Formation of (Diphenylphosphino)naphthalenes by Double Insertion of (Alkynyl)diphenylphosphines into Nickel(0)-Benzyne Complexes

Martin A. Bennett,* Christopher J. Cobley, A. David Rae, Eric Wenger, and Anthony C. Willis

Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

Received September 23, 1999

(Alkynyl)diphenylphosphines $Ph_2PC \equiv CR$ (R = H, Me, Ph, PPh₂) undergo double insertion into the nickel(0)—benzyne bond of the complexes $[Ni\{(1,2-\eta)-4,5-X_2C_6H_2\}(PEt_3)_2]$ (X = H (1a), F (1b)) to give mixtures of nickel(0) complexes containing (diphenylphosphino)naphthalenes, which in some cases are formed with high regioselectivity. Bromination of the mixtures of nickel(0) complexes obtained from $Ph_2PC \equiv CR$ (R = Me, Ph) and **1a** or **1b** gives in high yield the chelate NiBr₂ complexes [NiBr₂ $\{6,7-X_2C_{10}H_2-1,4-Y_2-2,3-(PPh_2)_2\}$] (X = H, Y = Me (6a), Ph (11a); X = F, Y = Me (6b), Ph (11b), from which the corresponding 1,4-disubstituted 2,3-naphthylenebis(diphenylphosphines) 12a, 13a, 12b, and 13b can be liberated by treatment with NaCN in DMSO at 60 °C or dimethylglyoxime/ammonia at room temperature. Derivatives in which only one of the phosphorus atoms is oxidized, 6,7-X₂C₁₀H₂- $1,4-Me_2-2-PPh_2-3-P(O)PPh_2$ (X = H (15a), F (15b)), have also been prepared. The regioselectivity of the reactions of $Ph_2PC \equiv CH$ with **1b** is poorer than that of $Ph_2PC \equiv CR$ (R = Me, Ph), and products with a 1,3-substitution pattern predominate. Reaction of $Ph_2PC \equiv CPPh_2$ (dppa) with 1a gives, after addition of bromine, a pair of isomers in which NiBr₂ is attached to the phosphorus atoms at the 2,3- and 1,2-positions, respectively, of the tetrakis(tertiary phosphine) species $C_{10}H_4$ -1,2,3,4-(PPh₂)₄ (**19**). The molecular structures of complexes **11b** and $[NiBr_2\{C_{10}H_4-1,2,3-(PPh_2)_3-4-\{P(O)Ph_2\}-\kappa P^1,P^2\}]$ (18), and of a disordered 73:27 mixture of the bis(diphenylphosphine oxides) $C_{10}H_4-1,4-(PPh_2)_2-2,3-\{P(O)Ph_2\}_2$ (20) and $C_{10}H_4-1,2-1$ (PPh₂)₂-3,4-{P(O)Ph₂}₂ (**21**) obtained by partial oxidation of **19**, have been determined by single-crystal X-ray diffraction. The regioselectivities of the insertions of Ph₂PC≡CMe and $Ph_2PC \equiv CH$ into **1a** and **1b** are similar to those of $MeC \equiv CCO_2Me$ and $HC \equiv CCO_2Me$, respectively, and factors that influence them are discussed.

Introduction

Despite their short lifetimes under normal conditions, arynes are versatile reagents that have been widely used in organic synthesis because of their ability to undergo Diels-Alder reactions, cycloadditions with 1,3dipoles, and additions to nucleophiles. 1-5 Additional possibilities for organic synthesis are offered by coordination to a transition-metal-containing fragment, which both stabilizes and alters the reactivity of an aryne.⁶⁻¹⁰ We have shown that nickel(0) complexes of the type $[Ni(\eta^2-aryne)L_2]$ (aryne = benzyne, 4,5-difluo-

* To whom correspondence should be addressed. Fax: +61 2 6249 3216. E-mail: bennett@rsc.anu.edu.au.

robenzyne, 2,3-naphthalyne; $L_2 = 2PEt_3$, dcpe¹¹) undergo double insertions with alkynes.^{9,12-14} After reductive elimination of the NiL2 fragment from the presumed intermediate nickelacycle, the products are substituted naphthalenes (from the benzyne or 4,5difluorobenzyne complexes) or anthracenes (from the 2,3-naphthalyne complexes). These insertions are often regiospecific. For example, the reaction of methyl 2-butynoate with $[Ni\{(1,2-\eta)-4,5-X_2C_6H_2\}(PEt_3)_2]$ (X = H (1a), F (1b)) leads exclusively in each case to the naphthalene having the carboxylate groups in the 2,3positions. In contrast, tert-butylacetylene shows the opposite regioselectivity in its reactions with [Ni{(1,2- η)-4,5-X₂C₆H₂}(PEt₃)₂] (X = H (**1a**), F (**1b**)), which give exclusively the corresponding 1,3-di-tert-butylnaphtha-

⁽¹⁾ Hoffmann, R. W. Dehydrobenzene and Cycloalkynes, Academic Press: New York, 1967.

⁽²⁾ Gilchrist, T. L. In *The Chemistry of Triple-Bonded Functional Groups*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1983; Vol. Suppl. C2, p 383.

⁽³⁾ Hart, H. In *The Chemistry of Triple-Bonded Functional Groups*; Patai, S., Ed.; Wiley: Chichester, U.K., 1994; Vol. Suppl. C2. (4) Kessar, S. V. In *Comprehensive Organic Synthesis*, Trost, B. M.,

Fleming, I., Semmelhack, M. F., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 4, p 483.

⁽⁵⁾ Oppolzer, W. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, U.K., 1991; Vol.

⁽⁶⁾ Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047. (7) Bennett, M. A.; Schwemlein, H. P. Angew. Chem., Int. Ed. Engl. **1989**, 28, 1296.

⁽⁸⁾ Buchwald, S. L.; Broene, R. D. In Comprehensive Organometallic

⁽⁸⁾ Buchwald, S. L.; Broene, R. D. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Hegedus, L. S., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12, p 771.

(9) Bennett, M. A.; Wenger, E. Chem. Ber. / Recl. 1997, 130, 1029.

(10) Jones, W. M.; Klosin, J. Adv. Organomet. Chem. 1998, 42, 147.

(11) Abbreviations: dcpe = 1,2-bis(dicyclohexylphosphino)ethane, Cy₂PCH₂CH₂PCy₂; dppa = bis(diphenylphosphino)acetylene, Ph₂P≡

⁽¹²⁾ Bennett, M. A.; Wenger, E. Organometallics 1995, 14, 1267.
(13) Bennett, M. A.; Hockless, D. C. R.; Wenger, E. Organometallics 1995, 14, 2091.

⁽¹⁴⁾ Bennett, M. A.; Wenger, E. Organometallics 1996, 15, 5536.

lenes. These differences have been attributed to a combination of electronic and steric effects.^{9,12}

We were interested to know whether (alkynyl)diphenylphosphines such as Ph₂PC≡CR and Ph₂PC≡CPPh₂ (dppa) would undergo double insertions with complexes 1a and 1b to give novel tertiary phosphines based on the naphthalene ring and, if so, with what regioselectivity. As potentially bifunctional ligands, acetylenes of this type have been used extensively in organometallic and coordination chemistry, especially for the formation of polynuclear metal complexes. 15 Apart from the results reported in our preliminary communication, 16 however, there are only two examples of the insertion of an (alkynyl)phosphine into a metal—carbon σ -bond, viz. the reactions of Ph₂PC \equiv CR (R = H, Ph) and t-BuP(C \equiv CPh)₂ with zirconocene-benzyne, $[Cp_2Zr(\eta^2-C_6H_4)]$, a species that is generated in situ by heating $[Cp_2Zr(\eta^1-C_6H_5)_2]$. ^{17,18} Of particular relevance to the work described here are the reactions of $Ph_2PC \equiv CR$ (R = H, Ph), which give stereoselectively (2-diphenylphosphino)zirconaindene derivatives (eq 1).¹⁷

$$Cp_2Zr \xrightarrow{Ph_2PC \equiv CR} \xrightarrow{R} PPh_2 \qquad (1)$$

$$R = H, Ph$$

Results

(1) (1-Propynyl)diphenylphosphine, Ph₂PC≡ CMe, and (Phenylethynyl)diphenylphosphine, **Ph₂PC**≡**CPh.** The benzyne-nickel(0) complexes [Ni- $\{(1,2-\eta)-4,5-X_2C_6H_2\}(PEt_3)_2\}$ (X = H (**1a**), F (**1b**)) react readily with Ph₂PC≡CMe to give red solutions whose ³¹P{¹H} NMR spectra are complex but consistent with the presence of three nickel(0) complexes characterized by groups of multiplets in the regions δ 50 and δ 5–10. The strongly deshielded nature of the first group suggests immediately that they arise from phosphorus atoms in a five-membered chelate ring, 19 as would be expected for coordinated 1,4-dimethyl-2,3-naphthylenebis(diphenylphosphine), $C_{10}H_4$ -1,4- Me_2 -2,3-(PPh₂)₂.

Scheme 1

In two of the species, the ³¹P signals in both regions appear as triplets, with P-P couplings of ca. 25 Hz, consistent with the presence of two auxiliary P donors, i.e., PEt₃ and Ph₂PC≡CMe. In the third species, however, the two ancillary ligands are clearly different: the signal assigned to C₁₀H₄-1,4-Me₂-2,3-(PPh₂)₂ appears as a doublet of doublets, whereas the remaining signals are doublets of triplets at δ 5.4 and 9.7 and are assigned to coordinated Ph₂PC≡CMe and PEt₃, respectively. Thus, the mixtures obtained by reaction of 1a and 1b with Ph₂PC≡CMe are believed to be four-coordinate nickel(0) complexes of general formula [Ni{6,7-X₂C₁₀H₂- $1,4-Me_2-2,3-(PPh_2)_2\}(L^1)(L^2)$] (X = H, F), where $L^1 = L^2$ = PEt₃ (2a,b), $L^1 = L^2 = Ph_2PC \equiv CMe$ (3a,b), or $L^1 =$ PEt₃ and $L^2 = Ph_2PC \equiv CMe$ (**4a,b**) (Scheme 1), all of which arise from regiospecific double insertion of the alkynylphosphine. The formulation of these very reactive and labile Ni(0) species is supported by their reaction with dcpe. Addition of the chelating ligand to the red solutions liberates the auxiliary ligands, thus simplifying the ³¹P{¹H} NMR spectra. The products are the bis(chelate)nickel(0) complexes [Ni{6,7-X₂C₁₀H₂-1,4- $Me_2-2,3-(PPh_2)_2$ (dcpe) (X = H (5a), F (5b)), whose ³¹PNMR spectra consist of a pair of triplets at δ ca. 47 and 52 (${}^{2}J_{PP} = 27$ Hz). Similar values of ${}^{2}J_{PP}$ have been reported for the complexes $[Ni(dmpe)L_2]$ (L = PMe₃, PPh₃)²⁰ and for other unsymmetrical nickel(0) complexes containing tertiary phosphines and coordinated olefins. 21-23 The structure of the poorly soluble complex 5a has also been confirmed by ¹H NMR spectroscopy and mass spectrometry. Furthermore, reaction of $[Ni(\eta^2 C_2H_4$)(dcpe)] with the free phosphine $C_{10}H_4$ -1,4-Me₂-2,3- $(PPh_2)_2$ (see below) regenerates complex **5a**, as shown by ³¹P NMR spectroscopy.

⁽¹⁵⁾ Selected references: (a) Patel, H. A.; Carty, A. J.; Hota, N. K. Organomet. Chem. 1973, 50, 247. (b) Carty, A. J.; Paik, H. N.; Ng, J. Organomet. Chem. 1974, 74, 279. (c) Carty, A. J.; Jacobson, S. E.; Simpson, R. J.; Taylor, N. J. J. Am. Chem. Soc. **1975**, *97*, 7254. (d) Taylor, N. J.; Carty, A. J. J. Chem. Soc., Dalton Trans. **1976**, 799. (e) Carty, A. J. Pure Appl. Chem. 1982, 54, 113. (f) Sappa, E.; Predieri, ; Tiripicchio, A.; Camellini, M. T. J. Organomet. Chem. 1985, 297, 103. (g) Nucciarone, D.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1988, 7, 106. (h) Charkas, A. A.; Randall, L. H.; MacLaughlin, S. A.; Mott, G. N.; Taylor, N. J.; Carty, A. J. Organo-metallics 1988, 7, 969. (i) Sappa, E.; Pasquinelli, G.; Tiripicchio, A.; Camellini, M. T. J. Chem. Soc., Dalton Trans. 1989, 601. (j) Braga, D.; Benvenutti, M. H. A.; Grepioni, F.; Vargas, M. D. J. Chem. Soc., Chem. Commun. **1990**, 1730. (k) Forniés, J.; Lalinde, E.; Martín, A.; Moreno, M. T.; Welch, A. J. *J. Chem. Soc., Dalton Trans.* **1995**, 1333. (I) Moldes, I.; Ros, J. Inorg. Chim. Acta 1995, 232, 75. (m) Louattani, E.; Suades, J.; Alvarez-Larena, A.; Piniella, J. F.; Germain, G. J. Organomet. Chem. 1996, 506, 121. (n) Dickson, R. S.; de Simone, T.; Parker, R. J.; Fallon, G. D. *Organometallics* **1997**, *16*, 1531. (o) Ara, I.; Falvello, L. R.; Fernández, S.; Forniés, J.; Lalinde, E.; Martín, A.;

Moreno, M. T. *Organometallics* **1997**, *16*, 5923. (16) Bennett, M. A.; Cobley, C. J.; Wenger, E.; Willis, A. C. *Chem.* Commun. 1998, 1307.

⁽¹⁷⁾ Miquel, Y.; Igau, A.; Donnadieu, B.; Majoral, J.-P.; Dupuis, L.; Pirio, N.; Meunier, P. *Chem. Commun.* **1997**, 279.

⁽¹⁸⁾ Dupuis, L.; Pirio, N.; Meunier, P.; Igau, A.; Donnadieu, B.; Majoral, J.-P. Angew. Chem., Int. Ed. Engl. 1997, 36, 987.
(19) Garrou, P. E. Chem. Rev. 1981, 81, 229.

⁽²⁰⁾ Pörschke, K. R.; Mynott, R.; Krüger, C.; Romão, M. J. Z. Naturforsch., B 1984, 39, 1076.

⁽²¹⁾ Pörschke, K. R.; Mynott, R.; Angermund, K.; Krüger, C. Z. Naturforsch., B 1985, 40, 199.

⁽²²⁾ Bennett, M. A.; Chiraratvatana, C. J. Organomet. Chem. 1985,

⁽²³⁾ Yamamoto, T.; Ishizu, J.; Komiya, S.; Nakamura, Y.; Yamamoto, A. J. Organomet. Chem. 1979, 171, 103.

Scheme 2

Treatment of solutions containing 2a-4a or 2b-4b with bromine gives the dibromonickel(II) complexes $[NiBr_2\{6,7-X_2C_{10}H_2-1,4-Me_2-2,3-(PPh_2)_2\}]$ (X = H (**6a**), F (6b)) as air-stable, orange solids in almost quantitative yield based on nickel. They have been characterized by elemental analysis, NMR (¹H, ³¹P) spectroscopy, and, in the case of **6b**, by single-crystal X-ray diffraction. ¹⁶ The coordination geometry about the metal atom is square planar, and the coordinated PPh2 groups are located on carbon atoms 2 and 3 of the naphthalene ring. The ³¹P chemical shifts of **6a** and **6b** (δ 65–66) are strongly deshielded, as expected for a rigid, fivemembered chelate ring; cf. δ_P 68.6 for [Ni{S₂C₂(CN)₂}-(cis-Ph₂PCH=CHPPh₂)].²⁴ In contrast with the behavior of $[Ni(\eta^2-C_6H_4)(PEt_3)_2]$ (1a), the dcpe complex $[Ni(\eta^2-C_6H_4)(PEt_3)_2]$ C_6H_4)(dcpe)] shows no reaction with Ph₂PC \equiv CMe, even after 1 week at room temperature.

The ligand (phenylethynyl)diphenylphosphine, Ph₂-PC≡CPh, also undergoes double insertions with the benzyne-nickel(0) complexes **1a** and **1b** at room temperature to generate the corresponding coordinated 1,4diphenylnaphthylene-2,3-bis(diphenylphosphines) (Scheme 2). The products formed immediately on mixing Ph₂PC≡ CPh (2 mol) with 1a or 1b (1 mol) are the bis(triethylphosphine)nickel(0) complexes [Ni{6,7-X₂C₁₀H₂- $1,4-Ph_2-2,3-(PPh_2)_2$ (PEt₃)₂ (X = H (**7a**), F (**7b**)), whose $^{31}\mbox{P}\{^{1}\mbox{H}\}$ NMR spectra show a pair of multiplets at δ ca. 7 and 52 due to PEt₃ and the naphthylene ligand, respectively. In a slower reaction, one of the coordinated triethylphosphine ligands is replaced by Ph₂PC≡CPh to give $[Ni\{6,7-X_2C_{10}H_2-1,4-Ph_2-2,3-(PPh_2)_2\}(PEt_3)(Ph_2-1,4-Ph_2-2,3-(PPh_2)_2)]$ $PC \equiv CPh$] (X = H (8a), F (8b)), characterized by three multiplets in the $^{31}P\{^{1}H\}$ NMR spectra at δ ca. 3, 7, and 52 due to coordinated Ph₂PC≡CPh, PEt₃, and the naphthylene ligand, respectively. In contrast with the behavior of Ph₂PC≡CMe, however, there is no evidence for the formation of the bis(alkynylphosphine) complex. Instead, in each case, complexes 7a,b and 8a,b are finally replaced by a third species characterized by the presence in its ³¹P{¹H} NMR spectrum of a pair of multiplets in the region of δ 63 and a doublet of doublets at δ ca. -19, the P-P coupling constants being ca. 30 Hz. The multiplets at higher frequency must be assigned to inequivalent phosphorus atoms of the appropriate naphthylenebis(diphenylphosphine), while the chemical shift of the remaining signal is suggestive of an uncoordinated phosphorus atom of Ph₂PC \equiv CPh. These data are consistent with the formulation [Ni{6,7-X₂C₁₀H₂-1,4-Ph₂-2,3-(PPh₂)₂}(η ²-Ph₂PC \equiv CPh)] (X = H (9a), F (9b)), the alkynylphosphine being bound only via its triple bond to trigonal-planar-coordinated nickel(0).

This formulation is supported by the isolation of [Ni-(dcpe)(η^2 -Ph₂PC=CPh)] (**10**) as a thermally sensitive yellow solid from the reaction of Ph₂PC=CPh with [Ni-(C₂H₄)(dcpe)] (eq 2). This complex contains a parent ion

$$\begin{array}{c|c}
Cy_2 \\
P\\
Ni-\parallel \\
Cy_2
\end{array}
\xrightarrow{Ph_2PC=CPh}
\begin{array}{c|c}
Cy_2 & Ph\\
P\\
Ni-\parallel \\
Cy_2 & PPh_2
\end{array}$$
(2)

peak in its FAB mass spectrum and shows a ^{31}P NMR pattern analogous to that of **9**, viz. two doublets of doublets in the region of δ 70 due to inequivalent phosphorus atoms of dcpe and a doublet of doublets at δ –14.5 due to the uncoordinated phosphorus atom of Ph₂PC=CPh. In **10**, the change in the 13 C NMR chemical shift of the two quaternary carbons of the alkyne shows clearly that these carbons are now coordinated to the metal center; the signals appear as doublets at δ_C 87 and 108 in the free alkyne and as doublets of doublets of doublets at δ_C 141 and 150 in the complex. The structure of the analogous complex [Ni(dcpe)(η^2 -Ph₂PC=CMe)] has been confirmed by single-crystal X-ray diffraction.²⁵

Addition of bromine to the solutions of nickel(0) complexes 7a-9a or 7b-9b gives the corresponding orange nickel(II) complexes [NiBr₂{6,7-X₂C₁₀H₂-1,4-Ph₂- $[2,3-(PPh_2)_2]$ (X = H (**11a**), F (**11b**)), which show the expected ³¹P NMR singlets in the region of δ 67. The structure of complex 11b has been confirmed by singlecrystal X-ray diffraction (see below). Complex 11a has been prepared, in 66% yield based on nickel, in a onepot procedure starting from the precursor to 1a, [NiBr- $(2-BrC_6H_4)(PEt_3)_2$; reduction to **1a**, insertion of Ph₂PC= CPh, and bromination were carried out in successive steps. The yield is somewhat lower than that of complex 6a obtained by use of Ph₂PC≡CMe, probably because the formation of the side-bonded complex 9a scavenges some of the alkynylphosphine required for double insertion. The sterically bulky (alkynyl)diphenylphosphines $Ph_2PC \equiv CR$ (R = t-Bu, SiMe₃) do not react with complexes 1a or 1b at room temperature.

Liberation of the ditertiary phosphines from their dibromonickel(II) complexes by treatment with an excess of NaCN requires unexpectedly forcing conditions, viz. overnight heating to 60 °C in DMSO. In this way the 2,3-naphthylenebis(diphenylphosphines) 6,7- $X_2C_{10}H_2$ -1,4- Y_2 -2,3-(PPh₂)₂ (X = H, Y = Me (12a); X = F, Y = Me (12b); X = F, Y = Ph (13b)) have been obtained almost quantitatively from complexes **6a,b** and **11b**, respectively. An alternative, milder procedure, which

⁽²⁴⁾ Bowmaker, G. A.; Williams, J. P. *J. Chem. Soc., Dalton Trans.* **1993**, 3593.

⁽²⁵⁾ Bennett, M. A.; Castro, J.; Kopp, M. R.; Wenger, E.; Willis, A. C. Unpublished work.

was tested with complex **11a**, is to treat the nickel(II) complex with dimethylglyoxime and aqueous ammonia at room temperature. The ligand $C_{10}H_4$ -1,4-Ph₂-2,3-(PPh₂)₂ (**13a**) that is released quantitatively can be obtained pure by filtration through degassed acidic alumina. The naphthylenebis(diphenylphosphines) are air-stable, yellow solids that show singlet ³¹P NMR resonances at δ ca. -1 to -6 and parent ion peaks in their electron-impact (EI) mass spectra.

Oxidation of both phosphorus atoms requires forcing conditions. The nickel(0) complexes 2a-4a and 2b-4b or the derived tertiary phosphines 12a,b had to be treated with 30% aqueous H2O2 or heated in the presence of air in order to obtain the bis(diphenylphosphine oxides), $6.7-X_2C_{10}H_2-1.4-Me_2-2.3-\{P(O)Ph_2\}_2$ (X = H (**14a**), F (**14b**)), quantitatively.

Exposure of the mixtures of nickel(0) complexes 2a-**4a** and **2b-4b** to air over 24 h gives exclusively the colorless mono(diphenylphosphine oxides) 6,7-X₂C₁₀H₂- $1,4-Me_2-2-PPh_2-3-\{P(O)Ph_2\}\ (X = H\ (15a),\ F\ (15b)),$ which show ^{31}P NMR doublet resonances at δ ca. -6 (PPh_2) and +31 $[P(O)PPh_2]$ $(^2J_{PP}=37$ Hz) and parent ion peaks in their EI mass spectra (eq 3). The formulation of 15b has been confirmed by X-ray structural analysis.16

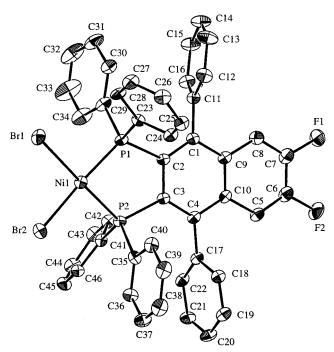
(2) Bis(diphenylphosphino)acetylene, Ph₂PC≡ **CPPh₂.** Double insertion of Ph₂PC≡CPPh₂ with [Ni- $(\eta^2-C_6H_4)(PEt_3)_2$] (**1a**) (Scheme 3) required heating at 50 °C for 16 h. The ³¹P{¹H} NMR spectrum of the resulting solution is complex, although addition of bromine simplifies it. The crude orange solid isolated from the brominated solution contains the dibromonickel(II) complexes of two isomeric naphthalene-based ligands in a 2:1 ratio. The ³¹P{¹H} NMR spectrum of the major species contains two doublets of doublets at $\delta_{\rm P}$ –12.2 and 75.8, a pattern that is consistent with a symmetrical chelate complex having uncoordinated diphenylphosphino groups in the 1,4-positions, i.e., [NiBr₂{ $C_{10}H_4$ -1,2,3,4-(PPh₂)₄- κP^2 , P^3 }] (**16**). The minor compound is less symmetrical: its ³¹P{¹H} NMR spectrum shows four different resonances at δ -9.4, 3.8, 66.9, and 81.9, the first two being assigned to phosphorus atoms at positions 4 and 3, the last two to coordinated phosphorus atoms at positions 1 and 2. The chemical shifts and coupling constants are consistent with the formulation $[NiBr_2\{C_{10}H_4-1,2,3,4-(PPh_2)_4-1,2,3,4-(PPh_2)_4-1,2,3,4-(PPh_2)_4]$ $\kappa P^1, P^2$ (17). Attempts to separate 16 and 17 on silica gel gave small amounts of the original mixture together with a new complex 18, whose 31P{1H} NMR spectrum resembles that of 17 except that the resonances due to the uncoordinated phosphorus atoms P³ and P⁴ are shifted to δ 13.5 and 29.4, respectively. The IR spectrum contains a strong absorption at 1208 cm⁻¹ assignable to $\nu(P=0)$, and the mass spectrum shows that one of the uncoordinated phosphorus atoms has been oxidized. The data indicate that complex **18** is $[NiBr_2\{C_{10}H_4-1,2,3-1]]$

Scheme 3

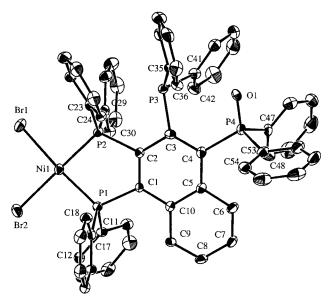
 $(PPh_2)_3$ -4- $\{P(O)PPh_2\}$ - $\kappa P^1, P^2\}$; this formulation has been confirmed by X-ray structural analysis (see below). The total yield for the double-insertion reaction calculated from the recovered products 16-18 was ca. 90%, based on the Ni(II) precursor to 1a, [NiBr(2-C₆H₄)-(PEt₃)₂]; hence, little or no material had been lost on the silica gel column. The predominant formation of 18 as a result of chromatography can only be accounted for by mono-oxidation of 16 and 17 on the column accompanied by migration of the NiBr₂ fragment from phosphorus atoms P2 and P3 to P1 and P2. The observation that the relative amounts of 16 and 17 before chromatography do not change on heating suggests that the rearrangement is preceded, not followed, by oxidation of P^4 .

Treatment of the mixture of 16 and 17 with dimethylglyoxime in the presence of aqueous ammonia precipitates immediately the crude tetrakis(tertiary phosphine) $C_{10}H_4$ -1,2,3,4-(PPh₂)₄ (**19**), whose ${}^{31}P\{{}^{1}H\}$ NMR spectrum shows a pair of triplets at δ -10.8 and 4.5 due to $P^{1,4}$ and $P^{2,3}$, respectively. Unfortunately, attempts to crystallize 19 gave only partially oxidized material, single crystals of which contained a 73:27 mixture of the bis(diphenylphosphine oxides) C₁₀H₄-1,4- $(PPh_2)_2$ -2,3- $\{P(O)Ph_2\}_2$ (**20**) and $C_{10}H_4$ -3,4- $(PPh_2)_2$ -1,2- $\{P(O)Ph_2\}_2$ (21), as shown by X-ray structural analysis (see below).

(3) Ethynylphosphine, Ph₂PC≡CH. This ligand reacts with the 4,5-difluorobenzyne complex 1b to give a dark red solution whose ¹⁹F and ³¹P NMR spectra are very complex. The ³¹P{¹H} NMR spectrum contains signals similar to those described above corresponding to nickel(0) complexes of naphthylene-2,3-bis(diphenylphosphines), but there are also signals in the region


of δ_P –5 that are likely to be due to free naphthylenebis-(diphenylphosphines), together with multiplets possibly due to phosphine oxides or oligomers. The $^{31}P\{^1H\}$ NMR spectrum of the solution obtained after addition of bromine is also complex, although a resonance at δ_P 65.2 due to a minor component may be assigned to the planar chelate nickel(II) complex [NiBr₂{6,7-F₂C₁₀H₄-2,3-(PPh₂)₂}] (**22**). The main species present shows a very

broad signal at δ_P 38 and gives a green solution in CH₂-Cl₂ suggestive of the presence of a paramagnetic, tetrahedrally coordinated nickel(II) complex, but we could not characterize it.


Treatment of the nickel(0) complexes arising from reaction with Ph₂PC≡CH with air and subsequently with H₂O₂ gives a mixture whose ¹⁹F NMR spectrum shows the presence of only three aromatic compounds in a ratio of ca. 1:2:1. The components of the mixture could not be separated by chromatography, but some tentative assignments can be made. The first compound, which shows a triplet at $\delta_{\rm F}$ –131.7 and a singlet in the $^{31}P\{^{1}H\}$ NMR spectrum at δ 31.0, is probably the 2,3naphthylenebis(diphenylphosphine oxide) 6,7-F₂C₁₀H₄- $2,3-\{P(O)Ph_2\}_2$ (23); the most abundant species contains a pair of multiplets at δ -129.4 and -133.4 in its ¹⁹F NMR spectrum and a pair of doublets at δ 31.5 and 26.3 (J = 2.3 Hz) in its $^{31}P\{^{1}H\}$ NMR spectrum. These data suggest that the compound is the 1,3-naphthylenebis-(diphenylphosphine oxide) $6.7 - F_2C_{10}H_4 - 1.3 - \{P(O)Ph_2\}_2$ (24); the ligand from which it is derived, $6.7 \cdot F_2C_{10}H_4$ -1,3-(PPh₂)₂, is clearly incapable of chelation to a single nickel(II) atom and is likely to be responsible for the formation of the paramagnetic nickel(II) species mentioned above. The nature of the third species, which is responsible for a pair of multiplets at -130.5 and -133.7 in the ¹⁹F NMR spectrum, is unknown.

The double insertion of $Ph_2PC \equiv CH$ with $\mathbf{1b}$ is clearly not regiospecific and, hence, synthetically not very useful. This reaction has therefore not been studied further.

Structures Determined by X-ray Crystallography. The molecular geometries of [NiBr₂{6,7-F₂C₁₀H₂-1,4-Ph₂-2,3-(PPh₂)₂}] (**11b**) and [NiBr₂{C₁₀H₄-1,2,3-(PPh₂)₃-4-{P(O)PPh₂}- κ P¹,P²}] (**18**) are shown, together with the atom labeling, in Figures 1 and 2; selected interatomic distances and angles for **6b**, **11b**, and **18** are listed in Tables 1–3, respectively (those for **6b** were not given in the preliminary communication¹⁶). The nickel atom is bonded to the naphthylenebis(diphenylphosphine) fragments via the phosphorus atoms on C² and C³ in the case of **11a** and via those on C¹ and C² in the case of **18**. As expected, in both complexes the coordination geometry about the metal atom is close to square planar, the mean deviation from the least-

Figure 1. Molecular structure of **11b** with selected atom labeling. Thermal ellipsoids show 30% probability levels; hydrogen atoms have been omitted for clarity.

Figure 2. Molecular structure of **18** with selected atom labeling. Thermal ellipsoids show 30% probability levels; hydrogen atoms have been omitted for clarity.

squares plane defined by Ni(1), Br(1), Br(2), P(1), and P(2) in **11** being only 0.038 Å. In **18**, the phosphorus atoms P(1) and P(2) lie 0.1585 and -0.1625 Å, respectively, from that plane. In both complexes, the naphthalene ring is planar, the dihedral angles with the coordination plane being 3.1° (**11b**) and 11.6° (**18**). Both values are considerably smaller than the value of 26.2° found in [NiBr₂{6,7-F₂C₁₀H₂-1,4-Me₂-2,3-(PPh₂)₂}] (**6b**), ¹⁶ probably reflecting the steric interaction between the 1,4-diphenyl substituents and the PPh₂ groups in the case of **11b** and between the adjacent coordinated and uncoordinated PPh₂ groups in the case of **18**, leading in both cases to a flattening of the geometry. In agreement, the 1,4-substituents in **11b** are slightly bent away from the PPh₂ groups. The metal-ligand bond

Table 1. Selected Bond Lengths (Å) and Bond Angles (deg) for 6ba

Insertion of Phosphines into Ni(0) Benzyne Complexes

Ni(1)-Br(1)	2.3400(8)	Ni(1)-Br(2)	2.3253(7)
Ni(1)-P(1)	2.144(1)	Ni(1)-P(2)	2.144(1)
P(1)-C(2)	1.829(4)	P(2)-C(3)	1.833(4)
C(1)-C(2)	1.389(5)	C(2)-C(3)	1.428(5)
C(3)-C(4)	1.377(5)	C(1)-C(9)	1.416(5)
C(4)-C(10)	1.439(5)	C(1)-C(11)	1.496(6)
C(4)-C(12)	1.495(6)		
Br(1)-Ni(1)-Br(2)	93.05(3)	Br(1)-Ni(1)-P(1)	91.28(4)
Br(1)-Ni(1)-P(2)	176.36(4)	Ni(1)-P(1)-C(2)	109.9(1)
C(2)-C(1)-C(11)	123.4(4)	C(3)-C(4)-C(12)	124.0(4)

^a For the numbering scheme, refer to ref 16.

Table 2. Selected Bond Lengths (Å) and Bond Angles (deg) for 11b

71
7)
)

Table 3. Selected Bond Lengths (Å) and Bond Angles (deg) for 18

	•	O,	
Ni(1)-Br(1)	2.335(2)	Ni(1)-Br(2)	2.338(2)
Ni(1)-P(1)	2.124(3)	Ni(1)-P(2)	2.137(3)
P(1)-C(1)	1.84(1)	P(2)-C(2)	1.859(8)
P(3)-C(3)	1.851(8)	P(4)-C(4)	1.85(1)
C(1)-C(2)	1.39(1)	C(2)-C(3)	1.44(1)
C(3)-C(4)	1.42(1)	C(1)-C(10)	1.44(1)
C(4)-C(5)	1.42(1)	P(4) - O(1)	1.463(6)
Br(1)-Ni(1)-Br(2) Br(1)-Ni(1)-P(1) P(1)-C(1)-C(2) P(3)-C(3)-C(2)	94.06(7) 173.5(1) 116.0(6) 111.2(6)	Br(1)-Ni(1)-P(2) Ni(1)-P(1)-C(1) P(2)-C(2)-C(3) P(4)-C(4)-C(3)	88.29(8) 110.6(3) 123.3(6) 119.1(6)

lengths in both complexes are similar to each other and to those in **6b** (Ni–Br, 2.333 Å (av) (**6b**), 2.335 Å (av) (11b), 2.337 Å (av) (18); Ni-P, 2.144(1), 2.144(1) Å (6b), 2.143(2), 2.127(2) Å (**11b**), 2.124(3), 2.137(3) Å (**18**)). The P-O bond length in **18** (1.463(6) Å) is comparable with that of $6.7 - F_2C_{10}H_2 - 1.4 - Me_2 - 2 - (PPh_2) - 3 - \{P(O)Ph_2\}$ (15b) (1.489(5) Å)¹⁶ and with those in a wide range of tertiary phosphine oxides.²⁶

The unit cell of the crystal isolated from attempted crystallization of the tetrakis(tertiary phosphine) 19 contains two isomeric bis(tertiary phosphine oxides), $C_{10}H_4$ -1,4-(PPh₂)₂-2,3-{P(O)PPh₂}₂ (**20**) (73% occupancy) and $C_{10}H_4$ -1,2-(PPh₂)₂-3,4-{P(O)PPh₂}₂ (21) (27% occupancy). The structure of 20 is shown in Figure 3. Owing to disorder arising from the alternative locations of an oxygen atom on P(1) or P(3), the bond lengths are unreliable and are therefore not tabulated. However, an interesting consequence of the steric crowding is that the naphthalene units are not planar. The substituted carbon atoms C(1), C(2), C(3), and C(4) are respectively 0.17(2), 0.31(3), 0.01(3), and -0.10(2) Å out of the plane defined by the other carbon atoms (C(5)-C(10)) of the naphthalene ring. As a consequence of the steric repulsion between O(2) and O(3), the phosphorus atoms P(2)

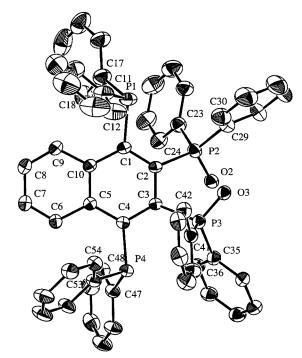


Figure 3. Molecular structure of 20 with selected atom labeling. Thermal ellipsoids show 30% probability levels; hydrogen atoms have been omitted for clarity.

and P(3) also deviate considerably from this plane, the dihedral angle between the planes P(2)-C(2)-C(3) and P(3)-C(3)-C(2) being $42.2(13)^{\circ}$. Similar steric distortions of the aromatic ring have been reported for benzenes having more than two adjacent PPh₂ groups, e.g. for 1,2,3,4-tetrakis(diphenylphosphino)benzene and its chalcogen adducts, which were studied by ³¹P NMR spectroscopy,²⁷ or for 1,2,3,5-tetrakis(diphenylthiophosphino)benzene, whose X-ray structure analysis showed dihedral angles P-C-C-P of up to 70°.28

Discussion

The double insertion of (alkynyl)diphenylphosphines into the nickel-carbon bonds of the benzyne complexes 1a and 1b leads to naphthalene-based diphenylphosphines and derived phosphine oxides that would be difficult to make by conventional methods. In particular, the reactions with $Ph_2PC \equiv CR$ (R = Me, Ph) occur with high regioselectivity to give nickel(0) complexes containing the corresponding 2,3-naphthylenebis(diphenylphosphines) $6.7-X_2C_{10}H_2-1.4-Y_2-2.3-(PPh_2)_2$ (X = H, Y = Me (12a); X = F, Y = Me (12b); X = H, Y = Ph (13a); X = FF, Y = Ph (13b), which behave as bidentate ligands and can be isolated from the reactions via their fivemembered-ring chelate NiBr₂ complexes.²⁹ Few examples of naphthalene-based bis(tertiary phosphines) are known. The closest analogue is 1-phenylnaphthalene-2,3-bis(diphenylphosphine), which is obtained via its PtCl₂ complex by thermal coupling of the pendant alkynyl groups of *cis*-[PtCl₂(Ph₂PC≡CPh)₂].^{30,31} The

⁽²⁶⁾ Gilheany, D. C. In The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley: Chichester, U.K., 1992; Vol. 2, p

⁽²⁷⁾ McFarlane, H. C. E.; McFarlane, W. Polyhedron 1999, 18, 2117. (28) Clegg, W.; Edwards, A. J.; McFarlane, H. C. E.; McFarlane, W. Polyhedron **1998**, 17, 3515.

⁽²⁹⁾ McAuliffe, C. A.; Levason, W. Phosphine, Arsine and Stibine Complexes of the Transition Elements; Elsevier: Amsterdam, 1979. (30) Carty, A. J.; Taylor, N. J.; Johnson, D. K. J. Am. Chem. Soc. **1979**. 101. 5422.

Scheme 4

compounds 1,8-naphthylenebis(dimethylphosphine)³² and 1,8-naphthylenebis(diphenylphosphine)³³ have been obtained from the reaction of 1,8-dilithionaphthalene with the appropriate phosphinous chloride; the second compound forms six-membered-ring chelate complexes with PtCl₂ and PdCl₂.

In view of the bulk of the PPh2 group, the regioselectivity observed with Ph₂PC≡CR (R = Me, Ph) cannot be determined primarily by steric effects but must result from electronic control. The regioselectivity is similar to that with methyl 2-butynoate, MeC≡CCO₂Me, whose double insertion with 1a and 1b is also believed to be under electronic control. 12,14 The similarity in the directing effects of PPh₂ and CO₂Me as substituents on a C≡ C bond is supported by theoretical calculations, which show alkynylphosphines and acetylenic esters to be polarized similarly, although there is no delocalization of the π -system onto the phosphorus atom.³⁴

A possible mechanism for the double insertion of Ph₂-PC = CR (R = Me, Ph) into the nickel(0)—benzyne bond of 1a is outlined in Scheme 4. In the first step, the alkynylphosphine displaces a PEt₃ ligand to give a η^2 alkyne complex (25), analogous to the spectroscopically detected complexes 9a and 9b, and to 10. The first insertion, resulting from attack of the nucleophilic benzyne complex on the electrophilic carbon atom of the alkyne, then gives the five-membered nickelacycle 26, in which the carbon atom bearing the PPh2 group is attached to nickel, i.e., a (2-diphenylphosphino)nickelaindene, analogous to the similarly prepared (2diphenylphosphino)zirconaindene (eq 1).17

The second insertion can take place in either the nickel-vinyl or nickel-phenyl bond of 26. In the corresponding reaction of MeC≡CCO₂Me with **1b**, we

favored insertion into the nickel-vinyl bond in the second step on electronic grounds. 9,12,14 However, DFT calculations show nickel-vinyl and nickel-phenyl bonds to be very similar in energy35 and, in this case, the presence of the PPh₂ group may tilt the balance in favor of the nickel-phenyl bond. Thus, if the second insertion occurs in the same sense as the first one, the product will be the seven-membered nickelacycle 27. Many examples of similar metallacycles that result from insertion of an unsaturated substrate into a fivemembered nickelacycle are known.³⁶ Reductive elimination from 27 then gives the appropriate naphthylene-2,3-bis(diphenylphosphine), which will readily capture the nickel(0) fragment to give the observed mixture of nickel(0) complexes.

The double insertion of Ph₂PC≡CH is less regioselective than those of $Ph_2PC \equiv CR$ (R = Me, Ph); a similar trend is evident in the behavior of HC≡CCO₂Me and MeC≡CCO₂Me.^{9,12} It seems likely that the first insertion occurs with the same regioselectivity as those for Ph₂PC≡CR to give the corresponding (2-diphenylphosphino)nickelaindene **26** (R = H); cf. the reactions of Ph₂-PC \equiv CR (R = H, Ph) with [Cp₂Zr(η^2 -C₆H₄)] (eq 1).¹⁷ Loss of regiocontrol may occur in the second insertion, perhaps as a result of competitive insertion with the same regioselectivity into the nickel-phenyl and nickelvinyl bonds of the nickelaindene.

The formation of the η^2 -alkyne complexes **9a**,**b** and 10 is also of interest. In general, P-donor coordination of (alkynyl)diphenylphosphines is favored kinetically and there are numerous complexes or clusters in which dppa acts as a bridging ligand through its phosphorus atoms.³⁷ Only a few compounds are known in which alkyne coordination is favored over P-donor coordination, e.g. $[Co_2(CO)_6\{\mu-\eta^2-(C_6F_5)_2PC\equiv CR\}]$ (R = Me, Ph), 15a [(CpNi)₂(μ - η ²-Ph₂PC \equiv C-tBu)], 38 and [W(CO)(η ²-Ph₂PC≡CPPh₂)(S₂CNEt₂)₂];³⁹ more commonly the Ph₂-PC≡CR ligands bridge a pair of metal atoms via phosphorus and the triple bond, as in $[Ni_2(CO)_2(\mu-\eta^1)]$: η²-Ph₂PC≡C-tBu)].³⁸ In our case, although a P-coordinated species may be an intermediate in the formation of 10, the complex having the alkyne bonded to nickel is clearly the thermodynamically favored species.

Finally, an interesting feature of the new naphthalenebased bis(tertiary phosphines) is that they undergo selective oxidation to mixed tertiary phosphine-phosphine oxide compounds when their nickel(0) complexes are exposed to air. The only polyfunctional tertiary phosphines known to undergo mono-oxidation in air are o-phenylenebis (methylphenylphosphine), o-C₆H₄(PMe-Ph)₂,⁴⁰ and 1,2,3,4-tetrakis(diphenylphosphino)benzene; in the latter compound only the phosphorus atom

⁽³¹⁾ Johnson, D. K.; Rukachaisirikul, T.; Sun, Y.; Taylor, N. J.; Canty, A. J.; Carty, A. J. Inorg. Chem. 1993, 32, 5544. (32) Costa, T.; Schmidbaur, H. Chem. Ber. 1982, 115, 1374.

⁽³³⁾ Jackson, R. D.; James, S.; Orpen, A. G.; Pringle, P. G. *J. Organomet. Chem.* **1993**, *458*, C3.

⁽³⁴⁾ Louattani, E.; Lledós, A.; Suades, J.; Alvarez-Larena, A.; Piniella, J. F. Organometallics 1995, 14, 1053.

⁽³⁵⁾ Macgregor, S. A. Preliminary calculations, Heriot-Watt University, Edinburgh, U.K.

⁽³⁶⁾ Cámpora, J.; Palma, P.; Carmona, E. Coord. Chem. Rev. 1999,

^{(37) (}a) Orama, O. *J. Organomet. Chem.* **1986**, *314*, 273 and references therein. (b) Hogarth, G.; Norman, T. *Polyhedron* **1996**, *15*, 2859 and references therein. (c) Sappa, E. J. Organomet. Chem. 1988,

⁽³⁸⁾ Paik, H. N.; Carty, A. J.; Dymock, K.; Palenik, G. J. J. Organomet. Chem. 1974, 70, C17.

^{(39) (}a) Ward, B. C.; Templeton, J. L. J. Am. Chem. Soc. 1980, 102, 1532. (b) Nickel, T. M.; Wau, S. Y. W.; Went, M. J. J. Chem. Soc., Chem. Commun. 1989, 775. (c) Powell, A. K.; Went, M. J. J. Chem. Soc., Dalton Trans. 1992, 439.

⁽⁴⁰⁾ Wild, S. B. Personal communication, Australian National University.

bonded to C¹ is oxidized.²⁷ Bis(tertiary phosphine) monoxides are potentially useful ligands for some homogeneously catalyzed processes, yet few satisfactory, general synthetic methods are available. 41 The selectivity to air oxidation in the case of the naphthalene-based ligands may result from steric protection and electronic deactivation of one phosphorus atom induced by oxidation at its rigidly held neighbor or from a selective monooxidation induced by the presence of the chelated nickel(0) center. As the free naphthylenebis(diphenylphosphines) are quite resistant to aerial oxidation, the latter mechanism is favored.

Experimental Section

General Procedures. All experiments were performed under an inert atmosphere with use of standard Schlenk techniques, and all solvents were dried and degassed prior to use. All reactions involving benzyne complexes were carried out under argon. NMR spectra were recorded on a Varian XL-200E (1H at 200 MHz, 13C at 50.3 MHz, 19F at 188.1 MHz, and ³¹P at 81.0 MHz), a Varian Gemini-300 BB (¹H at 300 MHz, ¹³C at 75.4 MHz, and ³¹P at 121.4 MHz), or a Varian Inova-500 instrument (1H at 500 MHz, 13C at 125.7 MHz, and ^{31}P at 202.4 MHz). The chemical shifts (δ) for ^{1}H and ^{13}C are given in ppm relative to residual signals of the solvent and to external 85% H₃PO₄ for ³¹P. The spectra of all nuclei (except ¹H and ¹⁹F) were ¹H-decoupled. The coupling constants (*J*) are given in Hz. Infrared spectra were measured on Perkin-Elmer 683 or FT-1800 instruments. Mass spectra were obtained on a Fisons VG ZAB2-SEQ spectrometer by the fast-atom bombardment (FAB) technique, on a Fisons VG Autospec spectrometer by electron impact (EI), or on a Fisons VG Quattro II by electrospray (ESI). Microanalyses were done in-house.

In several cases, especially for the tertiary phosphines and phosphine oxides, the uninformative ¹H and ¹³C NMR spectra, which consist of broad multiplets in the aromatic region δ_H 6.8–8.5 and $\delta_{\rm C}$ 122–135, are not reported in detail.

Starting Materials. 1,2-Dibromobenzene, 1,2-dibromo-4,5difluorobenzene, acetylene (ethyne), phenylacetylene, propyne, 3,3-dimethyl-1-butyne, bis(diphenylphosphino)acetylene (dppa), and (trimethylsilyl)acetylene were obtained commercially and used as received. Chlorodiphenylphosphine was obtained commercially and distilled under an inert, reduced-pressure atmosphere before use. The aryl-nickel(II) complexes [NiBr- $(2-Br-4,5-X_2C_6H_2)(dcpe)$] (X = H, F) were prepared by zinc reduction of [NiBr₂(PPh₃)₂]⁴² in the presence of the appropriate 1,2-dibromoarene and subsequent replacement of PPh₃ by dcpe. The complexes $[NiBr(2-Br-4,5-X_2C_6H_2)(PEt_3)_2]$ (X = H, F) were prepared by reaction of [Ni(COD)₂]⁴³ with the corresponding dibromoarene in the presence of 2.5 equiv of PEt₃.12 The complex [Ni(C₂H₄)(dcpe)] was prepared as described previously.44

The (alkynyl)diphenylphosphines $Ph_2PC \equiv CR$ (R = H, Me, Ph, t-Bu) were prepared by following the published procedures. 45,46 Complete NMR data for these compounds have not been published; they are given below, together with some values for the corresponding oxides.

Ph₂PC≡CMe. ¹H NMR (300 MHz, C_6D_6): δ 1.53 (s, 3H, CH₃), 7.02–7.11 (m, 6H, Ar H), 7.64–7.67 (m, 4H, Ar H). ³¹P- $\{^{1}H\}$ NMR (81.0 MHz, C₆D₆): $\delta -31.4$ (s). $^{13}C\{^{1}H\}$ NMR (75.4 MHz, C_6D_6): δ 4.9 (s, CH₃), 76.4 (s, CH₃C \equiv C), 106.1 (s, CH₃C \equiv C), 128.7 (d, J(PC) 7.7, CH), 129.0 (s, CH), 132.9 (d, J(PC) 21.0, CH), 137.73 (d, J(PC) 8.0, C).

Ph₂P(O)C=**CMe.** ³¹P{¹H} NMR (81.0 MHz, C_6D_6): δ 7.3 (s).

Ph₂PC \equiv **CPh.** ¹H NMR (300 MHz, C₆D₆): δ 6.84-6.94 (m, 3H, Ar H), 7.00–7.11 (m, 6H, Ar H), 7.31–7.36 (m, 2H, Ar H), 7.73–7.80 (m, 4H, Ar H). ${}^{13}C\{{}^{1}H\}$ NMR (75.4 MHz, C_6D_6): δ 86.6 (d, J(CP) 8.9, $PhC \equiv C$), 108.1 (d, J(CP) 4.5, $PhC \equiv C$), 122.9 (C), 128.2 (CH), 128.6 (d, J(PC) 7.5), 128.6, 128.9, 131.8 (CH), 132.7 (d, J(PC) 21.5, CH), 136.6 (d, J(PC) 7.1, C). ³¹P{¹H} NMR (81.0 MHz, C_6D_6): δ -32.5 (s).

Ph₂PC \equiv **C**-*t*-**Bu.** ¹H NMR (300 MHz, C₆D₆): δ 1.36 (s, 9H, C(CH₃)₃), 7.31–7.39 (m, 6H, Ar H), 7.58–7.66 (m, 4H, Ar H). ³¹P{¹H} NMR (81.0 MHz, C_6D_6): δ -34.0 (s).

Ph₂P(O)C \equiv **C**-*t*-**Bu.** ³¹P{¹H} NMR (81.0 MHz, C₆D₆): δ 5.1

Ph₂PC=CH. ¹H NMR (300 MHz, C_6D_6): δ 2.68 (d, 1H, 1 J(PH) 2.48, C≡CH), 6.9–7.05 (m, 6H, Ar H), 7.59–7.67 (m, 4H, Ar H). ${}^{31}P\{{}^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ -33.3 (s). ${}^{13}C_7$ {1H} NMR (75.4 MHz, C_6D_6): δ 96.6 (br s, HC=C), 111.1 (s, HC≡C), 128.9 (d, J(PC) 9.4, CH), 129.3 (s, CH), 133.0 (d, J(PC) 24.0, CH), 136.1 (d, J(PC) 8.3, C).

Ph₂P(O)C=**CH.** $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ 5.6 (s). ((Trimethylsilyl)ethynyl)diphenylphosphine, Ph,PC =**CSiMe₃.** This oil was prepared similarly to Ph₂PC≡C-t-Bu⁴⁵ by deprotonation of Me₃SiC≡CH with *n*-BuLi at −78 °C and reaction of the resulting lithioacetylide with Ph₂PCl. ¹H NMR (300 MHz, C_6D_6): δ 0.13 (s, 9H, CH₃), 6.96–7.09 (m, 6H, Ar H), 7.70-7.77 (m, 4H, Ar H). ¹³C{¹H} NMR (75.4 MHz, C₆D₆): δ −0.1 (s, CH₃), 103.3 (d, J(CP) 13.2, Me₃SiC≡C), 117.4 (s, Me₃Si C≡C), 129.0 (d, J(PC) 7.7), 129.5 (s), 132.8 (d, J(PC) 20.9, CH), 136.5 (d, J(PC) 6.6, C). ³¹P{¹H} NMR (81.0 MHz, CD₂-Cl₂): δ -31.1 (s).

Insertion Reactions of Ph₂PC \equiv CMe with [Ni{(1,2- η)- $4,5-X_2C_6H_2$ (PEt₃)₂ (X = H (1a), F (1b)). A filtered, yellow solution of 1a in hexane (30 mL), prepared by reduction of $[NiBr(2\text{-}BrC_6H_4)(PEt_3)_2]\ (531\ mg,\ 1\ mmol)$ with lithium (231 mg, 10 mmol, 30% dispersion in paraffin) in ether at −40 °C, 12 was cooled to -78 °C. A solution of diphenyl-1-propynylphosphine (560 mg, 2.5 mmol) in hexane (5 mL) was added. The initially formed orange suspension was then warmed to room temperature, and the resulting dark red solution was stirred at room temperature for a further 4 h. The ³¹P{¹H} NMR spectrum showed the presence of three nickel(0) complexes of general formula [Ni{ $C_{10}H_4$ -1,4-Me₂-2,3-(PPh₂)₂}(L^1)($\bar{L^2}$)] (L^1 = $L^{2} = PEt_{3}$ (2a), $L^{1} = L^{2} = Ph_{2}PC \equiv CMe$ (3a), $L^{1} = PEt_{3}$ and L^{2} = $Ph_2PC \equiv CMe$ (4a)), together with free PEt_3 and $Ph_2PC \equiv$ CMe. The relative ratio of the complexes changes from one experiment to the other, depending on the excess of Ph₂PC≡ CMe present.

2a. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ 10.9 (t, $^{2}J(PP)$ 25.6, $PEt_{3}),\;50.9\;(t,\;{}^{2}\textit{J}(PP)\;25.6,\;C_{12}H_{10}(PPh_{2})_{2}).$

3a. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ 7.9 (t, $^{2}J(PP)$ 22.8, $Ph_2PC \equiv CMe)$, 51.5 (t, ${}^2J(PP)$ 22.8, $C_{12}H_{10}(PPh_2)_2$).

4a. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ 5.6 (dt, $^{2}J(PP)$ 41.2, 25.4, Ph₂PC≡CMe), 10.1 (dt, ²J(PP) 41.2, 21.6, PEt₃), 51.2 (dd, 2 J(PP) 25.4, 21.6, $C_{12}H_{10}(PPh_{2})_{2}$).

A similar reaction was carried out with the 4,5-difluorobenzyne complex 1b; ³¹P{¹H} NMR monitoring showed the formation of the corresponding 6,7-difluoro-substituted nickel(0) complexes 2b-4b, whose ³¹P NMR spectroscopic data were similar to those of 2a-4a.

 $[Ni{6,7-X_2C_{10}H_2-1,4-Me_2-2,3-(PPh_2)_2}(dcpe)](X = H(5a),$ F (5b)). In qualitative reactions, dcpe (small excess) was added to solutions containing 2a-4a and 2b-4b, and the mixtures were stirred for 2 h at room temperature. The ³¹P{¹H} and ¹⁹F NMR spectra indicated the formation of **5a** or **5b**, together with free PEt₃ and Ph₂PC≡CMe. Complex 5a was isolated as a beige solid by removing the solvent in vacuo and washing

⁽⁴¹⁾ Grushin, V. V. J. Am. Chem. Soc. 1999, 121, 5831.

⁽⁴²⁾ Venanzi, L. M. *J. Chem. Soc.* **1958**, 719.
(43) Schunn, R. A. *Inorg. Synth.* **1974**, *15*, 5.
(44) Bennett, M. A.; Hambley, T. W.; Roberts, N. K.; Robertson, G. B. Organometallics 1985, 4, 1992.

⁽⁴⁵⁾ Charrier, C.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. **1966**, 1002.

⁽⁴⁶⁾ Carty, A. J.; Hota, N. K.; Ng, T. W.; Patel, H. A.; O'Connor, T. J. Can. J. Čhem. 1971, 49, 2706.

with hexane. The compound was not analytically pure, but attempts to crystallize it were unsuccessful owing to its poor solubility.

5a. ¹H NMR (300 MHz, C_6D_6): δ 1.15–2.15 (m, 48H, dcpe), 2.29 (6H, CH₃), 6.80-7.25 (m, 14H), 7.75 ([AB]m, 2H), 7.97-8.05 (m, 8H). $^{31}P\{^{1}H\}$ NMR (81.0 MHz, $C_{6}D_{6}):~\delta$ 47.2 (t, $^{2}\emph{J}(PP)$ 26.6), 52.1 (t, ²*J*(PP) 26.6). FAB-MS (C₆₂H₇₈NiP₄, tetraglyme): m/z 1004 (20, M⁺). High-resolution MS: calcd for C₆₂H₇₈NiP₄, 1004.440 754; found, 1004.444 885.

5b. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ 47.4 (t, $^{2}J(PP)$ 27.4), 52.3 (t, ${}^2J(PP)$ 27.4). ${}^{19}F$ NMR (188.1 MHz, C_6D_6): δ -139.6(app t, J(FH) 10.2).

 $[NiBr_2{6,7-X_2C_{10}H_2-1,4-Me_2-2,3-(PPh_2)_2}]$ (X = H (6a), F (6b)). A solution of bromine (0.15 mL, 2.9 mmol) in hexane (5 mL) was added dropwise over 5 min to a solution containing 2a-4a (1 mmol) at -30 °C (prepared as described above), and the mixture was stirred for 2 h at room temperature. Filtration of the resulting orange precipitate in air afforded the nickel-(II) complex 6a (696 mg, 95% yield based on the nickel(II) precursor). ¹H NMR (300 MHz, CD₂Cl₂): δ 2.21 (s, 6H, CH₃), 7.37-7.50 (m, 12H, Ar H), 7.89-7.98 (m, 8H, Ar H), 7.66-8.05 (m, 4H, Ar H). ${}^{31}P{}^{1}H}$ NMR (81.0 MHz, CD₂Cl₂): δ 65.5 (s). EI-MS ($C_{36}H_{30}Br_2NiP_2$): m/z 663 (100, M^+ – Br). Anal. Calcd for C₃₆H₃₀Br₂NiP₂: C, 58.18; H, 4.04; P, 8.35. Found: C, 58.40; H, 4.24; P, 8.85.

In a similar reaction, the mixture of nickel(0) complexes 2b-4b was treated with bromine to give 6b in 97% yield (based on the nickel(II) precursor). Single crystals suitable for X-ray diffraction were obtained from CH₂Cl₂/hexane. ¹H NMR (300 MHz, CD_2Cl_2): δ 2.18 (s, 6H, CH₃), 7.46–7.59 (m, 12H, Ar H), 7.81 (t, ${}^{1}J(FH)$ 10.1, 2H, Ar H), 7.91–7.98 (m, 8H, Ar H). ${}^{13}C$ - $\{^{1}H\}$ NMR (75.4 MHz, CD₂Cl₂): δ 20.38 (CH₃), 112.23 (m, CH), 129.16 (t, J(CP) 5.6, CH), 131.53 (CH), 133.07 (t, J(CP) 4.8, CH), 133.34, (t, J(CP) 6.3, C^{1,4}), 135.20 (t, J(CP) 46.5, C^{phenyl}), 140.22 (t, J(CP) 9.7, C^{2,3}), 151.55 (br dd, J 281, 24, CF); C^{4a,8a} not located. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, CD₂Cl₂): δ 65.8 (s). ^{19}F NMR (188.1 MHz, CD_2Cl_2): δ –132.6 (app t, J(FH) 10.1). EI-MS ($C_{36}H_{28}Br_2F_2NiP_2$): m/z 778 (46, M⁺), 697 (65, M⁺ – Br), 504 (100). Anal. Calcd for C₃₆H₂₈Br₂F₂NiP₂: C, 55.50; H, 3.62; Br, 20.51. Found: C, 55.36; H, 3.66; Br, 20.33.

 $6,7-X_2C_{10}H_2-1,4-Me_2-2-PPh_2-3-\{P(O)Ph_2\}\ (X=H\ (15a),\ F$ (15b)). Ether (20 mL, nondegassed) was added to a mixture of **2a**—**4a** (prepared as described above), and the mixture was stirred for 24 h in air at room temperature. During this time, the dark red solution changed to clear yellow. Removal of all volatiles in vacuo and dissolution of the residue in acetone (5 mL) gave a solution that was confirmed by ³¹P{¹H} NMR spectroscopy to contain 15a as the only naphthalene-based product, together with the phosphine oxides of the auxiliary ligands. ¹H NMR (200 MHz, C_6D_6): δ 2.25 (s, 3H, CH₃), 2.79 (s, 3H, CH₃), 6.85-7.95 (m, 24H). ${}^{31}P{}^{1}H{}^{1}$ NMR (81.0 MHz, d_{6} -acetone): δ -6.6 (d, ${}^{3}J(PP)$ 37.4), 31.0 (d, ${}^{3}J(PP)$ 37.4). EI-MS $(C_{36}H_{30}OP_2)$: m/z 540 (29, M⁺), 422 (100, M⁺ – Ph), 314 (45, $M^+ - PPh_2$).

The 6,7-difluoro analogue $6,7-F_2C_{10}H_2-1,4-Me_2-2-PPh_2-3-\{P-1,4-Me_2-2-PPh_2-3-PPh_2-3-(P-1)-4-(P-1)-$ (O)Ph₂} (**15b**) was prepared similarly by exposure of a solution of **2b**-**4b** to air. Dissolution of the residue in acetone and slow evaporation of the solution gave single crystals of 15b suitable for X-ray diffraction. ¹H NMR (300 MHz, CDCl₃): δ 2.11 (s, 3H, CH₃), 2.75 (s, 3H, CH₃), 6.90–8.00 (m, 22H). $^{31}P\{^{1}H\}$ NMR (81.0 MHz, d_6 -acetone): $\delta - 6.3$ (d, ${}^3J(PP)$ 36.7), 31.0 (d, ${}^3J(PP)$ 36.7). ¹⁹F NMR (188.1 MHz, C_6D_6): $\delta -135.3$ (m) -136.0 (m). EI-MS ($C_{36}H_{28}F_2OP_2$): m/z 576 (40, M⁺), 499 (100, M⁺ – Ph), 391 (38, M^+ – PPh₂). High-resolution MS: calcd for $C_{36}H_{28}F_{2}$ -OP₂, 576.158 834 9; found, 576.158 054.

 $6,7-X_2C_{10}H_2-1,4-Me_2-2,3-\{P(O)Ph_2\}_2$ (X = H (14a), F (14b)). An excess of aqueous H_2O_2 (30 vol, 10 mL) was added to a solution containing 2a-4a (prepared as described above), and the mixture was stirred for 24 h in air at room temperature. During this time, the dark red solution changed to clear yellow. Removal of all volatiles in vacuo and dissolution of the resulting residue in acetone (5 mL) gave a solution which was confirmed by ³¹P{¹H} NMR spectroscopy to contain **14a** as the only naphthalene-based product, together with the phosphine oxides of the auxiliary ligands. Extraction with benzene and crystallization gave pure 14a as a colorless solid. ¹H NMR (200 MHz, C_6D_6): δ 2.48 (br s, 6H, CH₃), 6.85–7.15 (m, 12H), 7.28 ([AB]m, 2H), 7.65–7.85 (m, 8H). ${}^{31}P{}^{1}H{}^{1}$ NMR (81.0 MHz, d_{6} acetone): δ 34.3 (br s). EI-MS (C₃₆H₃₀O₂P₂): m/z 556 (32, M⁺), 479 (100, M^+ – Ph). High-resolution MS: calcd for $C_{36}H_{30}O_2P_2$, 556.172 107; found, 556.171 083. Anal. Calcd for C₃₆H₃₀O₂P₂: C, 77.69; H, 5.43. Found: C, 77.71; H, 5.57.

The analogous 6,7-difluoro-substituted bis(phosphine oxide) **14b** was formed similarly. IR (KBr disk): ν (P=O) 1118 cm⁻¹. ³¹P{¹H} NMR (81.0 MHz, d_6 -acetone): δ 33.4 (br s). ¹⁹F NMR (188.1 MHz, C_6D_6): $\delta - 133.9$ (br). EI-MS ($C_{36}H_{28}F_2O_2P_2$): m/z592 (36, M^+), 515 (100, $M^+ - Ph$).

 $6.7-X_2C_{10}H_2-1.4-Me_2-2.3-(PPh_2)_2$ (X = H (12a), F (12b)). A solution of $[NiBr_2\{C_{10}H_4-1,4-Me_2-2,3-(PPh_2)_2\}]$ (6a; 218 mg, 0.29 mmol) in DMSO (20 mL) was treated with NaCN (575 mg, 11.7 mmol), and the mixture was heated to 60 °C overnight with stirring. After addition of hexane (25 mL) and distilled water (20 mL), separation and evaporation of the organic phase afforded 12a quantitatively as a yellow solid. ¹H NMR (200 MHz, C_6D_6): δ 2.28 (s, 6H, CH₃), 6.95–7.15 (m, 12H), 7.23 ([AB] m, 2H), 7.45-7.55 (m, 8H), 7.77 ([AB] m, 2H). ¹³C{¹H} NMR (75.4 MHz, C_6D_6): δ 20.5 (CH₃), 125.3, 126.9, 127.6 (CH), 128.6 (t, ³J(CP) 2.7, CH), 132.0 (t, ²J(CP) 8.9, CH), 135.3 (C4a,8a), 137.9 (t, 1J(CP) 4.4, Cphenyl), 139.5 (t, 2J(CP) 4.4, C1,4), 140.8 (t, J(CP) 18.1, $C^{2,3}$). ${}^{31}P\{{}^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ -5.6 (s). EI-MS (C₃₆H₃₀P₂): m/z 524 (58, M⁺), 447 (100, M⁺ -Ph). High-resolution MS: calcd for C₃₆H₃₀P₂, 524.182 278; found, 524.181 939.

The analogous compound $6.7 \cdot F_2C_{10}H_2 \cdot 1.4 \cdot Me_2 \cdot 2.3 \cdot (PPh_2)_2$ (12b) was liberated quantitatively from 6b in the same way. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C₆D₆): δ -5.6 (s). ^{19}F NMR (188.1 MHz, C_6D_6): δ -138.5 (app t, J(FH) 10.3). EI-MS ($C_{36}H_{28}$ - F_2P_2): m/z 560 (64, M⁺), 483 (100, M⁺ - Ph).

Elemental analyses of 12a and 12b were unsatisfactory because the compounds tenaciously retain organic solvents.

Reaction of Ph₂PC \equiv CPh with [Ni{(1,2- η)-4,5-X₂C₆H₂}- $(PEt_3)_2$] (X = H (1a), F (1b)). The reaction was carried out as described for Ph₂PC≡CMe using 1a, formed from reduction of $[NiBr(2-BrC_6H_4)(PEt_3)_2]$ (538 mg, 1 mmol), and $Ph_2PC \equiv CPh$ (550 mg, 1.9 mmol). ³¹P{¹H} NMR monitoring showed the initial formation of $[Ni\{C_{10}H_4-1,4-Ph_2-2,3-(PPh_2)_2\}(L^1)(L^2)]$ (L1) $= L^2 = PEt_3$ (7a), $L^1 = PEt_3$ and $L^2 = Ph_2PC = CPh$ (8a)), together with free PEt₃. Complex 7a formed first, but after 1 h at room temperature 8a was the major compound. After 3 h, these compounds had disappeared and $[Ni\{C_{10}H_4-1,4-Ph_2-1,4-Ph_3-1,$ 2,3-(PPh₂)₂}(η^2 -Ph₂PC=CPh)] (**9a**) was the main product. ³¹P-{¹H} NMR (81.0 MHz, C_6D_6): **7a**, δ 6.7 (m, PEt₃), 51.8 (m, $C_{12}H_{10}(PPh_2)_2$; **8a**, δ 3.4 (dt, ${}^2J(PP)$ 47.8, 21.5, $Ph_2PC \equiv CPh$), 7.4 (dt, ²*J*(PP) 47.8, 23.8, PEt₃), 52.3 (app t, *J*(PP) 22.6, C₁₂H₁₀- $(PPh_2)_2$; **9a**, $\delta -19.4$ (dd, ${}^3J(PP)$ 32.9, 29.4, $Ph_2PC \equiv CPh$), 61.6 (dd, ²J(PP) 32.4, ³J(PP) 29.6, C₂₂H₁₄(PPh₂)₂), 63.5 (app t, J(PP) 32.8, $C_{22}H_{14}(PPh_2)_2$).

A similar reaction was carried out using [NiBr(2-Br-4,5- $F_2C_6H_2)(PEt_3)_2$ (567 mg, 1 mmol) and $Ph_2PC = CPh$ (570 mg, 2 mmol). ³¹P{¹H} NMR monitoring of the insertion showed the formation of products with spectroscopic parameters similar to those of **7a** and **8a**, together with $[Ni\{6,7-F_2C_{10}H_2-1,4-Ph_2-1\}]$ $2,3-(PPh_2)_2$ $\{(\eta^2-Ph_2PC\equiv CPh)\}$ (**9b**) as the major compound. **9b**: ${}^{31}P{}^{1}H{}$ NMR (81.0 MHz, C_6D_6) $\delta -19.2$ (dd, ${}^{3}J(PP)$ 33.3, 29.9, $Ph_2PC \equiv CPh$), 62.2 (dd, ${}^2J(PP)$ 33.2, ${}^3J(PP)$ 29.9, $C_{22}H_{12}F_2$ - $(PPh_2)_2$, 63.5 (app t, J(PP) 33.3, $C_{22}H_{12}F_2(PPh_2)_2$).

 $[NiBr_{2}\{6,7\text{-}X_{2}C_{10}H_{2}\text{-}1,4\text{-}Ph_{2}\text{-}2,3\text{-}(PPh_{2})_{2}\}]\ (X=H\ (11a),$ **F (11b)).** Addition of a solution of bromine (0.15 mL) in THF (10 mL) to a solution of 7a-9a (1 mmol) at -30 °C, followed by stirring for 16 h at room temperature, gave a beige suspension in a greenish solution. The solution was decanted and the solid purified by filtration through a silica gel column

(CH₂Cl₂). Removal of the solvent gave pure **11a** as an orangered powder (570 mg, 66% yield based on Ni(II) precursor). The compound was recrystallized from a CH2Cl2 solution layered with hexane. ¹H NMR (300 MHz, CD₂Cl₂): δ 6.35 (d, 4H, J 7.6), 6.89 (d, 4H, J 7.7), 7.10 ([AA'BB']m, 2H), 7.20 (t, 2H, J 7.3), 7.27-7.38 (m, 10H), 7.44-7.56 (m, 12H). ¹³C{¹H} NMR (50.3 MHz, CD₂Cl₂): δ 127.55, 127.73, 128.02 (CH), 128.64 (t, J 5.9, CH), 129.00, 130.52 (CH), 130.89 (t, J 1.7, CH), 131.32 (C), 133.11 (t, J 4.7, CH), 133.85 (t, J 46.4, P-C^{phenyl}), 136.30 (t, J 1.8, $C^{4a,8a}$), 136.69 (t, J 2.8, $C^{1,4}$), 147.64 (t, J 9.0, $C^{2,3}$). $^{31}P\{^{1}H\}$ NMR (81.0 MHz, CD₂Cl₂): δ 66.7 (s). EI-MS (C₄₆H₃₄- Br_2NiP_2): m/z 787 (65, M^+ – Br), 741 (35), 706 (40), 571 (95), 443 (52), 286 (100). Anal. Calcd for C₄₆H₃₄Br₂NiP₂·CH₂Cl₂: C, 59.29; H, 3.81. Found: C, 59.44; H, 4.06.

The nickel(II) complex 11b was obtained similarly by addition of a hexane solution of bromine to an aliquot of the mixture of Ni(0) complexes 7b-9b prepared as described above. Red single crystals suitable for X-ray diffraction were obtained from CH₂Cl₂/hexane. ³¹P{¹H} NMR (81.0 MHz, CD₂-Cl₂): δ 67.1 (s). ¹⁹F NMR (188.1 MHz, CD₂Cl₂): δ –132.26 (app t, J(FH) 10.3). FAB-MS (3-nitrophenyloctyl ether, C₄₆H₃₂Br₂F₂-NiP₂): m/z 902 (8, M⁺), 823 (100, M⁺ – Br). Anal. Calcd for C₄₆H₃₂Br₂F₂NiP₂·2CH₂Cl₂: C, 53.71; H, 3.36; P, 5.78. Found: C, 53.81; H, 3.95; P, 5.92.

 $6.7-X_2C_{10}H_2-1.4-Ph_2-2.3-(PPh_2)_2$ (X = H (13a), F (13b)). Under nitrogen, a solution of $[NiBr_2\{C_{10}H_4-1,4-Ph_2-2,3-(PPh_2)_2\}]$ (11a; 45 mg) in acetone was treated with an excess of dimethylglyoxime (20 mg) and one drop of degassed concentrated aqueous NH₄OH. After 3 h at room temperature, ³¹P NMR spectroscopy showed the formation of 13a to be quantitative. The solvent was evaporated, the red solid was extracted with benzene, and the resulting yellowish solution was filtered through degassed silylated silica gel. Chromatographic purification through degassed acidic alumina (ether) gave pure **13a** as a yellow solid. ¹H NMR (500 MHz, C_6D_6): δ 6.69 (t, 4H, J7.8), 8.82-6.85 (m, 6H), 6.92 ([AA'BB']m, 2H), 6.93-6.98 (m, 12H), 7.29-7.32 (m, 8H), 7.38 ([AA'BB']m, 2H). $^{31}P\{^{1}H\}$ NMR (121.4 MHz, C_6D_6): $\delta -1.3$ (s). $^{13}C\{^{1}H\}$ NMR (125.7 MHz, C_6D_6): δ 126.51 (CH), 127.13 (t, J(CP) 27.4, CH), 127.66, 127.91 (CH), 128.07 (d, J(CP) 2.3, CH), 128.29, 130.67 (CH), 132.76 (t, J(CP) 10.3, CH), 136.30 (C), 137.57 (t, J(CP) 2.1, C), 139.38 (dd, J(CP) 14.4, 13.0, P-C^{phenyl}), 139.54 (C), 146.63 (t, J(CP) 5.1, $C^{2,3}$). EI-MS ($C_{46}H_{34}P_2$): m/z 648 (M^+ , 31), 571 (100). High-resolution MS: calcd for C₄₆H₃₄P₂, 648.213 578; found, 648.213 845.

The bis(phosphine) 13b was released from the dibromide 11b by heating with NaCN in DMSO as described for 12a. $^{31}P\{^{1}H\}$ NMR (81.0 MHz, C_6D_6): δ -6.9 (s). ^{19}F NMR (188.1 MHz, C₆D₆): δ -137.9 (app t, J(FH) 10.2).

Reaction between $Ph_2PC \equiv CPPh_2$ and $[Ni(\eta^2-C_6H_4)-$ (PEt₃)₂] (1a). A hexane solution of 1a, obtained from lithium reduction of $[NiBr(2-BrC_6H_4)(PEt_3)_2]$ (508 mg, 0.96 mmol), was cooled to −60 °C. Bis(diphenylphosphino)acetylene (680 mg, 1.73 mmol) was added as a solid, followed by THF (10 mL). The cold bath was removed, and the solution was stirred for 3 h and then heated at 50 °C for 16 h. After being cooled to -10°C, the solution was treated with a solution of bromine (0.15 mL) in THF (10 mL) and the mixture was stirred for 2 h at room temperature. The solvent was removed in vacuo. The residue was extracted with THF, and the solution was filtered through Celite. Removal of the solvent yielded a crude solid containing [NiBr₂{ $C_{10}H_4$ -1,2,3,4-(PPh₂)₄- κP^2 , P^3 }] (**16**) and [NiBr₂- $\{C_{10}H_4-1,2,3,4-(PPh_2)_4-\kappa P^1,P^2\}\]$ (17) in a 2:1 ratio, together with other phosphorus-containing products (as shown by ³¹P NMR spectroscopy). Attempted separation on a degassed silica gel column (CH₂Cl₂) gave 423 mg of a 1:1:0.7 mixture of 16, 17, and $[NiBr_2\{C_{10}H_4-1,2,3-(PPh_2)_3-4-\{P(O)PPh_2\}-\kappa P^1,P^2\}]$ (18). Further elution with acetone yielded another 520 mg of red 18. Single crystals for X-ray analysis of 18 were obtained from a hot mixture of chlorobenzene, toluene, and acetone. The total yield of double-insertion products, calculated from 16−18, was 90%, based on the Ni(II) precursor.

The first fraction eluted from the column, containing mainly the isomeric mixture of 16 and 17, was treated with dimethylglyoxime (150 mg) in acetone (20 mL) and 10 drops of concentrated aqueous NH4OH. A colorless solid was formed immediately. The solution was decanted, and the residue was extracted with DMSO. Addition of hexane and stirring gave a sticky solid which was identified as being the tetrakis(tertiary phosphine) C₁₀H₄-1,2,3,4-(PPh₂)₄ (19). Attempted crystallization from DMSO/ether gave a mixture of dioxides, 20 and 21, identified by X-ray crystallography (see below).

16: ${}^{31}P\{{}^{1}H\}$ NMR (81.0 MHz, d_{6} -acetone) δ –12.2 (dd, J(PP)16.0, 11.8, P^{1,4}), 75.8 (dd, J(PP) 16.0, 11.8, P^{2,3}).

17: ${}^{31}P{}^{1}H}$ NMR (81.0 MHz, d_{6} -acetone) δ -9.4 (app t, J(PP) 3.3, P⁴), 3.8 (d, J(PP) 26.9, P³), 66.9 (dd, 75.7, 3.7, P¹), 81.9 (ddd, J(PP) 75.8, 27.0, 2.7, P²).

18: IR (KBr) 3052 (m), 1582 (w), 1479 (s), 1435 (s) 1208 (s, P=O), 1111 (s), 1097 (s), 737 (vs), 692 (vs), 642 (vs) cm⁻¹; ³¹P-{¹H} NMR (81.0 MHz, d_6 -acetone) δ 13.5 (d, J(PP) 27.5, P³), 29.4 (d, J(PP) 3.9, P4), 64.9 (dd, J(PP) 76.9, 4.0, P1), 84.1 (dd, J(PP) 76.8, 27.3, P^2); FAB-MS (NBA, $C_{58}H_{44}Br_2NiOP_4$) m/z1019 (38, M^+ -Br), 803 (100, $C_{10}H_4(PPh_2)_3(OPPh_2)$).

19: ${}^{31}P{}^{1}H}$ NMR (81.0 MHz, d_6 -DMSO) δ -10.8 (t, J(PP)13.7, P^{1,4}), 4.5 (t, J(PP) 13.7, P^{2,3}).

Reaction of Ph₂PC \equiv CH with [Ni{ $(1,2-\eta)-4,5-F_2C_6H_2$ }-(PEt₃)₂] (1b). Both the reactions of 1a and 1b (1 mmol) with 2 equiv of Ph₂PC≡CH (420 mg, 2 mmol) gave very complicated mixtures, as shown by ³¹P NMR spectroscopy. That obtained from **1b** was used in subsequent experiments.

A solution of bromine (0.15 mL, 2.9 mmol) in hexane (5 mL) was added dropwise to the reaction mixture obtained from 1b. The resulting orange precipitate was separated by filtration and washed with hexane. The ³¹P NMR spectrum indicated the presence of various dibromonickel(II) species (see text). The peaks listed below are believed to be due to [NiBr₂{6,7-F₂C₁₀H₂- $2,3-(PPh_2)_2$] (22).

22: ${}^{31}P\{{}^{1}H\}$ NMR (81.0 MHz, CD₂Cl₂) δ 65.8 (s); ${}^{19}F$ NMR (188.1 MHz, CD₂Cl₂) δ -132.6 (app t, J(FH) 10.1); EI-MS $(C_{36}H_{28}F_2P_2NiBr_2)$ m/z 778 (46, M⁺), 697 (65, M⁺ – Br), 504 (100).

Formation of [Ni(η^2 -Ph₂PC=CPh)(dcpe)] (10). A suspension of [Ni(C₂H₄)(dcpe)] (224 mg, 0.44 mmol) in ether (10 mL) was cooled to 0 °C under nitrogen. Ph₂PC≡CPh (126 mg, 0.44 mmol) was added as a solid, and the orange solution was stirred for 0.5 h at room temperature. $^{31}P\{^{1}H\}$ NMR analysis of the resulting yellow solution showed quantitative formation of 10, which can be isolated as a yellow solid by layering the solution with hexane. Although stable in solution, solid samples of 10 decompose on storage over a period of days. 1H NMR (200 MHz, C_6D_6): δ 0.90–2.20 (m, 48H), 6.85–7.20 (m, 9H), 7.20-7.40 (m, 2H), 7.70-7.85 (m, 4H). ¹³C{¹H} NMR (125.7 MHz, C_6D_6): δ 22.0 (t, J(CP) 19.5, CH_2), 22.6 (t, J(CP)19.4, CH₂), 26.6 (CH₂), 27.5–27.7 (m, CH₂), 29.1, 29.4 (CH₂), 30.0-30.2 (m, CH₂), 35.1 (dd, J(CP) 16.0, 3.4, CH), 35.7 (dd, J(CP) 16.7, 3.8, CH), 122.9 (C of $PhC \equiv C$), 124.4 (CH), 127.5, 127.8, 127.9 (CH), 128.2 (d, J(CP) 7, CH), 133.9 (d, J(CP) 20.1, CH), 141.4 (ddd, *J*(CP) 10.5, 5.0, 3.2, P*C*≡C), 142.0 (dd, *J*(CP) 14.8, 4.0, C of PPh₂), 150.3 (ddd, J(CP) 41.0, 19.0, 5.3, PC≡ C). ${}^{31}P{}^{1}H}$ NMR (C₆D₆, 81.0 MHz): δ –14.5 (dd, ${}^{3}J(PP)$ 24.9, 3 J(PP) 34.5, Ph₂PC=CPh), 68.3 (dd, 2 J(PP) 41.9, 3 J(PP) 24.7), 70.1 (dd, ${}^{2}J(PP)$ 41.9, ${}^{3}J(PP)$ 34.6, dcpe). FAB-MS (C₄₆H₆₃NiP₃, tetraglyme): m/z 766 (3, M⁺).

X-ray Crystallography. Crystal data, details of data collection, data processing, structure analysis, and structure refinement are given in Table 4.

All three structures were solved by direct methods (SIR92)⁴⁷ and were expanded with use of Fourier techniques (DIRDIF94). 48 The crystal structure of **11b**·3CH₂Cl₂ revealed a crystallographic asymmetric unit comprising one clearly defined molecule of 11b and three molecules of partly disordered CH2-

Table 4. Crystal and Structure Refinement Data for Compounds 11b, 18, and 20/21

	$\begin{array}{l} [NiBr_2\{6,7\text{-}F_2C_{10}H_2\text{-}1,4\text{-}Ph_2\text{-}\\ 2,3\text{-}(PPh_2)_2\text{-}\kappa P^{2,3}\}] \textbf{(11b)} \end{array}$	$\begin{array}{l} [NiBr_2\{C_{10}H_4\text{-}1,2,3\text{-}(PPh_2)_3\text{-}\\ 4\text{-}\{P(O)PPh_2\}\text{-}\kappa P^1,P^2\}] \ (\textbf{18}) \end{array}$	$\begin{array}{c} C_{10}H_4(PPh_2)_2\{P(O)Ph_2\}_2\\ \textbf{(20/21)} \end{array}$
	(a) C	rystal Data	
chem formula	$C_{46}H_{32}Br_2F_2NiP_2 \cdot 3CH_2Cl_2$	C ₅₈ H ₄₄ Br ₂ NiOP ₄ ·1.21C ₇ H ₈ · 0.29C ₃ H ₆ O	$C_{58}H_{44}O_2P_4\cdot 2C_2H_6OS$
fw	1158.01	1227.72	1053.14
cryst syst	monoclinic	triclinic	monoclinic
unit cell dimens			
a (Å)	17.976(4)	13.431(2)	21.296(6)
b (Å)	28.384(9)	13.715(3)	11.996(3)
c (Å)	9.385(4)	16.000(2)	23.157(7)
α (deg)		94.70(1)	
β (deg)	90.21(3)	104.06(1)	111.18(3)
γ (deg)		96.27(1)	
$V(\mathring{A}^3)$	4789(3)	2823.8(8)	5516(3)
space group	$P2_{1}/a$ (No. 14)	$P\bar{1}$ (No. 2)	$P2_{1}/a$ (No. 14)
$\vec{D}_{\rm c}$ (g cm ⁻³)	1.606	1.444	1.268
Z	4	2	4
F(000)	2320	1255.56	2208
color, habit	brown-red, block	orange, plate	yellow, block
cryst dimens (mm)	$0.33 \times 0.30 \times 0.18$	$0.30 \times 0.15 \times 0.05$	$0.19 \times 0.16 \times 0.15$
$\mu \text{ (cm}^{-1})$	66.00 (Cu Kα)	35.69 (Cu Kα)	2.60 (Mo Kα)
	(b) Data Colle	ction and Processing	
diffractometer	Rigaku AFC6R	Rigaku AFC6R	Philips PW1100/20
X-radiation	Cu Kα (graphite monochromated)	Cu Kα (graphite monochromated)	Mo Kα (graphite monochromated
scan mode	ω -2 θ	ω -2 θ	ω -2 θ
ω -scan width (deg)	$1.20 + 0.30 \tan \theta$	$1.20 + 0.30 \tan \theta$	$1.0 + 0.34 \tan \theta$
2θ limits (deg)	120.2	120.0	40.0
data collected (<i>h,k,l</i>)	(-20,0,0) to (20,31,10)	(-15,-15,-17) to (15,0,17)	(-20,0,0) to (19,11,22)
no. of rflns	(==,=,=, == (==,==,==)	(,,,,,	(,-,-, (,,
total	7822	8823	5677
unique ($R_{\rm int}$ (%))	7323 (10.7)	8415 (5.4)	5178 (6.0)
obsd	$5008 \ (I \geq 2\sigma(I))$	$4666 \ (I > 2\sigma(I))$	$2035 \ (I > 3\sigma(I))$
abs cor (transmissn factors)	azimuthal scans (0.23–0.31)	azimuthal scans $(0.65-0.84)$	none
decay (%)	nil	nil	13
		alysis and Refinement	
struct soln	(c) Structure Al	direct methods (SIR92)	
refinement			
no. of params	578	full-matrix least squares 668	215
R(obsd data) (%)	6.2	6.0	8.1
	7.4	7.9	11.6
R _w (obsd data) (%)	1.4	7.9	11.0

Cl2. Several of the atoms of the CH2Cl2 molecules were split over two sites, and relative occupancies were refined. Restraints were placed on the C-Cl distances in these cases. The disordered carbon atoms were refined with isotropic displacement factors, while all other non-hydrogen atoms were refined anisotropically by full-matrix least squares. Hydrogen atoms were included at calculated positions (C-H=0.95 Å) and held fixed. The maximum and minimum peaks in the final difference Fourier map were 1.40 and -1.41 e/Å^3 , respectively, the major features being associated with the solvent molecules. All calculations were performed with use of teXsan structure analysis software.49

In the crystal structure of $18\cdot1.21C_7H_8\cdot0.29C_3H_6O$, the molecular species (18) was clearly defined, but disordered solvent molecules were also present; one series of peaks was assigned to disordered toluene and the other to a disordered mixture of toluene and acetone. Restraints were imposed upon these solvent molecules and relative occupancies refined where appropriate.⁵⁰ All non-hydrogen atoms were refined anisotropically by full-matrix least squares, except for those of the disordered solvent molecules. Hydrogen atoms were included at calculated positions (C-H = 0.95 Å); they were not refined, but their positions were recalculated regularly. The maximum and minimum peaks in the final difference Fourier map were 1.22 and -0.52 e/Å³, respectively, the largest features being associated with the bromine atoms and solvent molecules. teXsan49 and XTAL50 software was used.

The crystal structure of 20/21·2DMSO revealed a molecular species with oxygen atoms bonded to P(1) and P(3) having only partial occupancy. Data were weak, and only 2035 out of 5178 independent reflections were considered to be reliable; therefore, the comprehensive constrained least-squares refinement program RAELS96 was used to minimize the number of parameters required to describe the structure.⁵¹ Constraints enabled 215 variables to adequately describe the refinement of the 77 non-hydrogen atoms in the asymmetric cell. 52,53 The asymmetric unit contains a mixture of two isomers (20/21) in a 73:27 ratio, which differ only in the location of the oxygen atoms attached to phosphorus atoms. Atom O(2) is attached to P(2), whereas the remaining oxygen atom is attached either to P(1) (occupancy 0.27) or to P(3) (occupancy 0.73). Two molecules of DMSO are also present, one of which is 0.69/0.31 disordered. The DMSO molecule was constrained to contain an exact mirror plane, while differences in the P-O bond

⁽⁴⁷⁾ Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27,

⁽⁴⁸⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 Program System; Technical Report of the Crystallographic Laboratory; University of Nijmegen, Nijmegen, The Netherlands, 1994.

⁽⁴⁹⁾ teXsan: Single-Crystal Structure Analysis Software, Version 1.8; Molecular Structure Corp., 3200 Research Forest Drive, The Woodlands, TX 77381, 1997.

⁽⁵⁰⁾ Hall, S. R., King, G. S. D., Steward, J. M., Eds. XTAL3.4 Reference Manual, University of Western Australia, Lamb: Perth, Australia, 1995.

⁽⁵¹⁾ Rae, A. D. RAELS96: A Comprehensive Constrained Least-Square Refinement Program; Australian National University, Canberra, ACT, Australia, 1996.

⁽⁵²⁾ Rae, A. D. Acta Crystallogr. 1975, A31, 560.(53) Rae, A. D. Acta Crystallogr. 1984, A40 Supplement, C428.

lengths were constrained to approach zero. All atoms were described by refinable rigid body thermal parametrizations.⁵² The hydrogen atoms were relocated in sensible chemical positions after each refinement cycle. The maximum and minimum peaks in the final difference Fourier map were 1.0 and −1.3 e/Å³, respectively. Calculations were performed with the crystallographic software packages teXsan, 49 XTAL, 50 and RAELS96.51

The neutral atom scattering factors were taken from ref 54 for structure 11b and from ref 55 for structures 18 and 20/21. $\Delta f'$ and $\Delta f'$ values and mass attenuation coefficients were taken from ref 55 for all three structures.

Acknowledgment. C.J.C. gratefully acknowledges the receipt of a Fellowship from the Royal Society of London, and E.W. thanks the Australian Research Council for a QEII Research Fellowship.

Supporting Information Available: Figures giving additional views and tables giving X-ray crystallographic data for 11b·3CH₂Cl₂, 18·1.21C₇H₈·0.29C₃H₆O, and 20/21·2DMSO. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990749M

⁽⁵⁴⁾ Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography, Kynoch Press: Birmingham, England, 1974; Vol. IV. (55) International Tables for Crystallography, Wilson, A. J. C., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1992; Vol. C.