Synthesis and Structural Characterization of the Mono(silyl)platinum(II) Complex cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂

Richard S. Simons, Lee M. Sanow, Kevin J. Galat, Claire A. Tessier,* and Wiley J. Youngs*

Department of Chemistry, University of Akron, Akron, Ohio 44325

Received May 12, 2000

Summary: The synthesis and structural characterization of $cis-(2,6-Mes_2C_6H_3(H)_2Si)Pt(H)(PPr_3)_2$ (1), a mono-(silyl)platinum(II) complex, are described.

Introduction

The most common method of synthesizing transitionmetal silyl complexes involves the oxidative addition of a Si-H bond in a hydrosilane to a transition-metal center with open coordination sites. 1 Several researchers, including our group, have been investigating the reaction chemistry of primary silanes with 14-electron (R₃P)₂Pt⁰ complexes generated in situ from (R₃P)₃PtCl₂ and sodium metal,² $(R_3P)_3Pt$ (R = Et, Pr),³ or $(Ph_3P)_2$ - $Pt(\eta^2-C_2H_4)$.⁴ Primary silanes bearing a ligand of moderate steric bulk afford Pt2Si2 dinuclear complexes. The formation of the dinuclear rings has been proposed to involve the oxidative addition of the silane to the metal to give (R₃P)₂Pt(SiR'H₂)H (Scheme 1). This reaction has been observed for a number of tertiary silanes and a few secondary silanes, but rarely has such a step been observed for primary silanes.5

Transition-metal complexes containing terminal silylene ligands have been proposed as intermediates in transition-metal-mediated reactions.⁶ It has been a major synthetic goal for many researchers to isolate stable base-free transition-metal silylenes. Because of

(1) For recent reviews of silicon—transition metal chemistry: (a) Corey, J. Y.; Braddock-Wilking, J. *Chem. Rev.* **1999**, *99*, 175–292. (b) Eisen, M. S. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Part 3; Chapter 35.

(2) (a) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. *J. Am. Chem. Soc.* **1988**, *110*, 4068–4070. (b) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. *J. Chem. Soc., Chem. Commun.* **1989**, 577–578. (c) Anderson, A. B.; Shiller, P.; Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. *Organometallics* **1989**, *8*, 2320–2322.

(3) (a) Shimada, S.; Tanaka, M.; Honda, K. *J. Am. Chem. Soc.* **1995**, *117*, 8289–8290. (b) Heyn, R. H.; Tilley, T. D. *J. Am. Chem. Soc.* **1992**, *114*, 1917–1919. (c) Sanow, L. M.; Chai, M.; McConnville, D. B.; Galat, K. J.; Simons, R. S.; Rinaldi, P. L.; Youngs, W. J.; Tessier, C. A. *Organometallics* **2000**, *19*, 192–205.

(4) Levchinsky, Y.; Rath, N. P.; Braddock-Wilking, J. *Organometallics* **1999**, *18*, 2583–2586.

(5) For examples, see ref 1a.

(6) (a) Tilley, T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; Chapter 9, pp 245–307. (b) Zybill, C. *Top. Curr. Chem.* 1992, 160, 1–45. (c) Pannell, K. H.; Sharma, H. K. *Chem. Rev.* 1995, 95, 1351–1374. (d) Tilley, T. D. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989. (e) Lickiss, P. D. *Chem. Soc. Rev.* 1992, 271–279. (f) Corey, J. In *Advances in Silicon Chemistry*, Larson, G., Ed.; JAI: Greenwich, CT, 1991; Vol. 1, pp 327–387. (g) Tilley, T. D. *Comments Inorg. Chem.* 1990, 10, 37–51. (h) Gauvin, F.; Harrod, J. F.; Woo, H. G. In *Advances in Organometallic Chemistry*, Stone, F. G. A., West, R., Eds.; Academic Press: New York, 1998; Vol. 42, pp 363–405.

Scheme 1

 $2 (R_3P)_2Pt(0) + 2 H-SiH_2R \longrightarrow R H$ $2 (R_3P)_2Pt \xrightarrow{SiH_2R} -2 H_2 \longrightarrow (R_3P)_2Pt \xrightarrow{Si} Pt(PR_3)_2$

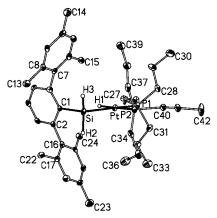
this surge of interest, these reactive species have been isolated and characterized recently. We desired to synthesize a mono(silyl)platinum(II) complex which might be used as a precursor for neutral or cationic platinum metal silylene complexes. We have employed the sterically hindered 2,6-Mes₂C₆H₃ (Mes = 2,4,6-Me₃C₆H₂) ligand for this purpose. We rationalized that the steric bulk would prevent the formation of a Pt₂Si₂ dinuclear complex and also provide kinetic stabilization of low-valent platinum silicon complexes. We report herein the synthesis and characterization of the mono-(silyl)platinum(II) complex cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt-(H)(PPr₃)₂ (1).

Experimental Section

General Considerations. All manipulations were carried out under anaerobic conditions under an atmosphere of nitrogen or argon. The compounds $(Pr_3P)_3Pt^{3c}$ and $2,6\text{-Mes}_2C_6H_3\text{-SiH}_3^8$ were prepared according to literature procedures. Hexane was freshly distilled from sodium benzophenone ketyl. 1H , 1G C, and 1G P NMR data were recorded on a Gemini 300 MHz instrument and referenced to C_6D_6 for 1H and 1G C a

(7) (a) Mitchell, G. P.; Tilley, T. D. Angew. Chem., Int. Ed. 1998, 37, 2524–2526. (b) Denk, M.; Hayashi, R. K.; West, R. J. Chem. Soc., Chem. Commun. 1994, 33–34. (c) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. J. Am. Chem. Soc. 1994, 116, 5495–5496. (d) Grumbine, S. K.; Tilley, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 358–360. (e) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 7884–7885. (f) Straus, D. A.; Grumbine, S. K.; Tilley, T. D. J. Am. Chem. Soc. 1991, 115, 7801–7802. (g) Feldman, J. D.; Mitchell, G. P.; Nolte, J.-T.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 11184–11185. (h) Mitchell, G. P.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 7635–7636. (i) Okazaki, M.; Tobita, H.; Ogino, H. Chem. Lett. 1996, 447–478. (j) Okazaki, M.; Tobita, H.; Kawano, Y.; Inomato, S.; Ogino, H. J. Organomet. Chem. 1998, 553, 1–13. (k) Okazaki, M.; Tobita, H.; Ogino, H. Chem. Lett. 1997, 437–438. (l) Wanandi, P. W.; Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 1999, 121, 9871–9872. (n) Klei, S. R.; Tilley, T. D. J. Am. Chem. Soc. 1999, 121, 9871–9872. (n) Klei, S. R.; Tilley, T. D. J. Am. Chem. Soc. 1999, 121, 9871–9872. (n) Klei, S. R.; Tilley, T. D.; Bergman, R. G. J. Am. Chem. Soc. 2000, 122 1816–1817. (8) Simons, R. S.; Haubrich, S. T.; Mork, B. V.; Niemeyer, M.; Power, P. P. Main Group Chem. 1998, 2, 275–283.

Table 1. Experimental Details for Data Collection, Reduction, and Refinement for 1-PPr₃O


$C_{51}H_{90}OP_3PtSi$
1035.32
$0.5\times0.3\times0.3$
colorless
monoclinic
$P2_1/n$
11.900(8)
34.671(11)
13.442(6)
90
103.20(4)
90
5399(4)
4
1.274
2.742
1.024
0.0380
0.0659
1.597

cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂·Pr₃PO (1·Pr₃PO).

 $2,6\text{-Mes}_2C_6H_3SiH_3$ (0.5 g, 1.3 mmol) in hexane (20 mL) was added by cannula to (Pr₃P)₃Pt (1.0 g, 1.3 mmol) in hexane (30 mL) with stirring at ambient temperature. This solution was stirred for an additional 16 h at 50 °C. The volume was reduced to ca. 10 mL under reduced pressure and stored at ca. -60 °C for 24 h to give cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂·Pr₃PO (1· Pr₃PO) as colorless crystals. Yield: 0.5 g, 0.5 mmol, 38%. Mp: 69-71 °C. Anal. Calcd for C₅₁H₉₀OP₃PtSi: C, 59.11; H, 8.85. Found: C, 58.01; H, 10.07. ¹H NMR (C₆D₆): δ –3.40 ppm (dd, 1 H, $J_{H-P}(cis) = 23.0$ Hz, $J_{H-P}(trans)_s = 154$ Hz, $J_{Pt-H} = 891$ Hz) 0.85 (m, 36 H, $P(CH_2CH_2CH_3)_3$ and $O(PCH_2CH_2CH_3)_3$), 1.24 (m, 24 H, P(CH₂CH₂CH₃)₃ and OP(CH₂CH₂CH₃)₃), 1.40 (m, 24 H, P(CH₂CH₂CH₃)₃ and OP(CH₂CH₂CH₃)₃), 2.28 (s, 6 H, p-Mes), 2.41 (s, 12 H, o-Mes), 4.58 (dd, 2 H, J_{H-P} (trans) = 7.2 Hz, $J_{H-P}(cis) = 3.0$ Hz, Si-H), 6.93 (s, 4 H, m-Mes), 7.07 (d, 2 H, J = 9.0 Hz, m-C₆H₃), 7.30 (tr, 1 H, J = 7.8 Hz, p-C₆H₃). ¹³C NMR (C₆D₆): δ 16.05 (d, $J_{C-P} = 4.9$ Hz, PCH₂CH₂CH₃), 16.05 (d, $J_{C-P} = 3.8 \text{ Hz}$, OP(CH₂CH₂CH₃)₃), 16.17 (d, $J_{C-P} =$ 14.8 Hz, $OP(CH_2CH_2CH_3)_3$), 16.18 (d, $J_{C-P} = 13.8$ Hz, P(CH₂CH₂CH₃)₃), 18.37 (s, p-Mes), 18.73 (s, p-Mes), 21.57 (o-Mes), 22.17 (*p*-Mes), 31.00 (dd, $J_{C-P} = 296$ Hz, $J_{C-P-Pt-P} = 65$ Hz, $P(CH_2CH_2CH_3)_3$, 31.21 (d, $J_{C-P} = 65$ Hz, $O=P(CH_2CH_2-CH_3)_3$) CH₃)₃), 127.65, 128.18, 128.25, 128.46, 135.39, 136.85, 143.11, 148.72 (Ar). ³¹P NMR (C₆D₆): δ 4.9 (d, J_{P-P} = 16.2 Hz, J_{P-Pt} = 2231 Hz), 14.1 (d, $J_{P-P} = 16.2$ Hz, $J_{P-Pt} = 1715$ Hz). ²⁹Si NMR (C₆D₆): δ -54.9 (dd, $J_{Si-P}(trans) = 166$ Hz, $J_{Si-P}(cis) = 14.7$ Hz, $J_{Si-Pt} = 1132$ Hz). IR (Nujol, cm⁻¹): 2915 (vs), 2067 (s), 2049 (s), 1662 (w), 1609 (w), 1455 (s), 1341 (s), 1237 (m), 1163 (s), 1060 (m), 933 (m), 836 (m), 730 (m).

X-ray Crystallography. A colorless crystal of 1.PPr₃O with dimensions $0.5 \times 0.3 \times 0.3$ mm was coated in paraffin oil, mounted on a glass fiber, and placed under a stream of nitrogen.⁹ All manipulations were carried out at 143 K using Mo K α (0.710 73 Å) radiation. Unit cell parameters were obtained by a least-squares analysis of 20 well-centered reflections with $20^{\circ} \geq 2\theta \geq 30^{\circ}$. Additional experimental details are given in Table 1. The structure of 1 was solved by direct methods.10 Phenyl and alkyl hydrogen atoms were placed in idealized positions using a riding model and C-H distances of 0.96 and 0.97 Å, respectively. An absorption correction was applied using the method of ψ scans. Compound 1 was refined to convergence using anisotropic thermal parameters for all non-hydrogen atoms.

(10) SHELXTL, Version 5.11; Siemens Analytical Instruments, Madison, WI, 1997.

Figure 1. Molecular structure of *cis*-(2,6-Mes₂C₆H₃(H)₂-Si)Pt(H)(PPr₃)₂ with thermal ellipsoids drawn at 30% probability. Phenyl and alkyl hydrogen atoms have been omitted for clarity.

Results and Discussion

cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂ (1) is prepared by the reaction of (Pr₃P)₃Pt and 2,6-Mes₂C₆H₃SiH₃ and is isolated with the cocrystallate Pr₃PO as colorless crystals (mp 69–72 °C) (eq 1). The source of the Pr₃PO

$$(Pr_3P)_3Pt + H_3SiAr \xrightarrow{-Pr_3P} (Pr_3P)_2P \xrightarrow{SiAr(H)_2} H$$

$$Ar = C_6H_3Mes_2-2,6$$
(1)

is the (Pr₃P)₃Pt reagent. As reported in the literature, ^{3c} (Pr₃P)₃Pt could not be isolated free of Pr₃PO. The structure of 1 is consistent with the ¹H, ¹³C, ³¹P, and ²⁹Si NMR and IR spectroscopic data. The IR spectrum for 1 shows two absorbances in the Pt-H and Si-H region at 2067 and 2049 cm⁻¹. Assignment of these stretching frequencies is difficult due to the overlapping regions assigned for Pt-H and Si-H stretching bands. 11 The most notable features in the ¹H NMR spectrum are the Si-H (4.58 ppm, dd, $J_{H-P}(trans) = 7.2$ Hz and $J_{H-P}(cis) = 3.0 \text{ Hz}, J_{H-Si} = 166 \text{ Hz})$ and the Pt-H (-3.40 ppm, dd, $J_{H-P}(cis) = 23.0 \text{ Hz}$ and $J_{H-P}(trans) = 154 \text{ Hz}$, $J_{\text{Pt-H}} = 891 \text{ Hz}$) chemical shifts. In the ³¹P NMR, the two chemically inequivalent phosphorus atoms give rise to two doublets centered at 14.1 ppm ($J_{P-P} = 16.2$ Hz, $J_{P-Pt} = 1715 \text{ Hz}$). and 4.9 ppm ($J_{P-P} = 16.2 \text{ Hz}$, $J_{P-Pt} =$ 2231 Hz). The proton-decoupled ²⁹Si NMR shows a doublet of doublets centered at -54.9 ppm (J_{Si-P} (trans) = 166 Hz and $J_{Si-P}(cis)$ = 14.7 Hz.) with satellite peaks $(J_{\rm Si-Pt} = 1132 \text{ Hz}).^{12}$

A crystal of 1.Pr₃PO was studied by X-ray diffraction, and its structure is shown in Figure 1. Selected bond distances and angles are given in Table 2. Compound 1 corrystallizes in the monoclinic space group $P2_1/n$ as two discrete molecules, Pr₃PO and cis-(2,6-Mes₂C₆H₃(H)₂Si)-Pt(H)(PPr₃)₂. The structural description will be limited to the mono(silyl)platinum(II) molecule, which exists as a distorted-square-planar Pt(II) complex with P1-Pt-

⁽⁹⁾ Hope, H. In *Experimental Organometallic Chemistry*; Wayda, A. L., Darensbourg, M. Y., Eds.; ACS Symposium Series 357; American Chemical Society: Washington, DC, 1987; Chapter 10.

^{(11) (}a) Muetterties, E. L. In Transition Metal Hydrides; Dekker: New York, 1971; p 88. (b) Stock, A. In Hydrides of Boron and Silicon; Cornell University Press: Ithaca, NY, 1957.

⁽¹²⁾ The ²⁹Si chemical shift for cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂ (1; -54.9 ppm) is shifted downfield when compared to the same value reported for the silane precursor 2,6-Mes₂C₆H₃SiH₃ (-77 ppm) in ref

Table 2. Selected Bond Distances (Å) and Angles (deg) for cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂ (1)

Pt-Si	2.357(2)	Pt-P2	2.295(2)
Pt-P1	2.312(2)	Si-C1	1.905(6)
P1-Pt-P2	105.5(7)	P1-Pt-Si	163.02(6)
P2-Pt-Si	91.26(7)	C1-Si-Pt	116.7(2)

 $P2 = 105.50(7)^{\circ}$, $P1-Pt-Si = 163.02(6)^{\circ}$, and P2-Pt- $Si = 91.26(7)^{\circ}$ bond angles. The deviation from the P₂PtSi plane is greatest at the Pt atom (0.03 Å) and can be attributed to steric repulsion between the silyl and phosphorus ligands and the relatively small space required for the platinum hydride. The Pt-Si (2.357(2) A) distance is similar to the values reported for the same bonds in *cis*-H(Ph₃Si)Pt[Cy₂P(CH₂)₄PCy₂] (2.363(4) Å), ¹³ cis-H(Ph₃Si)Pt(PPh₃)₂ (2.357(3) Å),¹⁴ and cis-H(SiPh₃)- $Pt(PEt_3)_2$ (2.357(3) Å)¹⁵ and within the range (2.321– 2.406 Å) of values reported for mononuclear silyl complexes. 1a The Pt-P1 bond (2.312(2) Å) trans to the silyl ligand is slightly longer than the Pt-P2 bond (2.295(2) Å) situated cis, indicating only a slightly greater trans influence of the silyl ligand with respect to the hydride ligand. This is consistent with the J_{P-Pt}

(1715 and 2231 Hz) coupling values observed in the 31P NMR spectrum. The Si-C1 bond (1.905(6) Å) is quite normal; however, the geometry of the silicon atom deviates significantly from an ideal tetrahedron with a C1-Si-Pt (116.7(2)°) bond angle. The hydrides bound to platinum and silicon were located in the difference map but not refined at distances of 1.5 Å (Pt-H) and 1.4 Å (Si-H).

A notable feature of **1** is its reluctance to eliminate H₂ (16 h at 50 °C). Similar observations have been reported for cis-(Cy₃P)₂Pt(H)(SiHMes₂), which also does not undergo reductive elimination of hydrogen.^{7g}

Conclusion

The compound cis-(2,6-Mes₂C₆H₃(H)₂Si)Pt(H)(PPr₃)₂ (1) represents an example of a mono(silyl)platinum(II) complex obtained by the oxidative addition reaction of a primary arylsilane to a Pt(0) complex.

Acknowledgment. We wish to thank the National Science Foundation for financial support. We also wish to thank Joshua R. Simons and Michaele Tisevich-Sanow for their contributions.

Supporting Information Available: Tables giving X-ray crystallographic data for 1.Pr₃PO. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0004038

⁽¹³⁾ Mullica, D. F.; Sappenfield, E. L.; Hampden-Smith, M. J. Polyhedron 1991, 10, 867–872. (14) Latif, L. A.; Eaborn, C.; Pidcock, A. P.; Weng, N. S. J.

Organomet. Chem. 1994, 474, 217-221.

⁽¹⁵⁾ Koizumi, T.; Osakada, K.; Yamamoto, T. Organometallics 1997, 16, 6014-6016.