loss of  $C_2$  symmetry for 1,2-diiminophosphorane 2 upon coordination is now quite well established. It has been observed in the solid state with various transition metals (Co, <sup>5a</sup> Rh, <sup>5a</sup> Pd<sup>5b</sup>) and in solution for the complex **2**-PdCl<sub>2</sub> (<sup>31</sup>P NMR: +29.5 and +32.5; according to <sup>13</sup>C NMR spectroscopy, all the C atoms are inequivalent).<sup>5b</sup> The NMR spectra of complex 11 are not temperaturedependent between -80 and +50 °C, suggesting that no dynamic behavior of the five-membered metallacycle occurs over this temperature range. Furthermore, complex 12, which is easily obtained in 91% yield by reacting 1,2-diiminophosphorane 3 with (CH<sub>3</sub>CN)<sub>2</sub>PdCl<sub>2</sub> at room temperature, possesses a  $C_2$  symmetry in solution. It showed only one resonance by <sup>31</sup>P NMR spectroscopy (+36.6), and the NCHPh moieties gave only one set of signals in the  $^{1}H$  (3.45, dd,  $J_{H-P} = 13.6$ and 6.9 Hz, 2 H, NCH) and the  $^{13}$ C NMR (76.42, d,  $J_{C-P}$ = 12.0 Hz, NCH; 127.03, C<sub>p</sub>; 127.79, 128.57, C<sub>o,m</sub>; 144.59, C<sub>i</sub>) spectrum. It is thus very likely that the retention of  $C_2$  symmetry by **3** in the coordination sphere of a metal is also quite general. This result nicely illustrates the considerable influence of the carbon skeleton (cyclic versus acyclic) on the coordination behavior of 1,2-diiminophosphoranes.

It was of interest to prepare the related cationic palladium complexes possessing the  $\eta^3$ -1,3-diphenylallyl moieties since the asymmetric allylic alkylation tests were carried out using 1,3-diphenylprop-2-enyl acetate as the electrophile. These palladium complexes are the key intermediates that are subject to the attack of the soft malonate nucleophile in the well-accepted catalytic cycle. 2c-d,8 Complexes 13 (88% yield) and 14 (86% yield) were obtained by standard methods as air-stable crystalline TfO<sup>-</sup> and BF<sub>4</sub><sup>-</sup> salts, respectively (Scheme 3). Their spectroscopic data compare well with those of the related complexes 10 and 11 (Table 3). In the <sup>31</sup>P NMR spectra, two sharp lines were observed (13, +24.7, +33.6ppm; **14**, + 35.1, +37.6 ppm). One N*C*H moiety of complex **13** appeared as doublet of doublets in the <sup>13</sup>C NMR spectrum (69.50,  $J_{C-P} = 17.0$  and 3.1 Hz), while

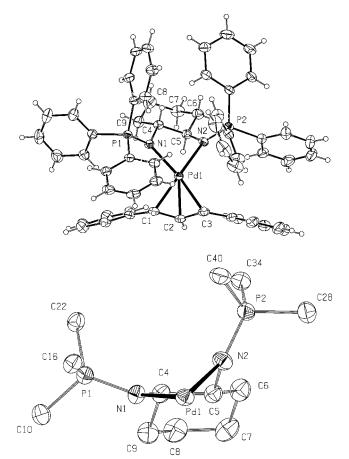
<sup>(13) (</sup>a) Albinati, A.; Kunz, R.; Ammann, C.; Pregosin, P. S. Organometallics 1991, 10, 1800. (b) Hegedus, L. S.; Akermark, B.; Olsen, D. J.; Anderson, O. P.; Zetterberg, K. J. Am. Chem. Soc. 1982, 104,

<sup>(14)</sup> Togni, A.; Rihs, G.; Pregosin, P. S.; Ammam, C. Helv. Chim. Acta 1990, 38, 723,

Table 2. Crystallographic Data for Compounds 10, 11, and 13

|                                          | 10                            | 11                         | 13                                                                                             |  |
|------------------------------------------|-------------------------------|----------------------------|------------------------------------------------------------------------------------------------|--|
| formula                                  | $PdC_{46}H_{43}N_2P_2F_3SO_3$ | $PdC_{53}H_{47}N_2P_2BF_4$ | PdC <sub>58</sub> H <sub>53</sub> N <sub>2</sub> P <sub>2</sub> F <sub>3</sub> SO <sub>3</sub> |  |
| solvent                                  | $1/2C_4H_{10}O$               | -                          | -                                                                                              |  |
| fw, g∙mol <sup>-1</sup>                  | 966.28                        | 967.08                     | 1083.42                                                                                        |  |
| cryst syst                               | tetragonal                    | monoclinic                 | triclinic                                                                                      |  |
| space group                              | $P4_2/n$                      | $P2_1$                     | $P\overline{1}$                                                                                |  |
| temp, °C                                 | 20                            | 20                         | 20                                                                                             |  |
| a, Å                                     | 22.825(4)                     | 12.075(5)                  | 11.436(2)                                                                                      |  |
| b, Å                                     |                               | 14.809(12)                 | 13.142(3)                                                                                      |  |
| c, Å                                     | 18.598(12)                    | 14.401(9)                  | 18.580(3)                                                                                      |  |
| α, deg                                   |                               |                            | 104.025(10)                                                                                    |  |
| β, deg                                   |                               | 112.22(5)                  | 100.37(2)                                                                                      |  |
| γ, deg                                   |                               | , ,                        | 99.39(2)                                                                                       |  |
| V, Å <sup>3</sup>                        | 9689(7)                       | 2384(3)                    | 2601.7(9)                                                                                      |  |
| F(000)                                   | 3976                          | 992                        | 1116                                                                                           |  |
| $\hat{Z}$                                | 8                             | 2                          | 2                                                                                              |  |
| λ(Mo Kα), Å                              | 0.71073                       | 0.71073                    | 0.71073                                                                                        |  |
| o(calcd), g·cm <sup>-3</sup>             | 1.325                         | 1.347                      | 1.383                                                                                          |  |
| $u(Mo K\alpha), cm^{-1}$                 | 5.45                          | 5.09                       | 5.15                                                                                           |  |
| $2\hat{	heta}$ range, deg                | 4 - 54                        | 4-54                       | 4 - 54                                                                                         |  |
| no. of data collected                    | 10 492                        | 5393                       | 10 077                                                                                         |  |
| no. of unique data                       | 10 027                        | 5164                       | 9284                                                                                           |  |
| no. of params varied                     | 479                           | 542                        | 575                                                                                            |  |
| S                                        | 1.023                         | 0.998                      | 1.052                                                                                          |  |
| $R^a$                                    | 0.0802                        | 0.0911                     | 0.0548                                                                                         |  |
| $R_{ m w}{}^b$                           | 0.1628                        | 0.1611                     | 0.0697                                                                                         |  |
| $(\Delta/\rho)_{\text{max}}$             | 3.611                         | 1.227                      | 1.848                                                                                          |  |
| $(\Delta/\rho)_{\min}$ e·Å <sup>-3</sup> | -1.450                        | -2.016                     | -1.769                                                                                         |  |

 $<sup>^{</sup>a}R = \sum ||F_{0}| - |F_{0}|| \sum ||F_{0}|| \cdot b R_{W} = [\sum w(F_{0}^{2} - F_{c}^{2}) (\sum w(F_{0}^{2})^{2})]^{1/2}; w = 1/[\sigma^{2}(F_{0}^{2}) + (0.186P)^{2}]$  where  $P = (F_{0}^{2} + 2F_{c}^{2})/3$ .


Table 3. Selected NMR Data for the  $\eta^3$ -Allylic Complexes 10, 11, and 13–16<sup>a</sup>

|                |                                                              | δ ¹H NMR                               |                    |                | δ <sup>13</sup> C NMR   |                           |                         |
|----------------|--------------------------------------------------------------|----------------------------------------|--------------------|----------------|-------------------------|---------------------------|-------------------------|
|                | $\delta$ $^{31}P$ NMR                                        | H <sub>1a,3a</sub>                     | $H_{1s,3s}$        | H <sub>2</sub> | $C_1$                   | $C_2$                     | C <sub>3</sub>          |
| 11<br>13<br>14 | +25.6; +26.5<br>+34.0; +35.1<br>+24.7; +33.6<br>+35.1; +37.6 | 1.47; 2.23<br>2.38; 3.38<br>3.59; 4.92 |                    | 5.15<br>5.64   | 59.19<br>72.97<br>72.63 | 109.98<br>106.16<br>99.97 | 59.94<br>74.51<br>78.07 |
|                | +42.8; +42.9<br>-5.6; -5.3                                   | 2.76; 2.91 2.70; 2.90                  | 3.70; 3.85<br>3.98 | 5.27           | 57.18<br>59.76          | 109.87<br>111.88          | 58.09<br>61.33          |

<sup>&</sup>lt;sup>a</sup> Measured in CDCl<sub>3</sub> at room temperature.

in complex **14** both gave a doublet of doublets in the <sup>1</sup>H NMR spectrum (4.03,  $J_{H-P} = 19.5$  and 2.2 Hz; 4.10,  $J_{H-P}$ = 19.5 and 3.3 Hz). Considering that derivative 2 is supposed to lose its  $C_2$  symmetry upon coordination, it was quite surprising that only one of the possible diastereomeric complexes 13 was formed, according to <sup>31</sup>P NMR spectroscopy of the crude reaction mixture recorded at room and low (-80 °C) temperatures. This observation led us to characterize complex 13 by a single-crystal X-ray diffraction study (Figure 3, Tables 1 and 2). Complex **13** has a typical  $\pi$ -allyl palladium structure with a distorted square-planar arrangement. The geometric data for derivative **13** compare well with those observed for complex 10 (Table 1). For example, the two Pd-N [2.133(3), 2.161(3) Å] and the P-N [1.593(3), 1.583(3) Å] bond lengths are very close to those recorded for compound 10 [Pd-N, 2.127(7)-2.119-(7) Å; P-N, 1.593(7) –1.593(7) Å]. The five-membered metallacycle of complex 13 adopts an envelope conformation with the two phosphino groups in a mutually cis configuration. Once again, derivative **2** loses its  $C_2$ symmetry upon coordination to a transition metal center (Figure 3, view b).

A crucial step in determining the degree of enantioselectivity of the allylic alkylation reaction is the regioselectivity of the attack of the soft nucleophile at the coordinated allylic moiety. Chiral homobidentate ligands



**Figure 3.** ORTEP drawing (thermal ellipsoid 40% probability) of the cation of complex **13**: (top) general view a, (bottom) view b along the N(1)-Pd-N(2) axis.

generally induce a discrimination of the two enantiotopic termini of the coordinated allyl ligand. In the solid state, the allyl fragment of complex **13** is not symmetrically bonded to the palladium atom. The allyl

ligand is only slightly tilted [12°] from the perpendicular to the N(1)-Pd-N(2) plane; however the Pd-C(1) and Pd-C(3) bond lengths are significantly different [2.203(4), 2.136(4) Å]. In solution, the degree of discrimination between the two allyl carbon atoms can be evaluated from their <sup>13</sup>C chemical shifts, which give an empirical indication of their electrophilicity. 15 As expected from the solid-state structure, the two terminal allyl C atoms in complex 13 are inequivalent, but the difference between their <sup>13</sup>C chemical shifts is not large  $(\Delta \delta = 1.5 \text{ ppm})$ . Interestingly, this difference is more significant in complex **14** ( $\Delta \delta = 5.4$  ppm) (Table 3).

The next structural parameter that was examined was the nature of the P-substituents. Dialkylamino and phenoxy P-substituents were investigated in conjunction with the 1,2-diphenylethyl backbone. Complexes 15 (78% yield) and 16 (74% yield) were obtained as air- and moisture-stable solids (Scheme 3). The stability of complex **16** is particularly noteworthy since the corresponding free ligand 9b decomposes within minutes in solution under an inert atmosphere.

Multinuclear NMR spectroscopy clearly identifies complexes 15 and 16 (Table 3). As expected, the <sup>31</sup>P NMR spectra show a large coordination shift effect ( $\Delta\delta$ = 20-30 ppm) similar to that observed for complexes 10-14. For both complexes, the NCH moieties appeared as doublets of doublets in the <sup>1</sup>H NMR spectra [15, 4.29,  $J_{H-P} = 14.0$  and 3.6 Hz; 4.37,  $J_{H-P} = 14.0$  and 3.6 Hz; **16**, 4.92,  $J_{H-P} = 14.3$  and 7.1 Hz; 5.02,  $J_{H-P} = 14.3$  and 7.1 Hz]. <sup>13</sup>C NMR spectroscopy can be used to assess the "trans-influence" of donor ligands, which includes not only an electronic but also a steric contribution, through examination of the chemical shifts for the terminal C atoms of the allyl fragment. 15a,b These chemical shifts vary from 57.18 to 61.33 ppm (Table 3), values that are in the range found for other nitrogendonor ligands such as bis-oxazolines<sup>12a</sup> or pyridine. <sup>15a</sup> The donor ability of 1,2-diiminophosphoranes featuring polarized ylide functions is clearly reflected in these data and, most importantly, is comparable to that of other sp<sup>2</sup>-hybridized nitrogen ligands which are widely used in homogeneous catalysis. As expected from the known influence of these substituents on the  $pK_a$ 's of iminophosphoranes, 3b,c the donor ability of 1,2-diiminophosphoranes decreases along the series Me<sub>2</sub>N > Ph > OPh. However, the influence of these substituents on the donor ability of these ligands is relatively small  $(57.18 < \delta < 61.33)$  and contrasts with the correspondingly large effect on the basicity of iminophosphoranes.

Enantioselective Pd-Catalyzed Allylic Alkyla**tion.** The ability of 1,2-diiminophosphoranes to stabilize intermediate Pd(0) species and to induce enantioselectivity was evaluated using the standard test reaction in the palladium-catalyzed allylic substitution, namely the reaction of rac-1,3-diphenylprop-2-enyl acetate with the soft nucleophile derived from dimethyl malonate and KH. The catalytic runs were carried out in THF at 36 °C using  $[Pd(\eta^3-C_3H_5)Cl]_2$  as precatalyst and 4 equiv of the chiral ligand to prevent decomposition of the catalytic species. Ligands 3 and 7a,b induced good catalytic activities (Table 4, entries 2-4), bearing in mind that

**Table 4. Palladium-Catalyzed Enantioselective Allylic Alkylation with Chiral** 1,2-Diiminophosphoranes

|       |        | t   | T    |            |          | yield | ee   |
|-------|--------|-----|------|------------|----------|-------|------|
| entry | ligand | (h) | (°C) | solvent    | base     | (%)   | (%)a |
| 1     | 2      | 1.5 | 36   | THF        | KH       | 38    | 10   |
| 2     | 3      | 1.5 | 36   | THF        | KH       | 61    | 77   |
| 3     | 7a     | 1.5 | 36   | THF        | KH       | 73    | 15   |
| 4     | 7b     | 1.5 | 36   | THF        | KH       | 75    | 15   |
| 5     | 9a     | 36  | 36   | THF        | KH       | 11    |      |
| 6     | 9b     | 36  | 36   | THF        | KH       | 8     |      |
| 7     | 3      | 1.5 | 36   | $CH_2Cl_2$ | KH       | 99    | 73   |
| 8     | 3      | 1.5 | 36   | THF        | NaH      | 99    | 70   |
| 9     | 3      | 1.5 | 36   | THF        | BSA-AcOK | 50    | 76   |
| 10    | 3      | 1.5 | 36   | $CH_2Cl_2$ | BSA-AcOK | 99    | 68   |
| 11    | 3      | 1.5 | 20   | THF        | NaH      | 45    | 81   |
| 12    | 3      | 1.5 | 20   | THF        | KH       | 15    | 85   |
| 13    | 3      | 1.5 | 20   | $CH_2Cl_2$ | KH       | 53    | 75   |
| 14    | 3      | 18  | 0    | $CH_2Cl_2$ | KH       | 48    | 77   |

 $^{\it a}$  The % ee's were determined, after purification of the product by flash chromatography, by <sup>1</sup>H NMR using Eu(hfc)<sub>3</sub> as chiral shift agent and by gas chromatography on a CHIRALCEL OD column (99:1hexane/butanol; 0,7 mL/mn).

long reaction times (1-3) days for completion are usually needed with N,N-ligands.<sup>2c-d,8,16</sup> The low yields observed with ligands 9a,b (entries 5, 6) is certainly due to their low stability, "black palladium" precipitating during the course of the reaction. Comparison of the results obtained with P-phenyl-substituted 1,2-diiminophosphoranes (entries 1-2) reveals the dramatic influence imparted by the carbon skeleton in this series. The enantioselectivity and the catalytic activity are notably higher with the 1,2-diphenylethenyl ligands 3 (61% yield, ee = 77%) than with the 1,2-cyclohexylderivative 2 (38% yield, ee = 10%). The is interesting to note that ligand 3, which gives the highest enantioselectivity, also induces the largest <sup>13</sup>C chemical shift difference between the carbon termini of the coordinated  $\eta^3$ -1,3-diphenylallyl moiety (Table 3, complex **13** and 14). The nature of the P-substituents also has a considerable influence on the catalytic performances. The highest catalytic activities were obtained using Pdimethylamino-substituted iminophosphoranes (entries 3 and 4); however only ligand 3 bearing P-phenyl groups gave an interesting ee (entry 2).

Among the various 1,2-diiminophosphoranes, derivative 3 is the most efficient, and an optimization of the reaction parameters (solvent, base, and temperature) was undertaken with this ligand. Quantitative yields were obtained within 1.5 h when CH2Cl2 with KH or THF with NaH was employed (entries 7 and 8). However, in both cases the observed ee's (73% and 70%, respectively) were slightly lower than those obtained with KH in THF (77%). The same trend was observed using N,O-bis(trimethylsilyl)acetamide (BSA) and KOAc; the reaction is more rapid in CH<sub>2</sub>Cl<sub>2</sub> but the highest ee is achieved in THF (entries 9 and 10). As usually

<sup>(15) (</sup>a) Akermark, B.; Krakenberger, B.; Hansonn, S.; Vitagliano, A. Organometallics 1987, 6, 620. (b) Sakate, A.; Nakata, T. J. Am. Chem. Soc. 1998, 120, 10391.

<sup>(16)</sup> Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. *J. Org. Chem.* **1999**, *64*, 1082.

<sup>(17)</sup> No racemization of the product dimethyl 1,3-diphenylprop-2 enylmalonate occurred in the presence of an excess of 2 or 3 at 36 °C nor under the catalytic reaction conditions.

observed, the enantioselectivity increased by lowering the temperature but at the expense of the catalytic activity (entries 11-14). The best ee's were obtained in THF at room temperature with NaH (ee = 81%) or KH (85%).

The catalytic activities observed with 1,2-diiminophosphoranes 3 and 7a,b are comparatively high for nitrogen-donors ligands. Of particular importance, this study has revealed that 1,2-diiminophosphoranes are able to stabilize Pd(0) species during a catalytic process and to induce notable levels of enantioselectivity.

## Conclusion

1,2-Diiminophosphoranes have recently emerged as new chelating, chiral sp<sup>2</sup>-nitrogen donors.<sup>5a,b</sup> These derivatives are readily prepared from commercially available diamines and present good stability when the phosphorus atoms feature phenyl or amino substituents. These chelating ligands give very stable cationic (allyl)-Pd(II) complexes, and their coordination behavior is considerably influenced by the nature of their carbon skeleton. 1,2-Diiminophosphoranes appear to possess a relative "hardness" comparable to other classical sp<sup>2</sup>nitrogen donors and are able to stabilize reduced metal centers in catalytic processes. Although relatively modest ee's have been obtained for Pd-catalyzed allylic alkylation reactions, these results encourage further investigation of the use of these ligands in metalcatalyzed processes and for the preparation of new chiral ligands possessing the iminophosphoranes moiety.

## **Experimental Section**

General Considerations. All experiments were performed under an atmosphere of dry argon using standard Schlenk techniques. Solvents were freshly distilled under argon from sodium/benzophenone (tetrahydrofuran, diethyl ether) or from phosphorus pentoxide (pentane, dichloromethane). Et<sub>3</sub>N was freshly distilled under argon from KOH. Ph<sub>3</sub>PBr<sub>2</sub>, (Me<sub>2</sub>N)<sub>3</sub>-PBr<sub>2</sub>, (PhO)<sub>3</sub>PBr<sub>2</sub>, (E)-3-acetoxy-1,3-diphenyl-1-propene, [PdCl- $(\eta^3-(C_3H_5)]_2$ , and  $[PdCl(\eta^3-(PhCHCH_2CHPh)]_2^{18}$  were prepared by standard procedures. Melting points are uncorrected. Chiral diamines were obtained from the Aldrich Chemical Co. and were used as received. 1H, 13C, and 31P NMR spectra were recorded on Bruker AM300 or DPX200 spectrometers. 1H and <sup>13</sup>C chemical shifts are reported in ppm relative to Me<sub>4</sub>Si as external standard. 31P NMR downfield chemical shifts are expressed with a positive sign, in ppm, relative to external 85% H<sub>3</sub>PO<sub>4</sub>. High-resolution mass spectra were obtained on a Varian MAT 311 or ZabSpec TOF Micromass at CRMPO, University of Rennes. Conventional glassware was used.

Crystallography. The unit cell constant, space group determination, and the data collection were carried out on an automatic CAD4 NONIUS diffractometer with graphite-monochromatized Mo  $K\alpha$  radiation.<sup>19a</sup> The cell parameters were obtained by fitting a set of 25 high- $\theta$  reflections. After Lorentz and polarization corrections, absorption corrections were done with  $\psi$  scans, <sup>19b</sup> and the structures were solved with SIR-97, <sup>19c</sup> which reveals non-hydrogen atoms of the structure. The remaining non-hydrogen atoms were found after some Fourier difference calculations, which revealed disordered allylic ligands (complexes **10** and **11**) and  $BF_4^-$  anion (complex **11**). All the hydrogen atoms are set in theoretical positions. All the structures were refined with SHELXL9719d by full-matrix least-squares techniques (use of F magnitude; x, y, z,  $\beta_{ij}$  for Pd, P, C, and N atoms (including allylic ligand and anion for 12), x, y, z, for allylic ligands and anions, riding mode for H atoms (solvent an anion fixed in 10). Atomic scattering factors were obtained from International Tables for X-ray Crystallography. 18e ORTEP views were prepared with PLATON98. 19f All calculations were performed on a Silicon Graphics Indy computer. Selected crystallographic and other relevant data are listed in Tables 1 and 2.

Synthesis of 1,2-Bis[tris(dimethylamino)phosphinimino]cyclohexane, 7a. Neat (1R,2R)-1,2-diaminocyclohexane (5a) (0.09 g, 0.7 mmol) was added dropwise to a Et<sub>3</sub>N solution (10 mL) of (Me<sub>2</sub>N)<sub>3</sub>PBr<sub>2</sub> (0.50 g, 1.5 mmol) at room temperature. After warming at 36 °C for 12 h, the solvent was removed under vacuum. The residue was washed with diethyl ether (2  $\times$  10 mL) and pentane (2  $\times$  10 mL) to give a white solid containing derivative **6a** and Et<sub>3</sub>NHBr. NaH (0.50 g, 20.8 mmol) was added in portions, at room temperature, to a suspension of this solid in THF (10 mL). The mixture was stirred for 1 h at 40 °C and then filtered. The solvent and Et<sub>3</sub>N were removed in vacuo, and the residue was extracted with pentane. Compound 7a was obtained as a moisture-sensitive white solid (0.24 g, 80% yield): mp 138 °C. 6a: ¹H NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  1.10 (m, 2H, CH<sub>2</sub>), 1.48–1.90 (m, 6H, CH<sub>2</sub>), 2.77 (d,  $J_{H-P} = 9.7$  Hz, 36H, NCH<sub>3</sub>), 3.36 (s broad, 2H, NCH), the NH are not observed. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50.323 MHz): δ 24.70 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 34.63 (s, NCHCH<sub>2</sub>), 37.52 (d,  $J_{C-P} = 3.9 \text{ Hz}$ , NCH<sub>3</sub>), 55.51 (d,  $J_{C-P} = 11.7 \text{ Hz}$ , NCH). <sup>31</sup>P NMR (CDCl3; 81.019 MHz):  $\delta$  +38.7. HR-MS (FAB-mNBA)  $\emph{m/z}$ 519.2666 (calculated: 519.2642,  $M^{2+} + Br^{-}$ ). 7a: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 200 MHz):  $\delta$  1.55–1.82 (m, 4H, CH<sub>2</sub>), 2.31–2.50 (m, 4H, CH<sub>2</sub>), 2.61 (d,  $J_{H-P} = 9.1$  Hz, 36H, NCH<sub>3</sub>), 3.58 (m, 2H, NCH). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 50.323 MHz):  $\delta$  22.76 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 33.37 (s, NCH  $CH_2$ ), 37.52 (s, NCH<sub>3</sub>), 58.25 (d,  $J_{C-P} = 18.0$  Hz, NCH). <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>; 81.019 MHz):  $\delta$  +14.1. HR-MS (FAB-mNBA) m/z 436.3341 (calculated: 436.3220, M<sup>+</sup>). Anal. Calcd for  $C_{18}H_{46}N_8P_2$ : C, 49.52; H, 10.62; N, 25.67. Found: C, 49.78; H, 10.74; N, 25.55.

Synthesis of 1,2-Bis[tris(dimethylamino)phosphinimino]-1,2-diphenylethane, 7b. Using the above procedure, (1R,2R)-1,2-diphenylethylenediamine (5b) (0.23 g, 1.1 mmol) and  $(Me_2N)_3PBr_2$  (0.77 g, 2.4 mmol) were reacted, giving rise to derivative **7b** (0.43 g, 74% yield) as a colorless oily product via the diphosphonium **6b**. **6b**:  $^{1}$ H (CDCl<sub>3</sub>; 200.130 MHz):  $\delta$ 2.45 (d,  $J_{H-P} = 9.8$  Hz, 36H, NCH<sub>3</sub>), 4.84 (m, 2H, NCH), 7.11-7.35 (m, 6H,  $CH_{arom.}$ ), 7.85-8.00 (m, 4H,  $CH_{arom.}$ ), the NH's are not observed.  $^{13}$ C NMR (CDCl<sub>3</sub>, 50.323 MHz):  $\delta$  37.50 (d,  $J_{C-P} = 4.7 \text{ Hz}, \text{ NCH}_3$ , 63.10 (d,  $J_{C-P} = 11.0 \text{ Hz}, \text{ NCH}$ ), 128.00 (s, C<sub>p</sub>), 128.50, 128.70 (s, C<sub>0,m</sub>), 140.21 (s, C<sub>i</sub>). <sup>31</sup>P NMR (CDCl<sub>3</sub>; 81.019 MHz):  $\delta$  +39.7. HR-MS (FAB-mNBA) 617.2790 (calculated: 617.2817,  $M^{2+} + Br^{-}$ ). **7b**: <sup>1</sup>H NMR ( $C_6D_6$ , 200 MHz):  $\delta$  2.44 (d,  $J_{H-P} = 9.3$  Hz, 36H, NCH<sub>3</sub>), 4.69 (d,  $J_{H-P} = 4.7$  Hz, 2H, NCH), 7.11-7.22 (m, 6H, CH<sub>arom</sub>), 7.52-7.56 (m, 4 H, CH<sub>arom</sub>).  $^{13}$ C NMR (C<sub>6</sub>D<sub>6</sub>, 50.323 MHz):  $\delta$  37.31 (s, NCH<sub>3</sub>), 67.94 (d,  $J_{C-P} = 25.0$  Hz, NCH), 124.90 (s,  $C_p$ ), 125.75, 130.00 (s,  $C_{o,m}$ ), 149.72 (s,  $C_i$ ). <sup>31</sup>P NMR ( $C_6D_6$ ; 81.019 MHz):  $\delta$  +19.9. HR-MS (FAB-mNBA) 267.1748 (calculated: 267.1738, M+/2).

<sup>(19) (</sup>a) Fair, C. K. MolEN, An Interactive Intelligent System for Crystal Structure Analysis, User Manual; Enraf-Nonius: Delft, The Netherlands, 1990. (b) Spek, A. L. HELENA. Program for the handling of CAD4-Diffractometer output, SHELX(S/L); Utrecht University: Utrecht, The Netherlands, 1997. (c) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. Sir97: A New Tool for Crystal Structure Determination and Refinement. J. Appl. Crystallogr. 1998, 31, 74. (d) Sheldrick, G. M. SHELX97-2. Program for the Refinement of Crystal Structures, University of Göttingen: Germany, 1998. (e) International Tables for X-ray Crystallography, Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Dordrecht, 1992; Vol. C. (f) Spek, A. L. PLATON. A Multipurpose Crystallographic Tool, Utrecht University: Utrecht, The Netherlands, 1998.

Anal. Calcd for C<sub>26</sub>H<sub>48</sub>N<sub>8</sub>P<sub>2</sub>: C, 58.39; H, 9.05; N, 20.96. Found: C, 58.48; H, 9.04; N, 20.85.

Synthesis of 1,2-Bis[triphenoxyphosphinimino]cyc**lohexane**, **9a**. Neat (1R,2R)-1,2-diaminocyclohexane (**5a**) (0.20g, 1.75 mmol) was added dropwise to a CH2Cl2 solution (10 mL) of Et<sub>3</sub>N (0,58 mL, 4.20 mmol) and (PhO)<sub>3</sub>PBr<sub>2</sub> (1.70 g, 3.61 mmol) at -10 °C. The mixture was allowed to warm to room temperature. The solution was filtered, and the solvent was removed under vacuum. The residue was washed with diethyl ether (3  $\times$  15 mL) and extracted with THF (10 mL) to eliminate the triethylammonium salt. 8a was obtained as an air- and moisture-sensitive pale orange solid. NaH (0.17 g, 7.0 mmol) was added in portions, at room temperature, to a THF solution (10 mL) of 8a. The solution was stirred for 1 h at room temperature and then filtered. The solvent was removed in vacuo, and the residue extracted with pentane. Compound 9a was obtained as an extremely air- and moisture-sensitive colorless viscous oil (1.02 g, 80% yield). Derivative  $\mathbf{9a}$  can be obtained in a one-pot procedure using (1R,2R)-1,2-diaminocyclohexane 5a, (PhO)<sub>3</sub>PBr<sub>2</sub>, and an excess of NaH in THF at -10 °C (85% yield). **8a**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  0.97-1.95 (m, 8H, CH<sub>2</sub>), 4.02 (m, 2H, NCH), 7.02-7.51 (m, 30H, CH<sub>arom</sub>), the NH are not observed. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50.323 MHz):  $\delta$  24.21 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 33.72 (s, NCHCH<sub>2</sub>), 57.81 (d,  $J_{C-P} = 10.9 \text{ Hz}$ , NCH), 120.62 (d,  $J_{C-P} = 4.7 \text{ Hz}$ ,  $C_0$ ), 127.44 (s,  $C_p$ ), 130.51 (s,  $C_m$ ), 149.47 (d,  $J_{C-P} = 10.2$  Hz,  $C_i$ ). <sup>31</sup>P NMR (CDCl<sub>3</sub>; 81.019 MHz):  $\delta$  -0.9. HR-MS (FAB-mNBA) m/z731.2443 (calculated: 731.2440,  $M^{2+} - H^{+}$ ). **9a**: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 200 MHz): δ 0.97-1.95 (m, 8H, CH<sub>2</sub>), 4.02 (m, 2H, NCH), 7.01–7.42 (m, 30H, CH<sub>arom</sub>).  $^{13}$ C NMR (C<sub>6</sub>D<sub>6</sub>, 50.323 MHz):  $\delta$ 23.42 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 34.23 (s, NCHCH<sub>2</sub>), 58.81 (d,  $J_{C-P}$  = 15.6 Hz, NCH), 120.65 (d,  $J_{C-P} = 5.5$  Hz,  $C_0$ ), 124.45 (s,  $C_p$ ), 129.41 (s,  $C_m$ ), 151.77 (d,  $J_{C-P} = 9.4$  Hz,  $C_i$ ). <sup>31</sup>P NMR ( $C_6D_6$ ; 81.019 MHz):  $\delta$  -36.7.

Synthesis of 1,2-Bis[triphenoxyphosphinimino]-1,2diphenylethane, 9b. Neat (1R,2R)-1,2-diphenylethylenediamine (5b) (0.38 g, 1.8 mmol) was added dropwise to CH2Cl2 solution (10 mL) of (PhO)<sub>3</sub>PBr<sub>2</sub> (1.70 g, 3.6 mmol) at -10 °C. After 10 min, an excess of NaH (0.22 g, 9 mmol) was added at this temperature. The solution was allowed to warm to room temperature and filtered. Compound 9b, obtained in 70% yield according to <sup>31</sup>P NMR spectroscopy, rapidly decomposed in solution (THF, toluene, pentane), which prevents any purification. As a free ligand, **9b** has been observed only by <sup>31</sup>P NMR spectroscopy but fully characterized when coordinated to a (allyl)Pd(II) fragment (complex 16). 31P NMR (CH2Cl2; 81.019 MHz):  $\delta - 35.2$ .

**Synthesis of [Pd(\eta^3-C<sub>3</sub>H<sub>5</sub>)(2)]TfO, 10**. Solid AgTfO (0.081 g, 0.31 mmol) was added to a CH2Cl2 solution (10 mL) of [Pd- $(\eta^3-C_3H_5)Cl]_2$  (0.058 g, 0.16 mmol) and derivative (R,R)-2<sup>5a,b</sup> (0.22 g, 0.35 mmol) at room temperature. The mixture was stirred for 1 h in the dark, and the precipitate of AgCl was filtered off using a plug of Celite. The solvent was removed under vacuum, and the residue was subjected to column chromatography on silica gel (CH<sub>2</sub>Cl<sub>2</sub> then MeOH). Complex 10 was isolated as an air-stable pale yellow solid (0.234 g, 81% yield). Single crystals suitable for X-ray diffraction were grown from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature using racemic **2**.  $^{1}$ H NMR (CDCl<sub>3</sub>; 300.133 MHz):  $\delta$  0.65–0.92 (m, 6H, CH<sub>2</sub>), 1.12 (d,  $J_{H-H} = 12.0$ , 1H, CH<sub>anti</sub>), 1.18 (d,  $J_{H-H} = 12.0$ 12.0, 1H, CH<sub>anti</sub>), 1.45 (m, 2H, CH<sub>2</sub>), 2.22 (dd,  $J_{H-H} = 6.5$  and 1.8 Hz, 1H,  $H_{\text{syn}}$ ), 2.25 (dd,  $J_{\text{H-H}} = 6.5$  and 1.8 Hz, 1H,  $H_{\text{syn}}$ ), 3.24 (s broad,  $J_{PH} < 1$  Hz, 2H, NCH), 4.33 (sept-like,  $J_{H-H} =$ 12.0 and 6.5 Hz, 1H, CHCH<sub>2</sub>), 7.30-7.70 (m, 20H, CH<sub>arom</sub>), 7.85-7.90 (m, 10H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>; 50.332 MHz): δ 25.21, 25.42 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 36.03, 36.07 (s broad, NCH CH<sub>2</sub>), 58.69 (s, CH CH<sub>2</sub>), 67.42 (dd,  $J_{C-P} = 14.1$  and 3.0 Hz, NCH), 68.55 (dd,  $J_{C-P} = 14.9$  and 3.1 Hz, NCH), 109.02 (s,  $CHCH_2$ ), 129.01 (d,  $J_{C-P} = 12.2 \text{ Hz}$ ,  $C_{o,m}$ ), 129.91 (d,  $J_{C-P} = 12.2 \text{ Hz}$ ) 98.9 Hz, C<sub>i</sub>), 129.93 (d,  $J_{C-P} =$  98.9 Hz, C<sub>i</sub>), 130.02 (d,  $J_{C-P} =$ 13.4 Hz,  $C_{o,m}$ ), 132.94 (s,  $C_p$ ), 133.09 (d,  $J_{C-P} = 9.8$  Hz,  $C_{o,m}$ ),

133.17(s,  $C_p$ ), 133.98 (d,  $J_{C-P} = 11.0$  Hz,  $C_{o,m}$ ), the  $CF_3SO_3$  is not observed. <sup>31</sup>P NMR (CDCl<sub>3</sub>; 81.019 MHz):  $\delta$  +25.6, +26.5. Anal. Calcd for C<sub>46</sub>H<sub>45</sub>N<sub>2</sub>P<sub>2</sub>PdSF<sub>3</sub>O<sub>3</sub>·0.5Et<sub>2</sub>O: C, 59.54; H, 5.17; N, 2.89. Found: C, 59.68; H, 5.22; N, 2.81.

Synthesis of  $[Pd(\eta^3-C_3H_5)(3)]BF_4$ , 11. Using the standard procedure above, (R,R)-3<sup>5b</sup> (0.095 g, 0.13 mmol), AgBF<sub>4</sub> (0.022 g, 0.11 mmol), and  $[Pd(\eta^3-C_3H_5)Cl]_2$  (0.020 g, 0.054 mmol) were reacted, giving rise to complex 11, which was obtained as an air-stable pale yellow solid after crystallization from a CH2-Cl<sub>2</sub>-Et<sub>2</sub>O solution (0.09 g, 84% yield). Single crystals suitable for X-ray diffraction were grown from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature.  $^{1}H$  NMR (CDCl<sub>3</sub>, 300.133 MHz):  $\delta$  1.47 (d,  $J_{H-H} = 12.0$  Hz, 1H, CH<sub>anti</sub>), 2.23 (d,  $J_{H-H} = 12.0$  Hz, 1H,  $CH_{anti}$ ), 2.56 (dd,  $J_{H-H} = 6.5$  and 1.9 Hz, 1H,  $CH_{syn}$ ), 2.86 (dd,  $J_{H-H} = 6.5$  and 1.9 Hz, 1H, CH<sub>syn</sub>), 4.04 (dd,  $J_{H-P} = 16.3$  and 3.6 Hz, 1H, NCH), 4.14 (dd,  $J_{H-P} = 16.3$  and 3.6 Hz, 1H, NCH), 5.15 (sept-like,  $J_{H-H} = 12.0$  and 6.5 Hz, 1H, CHCH<sub>2</sub>), 7.10-7.60 (m, 40H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>; 75.469 MHz): δ 59.19, 59.94 (s, CH*C*H<sub>2</sub>), 73.37 (d,  $J_{C-P} = 12.2$  Hz, NCH), 74.12 (d,  $J_{C-P} = 13.4 \text{ Hz}$ , NCH), 109.98 (s, CHCH<sub>2</sub>), 127.12 (s broad,  $C_p$ CHPh), 127.43 (d,  $J_{C-P} = 100.1$  Hz,  $C_i$  PPh), 127.52 (d,  $J_{C-P} = 100.1$  Hz,  $C_i$  PPh), 127.52 (d,  $J_{C-P} = 100.1$  Hz,  $C_i$  PPh) 100.1 Hz, C<sub>i</sub> PPh), 127.71, 127.78, 127.81, 127.88 (s, C<sub>o,m</sub> CHPh), 128.69 (d,  $J_{C-P} = 12.0$  Hz,  $C_{o,m}$  PPh), 128.75 (d,  $J_{C-P}$ = 12.2 Hz,  $C_{o,m}$  PPh), 132.83 (d,  $J_{C-P}$  = 3.0 Hz,  $C_p$  PPh), 132.95 (d,  $J_{C-P} = 3.0 \text{ Hz}$ ,  $C_p PPh$ ), 133.26 (d,  $J_{C-P} = 9.8 \text{ Hz}$ ,  $C_{o,m} PPh$ ), 133.43 (d,  $J_{PC} = 10.7$  Hz,  $C_{o,m}$  PPh), 144.61, 144.88 ( $C_i$  CHPh). <sup>31</sup>P NMR (CDCl<sub>3</sub>; 121.496 MHz):  $\delta$  +34.0, +35.1. Anal. Calcd for C<sub>53</sub>H<sub>47</sub>N<sub>2</sub>P<sub>2</sub>PdBF<sub>4</sub>: C, 65.82; H, 4.90; N, 2.90. Found: C, 65.84; H, 4.96; N, 2.85.

**Synthesis of (3)PdCl<sub>2</sub>, 12.** A CH<sub>2</sub>Cl<sub>2</sub> solution (10 mL) of derivative 3 (0.184 g; 0.25 mmol) was added at room temperature to a CH2Cl2 solution of (CH3CN)2PdCl2 (0.059 g; 0.23 mmol). After 1 h, the solvent was removed under vacuum. The residue was washed with pentane  $(3 \times 10 \text{ mL})$  and with ether  $(3 \times 10 \text{ mL})$ . Complex **12** was obtained as an orange solid from a CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature (0.19 g, 91% yield). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 200.133 MHz):  $\delta$  3.45 (dd,  $J_{H-P}$  = 13.6 and 6.9 Hz, 2H, NCH), 7.10-7.61 (m, 40H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CD<sub>2</sub>-Cl<sub>2</sub>; 50.323 MHz):  $\delta$  76.42 (d,  $J_{C-P} = 12.0$  Hz, NCH), 127.03 (s,  $C_p$  CHPh), 127.63 (d,  $J_{C-P} = 11.0$  Hz,  $C_{0,m}$  PPh), 127.79, 128.57 (s,  $C_{o,m}$  CHPh), 131.83 (d,  $J_{C-P} = 3.1$  Hz,  $C_p$  PPh), 134.24 (d,  $J_{C-P} = 9.4$  Hz,  $C_{o,m}$  PPh), 144.59 ( $C_i$  CHPh), the  $C_{i}P\mathit{Ph}$  is not observed.  $^{31}P$  NMR (CD<sub>2</sub>Cl<sub>2</sub>; 121.496 MHz):  $\delta$ +36.6. Anal. Calcd for C<sub>48</sub>H<sub>42</sub>N<sub>2</sub>P<sub>2</sub>PdCl<sub>2</sub>: C, 65.06; H, 4.78; N, 3.16. Found: C, 65.12; H, 4.82; N, 3.25.

Synthesis of [Pd( $\eta^3$ -PhCHCHCHPh)(2)]TfO, 13. Using the standard procedure, (R,R)-2 (0.22 g, 0,35 mmol), AgTfO (0.079 g, 0.30 mmol), and  $[Pd(\eta^3-PhCHCHCHPh)Cl]_2$  (0.1 g, 0.1 g)0.15 mmol) were reacted, giving rise to complex 13, which was obtained as an air-stable orange solid after crystallization from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature (0.29 g, 88% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz): δ 0.32 (m, 1H, CH<sub>2</sub>), 0.63 (m, 1H, CH<sub>2</sub>), 0.95-1.65 (m, 6H, CH<sub>2</sub>), 2.38 (d,  $J_{H-H} = 11.2$ Hz, 1H, CHC*H*Ph), 2.64 (m, 1H, NCH), 3.38 (d,  $J_{H-H} = 11.2$ Hz, 1H, CHC*H*Ph), 3.78 (m, 1H, NCH), 5.64 (dd,  $J_{H-H} = 11.2$ and 11.2 Hz, 1H, CHCHPh), 6.70-7.82 (m, 40H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>; 50.332 MHz):  $\delta$  25.24, 26.19 (s, NCHCH<sub>2</sub>CH<sub>2</sub>), 33.88 (d,  $J_{C-P} = 10.2 \text{ Hz}$ , NCH  $CH_2$ ), 37.07 (s, NCH  $CH_2$ ), 65.57 (s broad, NCH), 69.50 (dd,  $J_{C-P} = 17.0$  and 3.1 Hz, NCH), 72.97 (s, CHCHPh), 74.51 (s, CHCHPh), 106.16 (s, CHCHPh), 121.07 (qua.,  $J_{C-F} = 323.2 \text{ Hz}$ , CF<sub>3</sub>), 127.53, 127.86, 127.92, 128.23 (s,  $C_{arom}$  CHPh), 128.36 (d,  $J_{C-P} = 98.6$  Hz,  $C_i$  PPh), 128.68 (d,  $J_{C-P} = 12.2 \text{ Hz}, C_{o,m} PPh), 128.75 \text{ (d, } J_{C-P} = 11.7 \text{ Hz}, C_{o,m} PPh),$ 132.50 (s,  $C_{arom}$ ), 132.95 (d,  $J_{C-P} = 10.2$  Hz,  $C_{o,m}$  PPh), 133.04 (broad s,  $C_pPPh$ ), 133.59 (d,  $J_{C-P} = 9.4$  Hz,  $C_{o,m} PPh$ ), 138.82, 139.72 (C<sub>i</sub> CH*Ph*). <sup>31</sup>P NMR (CDCl<sub>3</sub>; 81.019 MHz):  $\delta$  +24.7, +33.6. Anal. Calcd for  $C_{58}H_{53}N_2P_2PdSF_3O_3$ : C, 64.30; H, 4.89; N, 2.58. Found: C, 64.38; H, 4.86; N, 2.51.

Synthesis of  $Pd(\eta^3-PhCHCHCHPh)(3)]BF_4$ , 14. Using the standard procedure, (R,R)-3 (0.19 g, 0.26 mmol), AgBF<sub>4</sub>  $(0.047 \text{ g}, 0.24 \text{ mmol}), \text{ and } [Pd(\eta^3-PhCHCHCHPh)Cl]_2 (0.082)$ 

g, 0.12 mmol) were reacted, giving rise to complex 14, which was obtained as an air-stable orange solid after crystallization from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature (0.23 g, 86% yield). Single crystals suitable for X-ray diffraction were grown from a  $CH_2Cl_2-Et_2O$  solution at room temperature.  $^1H$ NMR (CDCl<sub>3</sub>, 300.133 MHz):  $\delta$  3.59 (d,  $J_{H-H} = 11.8$  Hz, 1H, CHC*H*Ph), 4.03 (dd,  $J_{H-P} = 19.5$  and 2.2 Hz, 1H, NCH), 4.10 (dd,  $J_{H-P} = 19.5$  and 3.3 Hz, 1H, NCH), 4.92 (d,  $J_{H-H} = 7.8$ Hz, 1H, CHC*H*Ph), 5.06 (dd,  $J_{H-H} = 11.8$  and 7.8 Hz, 1H, CHCHPh), 6.70-7.73 (m, 50H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>; 75.469 MHz):  $\delta$  70.95 (d,  $J_{\rm C-P}$  = 12.2 Hz, NCH), 71.52 (d,  $J_{\rm C-P}$ = 13.4 Hz, NCH), 72.63 (s, CHCHPh), 78.07 (s, CHCHPh), 99.97 (s, CHCHPh), 126.65 (d broad,  $J_{C-P} = 101.9$  Hz,  $C_i$  PPh), 127.24 (s,  $C_{arom}$ ), 127.31 (d,  $J_{C-P} = 100.7$  Hz,  $C_i$  PPh), 127.37, 127.54, 127.80, 128.09, 128.13, 128.33, 128.48, 129.17, 131.83, 131.98, 132.05, 132.18, 132.19, 132.23 (C<sub>arom</sub>), 132.99 (d, J<sub>C-P</sub> = 3.0 Hz,  $C_p$  PPh), 133.18 (d,  $J_{C-P}$  = 9.8 Hz,  $C_{o,m}$  PPh), 133.67 (d,  $J_{PC} = 9.8 \text{ Hz}$ ,  $C_{o,m} PPh$ ), 136.90, 139.28 (s,  $C_i CHPh$ ), 143.27 (d,  $J_{C-P} = 1.8$  Hz,  $C_i$  NCHPh), 144.15 (d,  $J_{C-P} = 2.4$  Hz,  $C_i$ NCH*Ph*). <sup>31</sup>P NMR (CDCl<sub>3</sub>; 121.496 MHz):  $\delta$  +35.1, +37.6. Anal. Calcd for  $C_{65}H_{55}N_2P_2PdBF_4$ : C, 69.75; H, 4.91; N, 2.50. Found: C, 69.68; H, 4.98; N, 2.54.

**Synthesis of Pd**( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)(7b)]**BF**<sub>4</sub>, **15**. Using the standard procedure, ligand 7b (0.15 g, 0.28 mmol), AgBF<sub>4</sub> (0.05 g, 0.26 mmol), and  $[Pd(\eta^3-C_3H_5)Cl]_2$  (0.05 g, 0.13 mmol) were reacted, giving rise to complex 15, which was obtained as an air-stable pale yellow solid after crystallization from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature (0.16 g, 78% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  2.45 (d,  $J_{H-P} = 8.9$  Hz, 18H, NCH<sub>3</sub>), 2.48 (d,  $J_{H-P} = 9.0$  Hz, 18H, NCH<sub>3</sub>), 2.76 (d,  $J_{H-H} = 11.9$  Hz, 1H, CH<sub>anti</sub>), 2.91 (d,  $J_{H-H} = 11.9$  Hz, 1H, CH<sub>anti</sub>), 3.70 (dd,  $J_{H-H} =$ 6.3 and 2.0 Hz, 1H, CH<sub>syn</sub>), 3.85 (dd,  $J_{H-H} = 6.3$  and 2.0 Hz, 1H, CH<sub>syn</sub>), 4.29 (dd,  $J_{H-P} = 14.0$  and 3.6 Hz, 1H, NCH), 4.37 (dd,  $J_{H-P} = 14.0$  and 3.6 Hz, 1H, NCH), 5.55 (sept-like,  $J_{H-H}$ = 11.9 and 6.3 Hz, 1H,  $CHCH_2$ ), 7.10-7.90 (m, 10H,  $CH_{arom}$ ).  $^{13}\text{C}$  NMR (CDCl<sub>3</sub>; 50.323 MHz):  $\delta$  38.02 (d,  $J_{\text{C-P}}=4.0$  Hz,  $NCH_3$ ), 38.12 (d,  $J_{C-P} = 4.3$  Hz,  $NCH_3$ ), 57.18, 58.09 (s,  $CHCH_2$ ), 72.91 (dd,  $J_{C-P} = 11.0$  and 3.1 Hz, NCH), 73.20 (dd,  $J_{C-P} = 11.0$  and 3.1 Hz, NCH), 109.87 (s, CHCH<sub>2</sub>), 126.94, 127.02 (s, C<sub>p</sub> CH*Ph*), 127.32, 127.55, 127.73, 127.81 (s, C<sub>o,m</sub> CHPh), 146.16, 146.32 (Ci CHPh). 31P NMR (CDCl3; 81.019 MHz):  $\delta$  +42.8, +42.9. Anal. Calcd for C<sub>29</sub>H<sub>53</sub>N<sub>8</sub>P<sub>2</sub>PdBF<sub>4</sub>: C, 45.30; H, 6.95; N, 14.58. Found: C, 45.38; H, 6.98; N, 14.50.

**Synthesis of Pd**( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)(9b)]**BF**<sub>4</sub>, 16. Using the standard procedure, ligand **9b** (0.260 g, 0.31 mmol), AgBF<sub>4</sub> (0.057 g, 0.29 mmol), and  $[Pd(\eta^3-C_3H_5)Cl]_2$  (0.053 g, 0.14 mmol) were reacted, giving rise to complex 16, which was obtained as a pale yellow solid after crystallization from a CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O solution at room temperature (0.228 g, 74% yield). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300.133 MHz):  $\delta$  2.70 (d,  $J_{H-H}$  = 12.2 Hz, 1H, CH<sub>anti</sub>), 2.90 (d,  $J_{H-H}$  = 12.2 Hz, 1H, CH<sub>anti</sub>), 3.98 (d,  $J_{H-H} = 6.8$ , 2H, CH<sub>syn</sub>), 4.92 (dd,  $J_{H-P} = 14.3$  and 7.1 Hz, 1H, NCH), 5.02 (dd,  $J_{H-P} = 14.3$  and 7.1 Hz, 1H, NCH), 5.27 (sept-like,  $J_{H-H} = 12.2$  and 6.8 Hz, 1H, CHCH<sub>2</sub>), 6.65-7.50 (m, 30 H, CH<sub>arom</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>; 75.469 MHz):  $\delta$  59.76, 61.33 (s, CH*C*H<sub>2</sub>), 71.14 (d,  $J_{C-P} = 15.6$ Hz, NCH), 111.88 (s, CHCH<sub>2</sub>), 119.33 (d,  $J_{C-P} = 6.1$  Hz,  $C_0$ OPh), 119.41 (d,  $J_{C-P} = 6.1$  Hz,  $C_0$  OPh), 126.40 (s,  $C_p$  OPh), 127.07, 127.23 (s, C<sub>0,m</sub> Ph), 127.78, 127.88 (C<sub>p</sub> Ph), 128.44, 128.59 (s,  $C_{o,m}$  Ph), 130.25 (s,  $C_m$  OPh), 142.48 (d,  $J_{C-P} = 3.7$ Hz,  $C_i Ph$ ), 142.71 (d,  $J_{C-P} = 3.7 \text{ Hz}$ ,  $C_i Ph$ ), 149.80 (d,  $J_{C-P} =$ 11.0 Hz,  $C_i$  OPh). <sup>31</sup>P (CDCl<sub>3</sub>; 121.496 MHz):  $\delta$  -5.3, -5.6. Anal. Calcd for C<sub>53</sub>H<sub>47</sub>N<sub>2</sub>P<sub>2</sub>O<sub>6</sub>PdBF<sub>4</sub>: C, 59.87; H, 4.42; N, 2.63. Found: C, 59.81; H, 4.48; N, 2.58.

General Procedure for the Allylic Alkylation. Dimethylmalonate (0.14 g; 1.1 mmol) and potassium hydride (0.040 g; 1.0 mmol) were stirred under argon in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at room temperature. When gas evolution had ceased after 10 min, the catalyst *prepared in situ* by mixing  $[Pd(\eta^3-C_3H_2)Cl]_2$ (3.6 mg; 0.01 mmol) and ligand (R,R)-3 (29 mg; 0.04 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added followed by rac-1,3-diphenylprop-2-envl acetate (0.125; 0.50 mmol). The reaction mixture was heated at 36 °C for 1.5 h. The solution was diluted with a saturated aqueous solution of NH<sub>4</sub>Cl. Dichloromethane was added (10 mL), and the organic layer was dried over MgSO<sub>4</sub>. The solvent was evaporated, and the residue was purified by column chromatography (20% ethyl acetate in heptane). Yield: 160 mg, 99%. The % ee's were determined by <sup>1</sup>H NMR using Eu(hfc)3 as chiral shift agent and by HPLC on a CHIRALCEL OD column (99:1 hexane/butanol; 0.7 mL/mn).

**Acknowledgment.** This work was supported by the "Ministere de l'Education Nationale de la Recherche et de la Technologie" with a doctoral fellowship for M.S. and the Center National de la Recherche Scientique (CNRS) with a postdoctoral fellowship for J.F.-C. Thanks are due to P. Dyer (University of Leicester) for helpful discussions.

**Supporting Information Available:** Tables of crystal and intensity collection data, position and thermal parameters, and interatomic distances and angles for derivatives 10, 11, and 13. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990786D