Kinetic Evidence for π -Complex Formation Prior to Oxidative Addition of Propargyl Halides to Triphenylphosphine-Platinum(0) Complexes

Takuma Nishida, Sensuke Ogoshi, Ken Tsutsumi, Yoshiaki Fukunishi, and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Received May 2, 2000

The mechanism of oxidative addition of phenylpropargyl halides to $Pt(PPh_3)_4$ to give $Pt(\eta^1\text{-CH}_2C\equiv CPh)(X)(PPh_3)_2$ has been investigated on the basis of the kinetics of the reaction and stereomeric analysis of the products. The kinetic results of the reaction showed the contributions of two pathways involving $Pt(PPh_3)_3$ and $Pt(PPh_3)_2$ complexes as active species. The second-order rate constants for both pathways were on the order of $Pt(PPh_3)_3$ larger than the corresponding rate constants of the oxidative addition reaction of $Pt(PPh_3)_3$. Moreover, both active species and the substrate halide gave, as the kinetic product, the isomer having two $Pt(PPh_3)_3$ groups located cis, which is also in sharp contrast to the case of the reaction of $Pt(PPh_3)_3$ is the coordination of the $Pt(PPh_3)_3$ to form $Pt(PPh_3)_3$ is the coordination of the $Pt(PPh_3)_3$ to form $Pt(PPh_3)_3$ complex $Pt(PPh_3)_3$, which subsequently undergoes rapid collapse to the $Pt(PPh_3)_3$ complex $Pt(PPh_3)_3$ may also involve a rate-determining $Pt(PPh_3)_3$ may also involve $Pt(PPh_3)_3$ may also involve Pt(P

Introduction

The oxidative addition reaction is one of the most fundamental steps constituting many homogeneous catalytic cycles. The oxidative addition of organic halides to zerovalent group 10 metal complexes containing more than 2 equiv of tertiary phosphine ligands gives trans isomers of organo halo bis-phosphine complexes, except for a limited few examples. These exceptions involved the addition of sp²-carbon-halogen compounds, where the formation of cis product is a logical outcome of the proposed mechanistic pathway.2 In this respect it appears of special interest that Wojcicki and co-workers reported that oxidative addition reaction of Pt(C₂H₄)-(PPh₃)₂ with PhC≡CCH₂Br leads to the formation of cis- $Pt(\eta^1-CH_2C \equiv CPh)(Br)(PPh_3)_2$, which isomerizes further to the more stable trans isomer.3 However, these authors offered no mechanistic explanation for the cis product. We took interest in elucidating the reason for such unusual stereochemistry and, more generally, the mechanism of the oxidative addition reaction of propargyl halides to Pt(0) complexes in view of increasing attention paid to both inorganic and organic aspects of propargyl and allenyl complexes.4 Moreover, there is a possibility that studying the above-mentioned reactions of Pt(0) complexes leads to a better understanding of the mechanisms of the related reactions involving palladium complexes important as intermediates in catalysis⁵ or even closely related allylic substrates.

We report here intriguing kinetic behavior in the reaction of $Pt(PPh_3)_4$ with phenylpropargyl halides, from which a very fundamental oxidative addition mechanism is offered that is consistent with the reported formation of the cis isomer from $Pt(C_2H_4)(PPh_3)_2$ as the kinetic product.

Results

Stereochemistry of the Kinetic Product. We previously reported⁶ that the oxidative addition product $Pt(\eta^1\text{-}CH_2C\equiv CPh)(X)(PPh_3)_2$ (X = Cl, Br) from PhC= CCH₂X and $Pt(PPh_3)_4$ after recrystallization at room temperature has two PPh₃ ligands located trans to each other. We have now confirmed by NMR examinations that the kinetic product of the reaction of $Pt(PPh_3)_4$ with $PhC\equiv CCH_2Cl$ in the presence of excess PPh_3 (20 equiv) formed in toluene- d_8 at temperatures from -60 to 0 °C has the cis geometry (eq 1; L = PPh_3 , n = 2). The cis

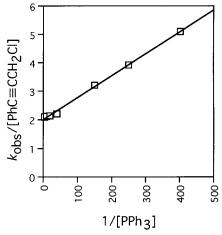
$$PtL_{n}(PPh_{3})_{2} + Ph \xrightarrow{\qquad \qquad Ph} Pt \stackrel{Cl}{\longrightarrow} Pt_{3}$$

$$Cl \qquad Ph_{3}P \qquad PPh_{3}$$

$$Ph \xrightarrow{\qquad Ph} Pt \stackrel{Cl}{\longrightarrow} Pt_{3}$$

complex remained stable with respect to the cis-trans isomerization at 0 $^{\circ}$ C for 1 h, but the isomerization

⁽¹⁾ Casado, A. L.; Espinet, P. *Organometallics* **1998**, *17*, 954. Urata, H.; Tanaka, M.; Fuchikami, T. *Chem. Lett.* **1987**, 751. Addition of vinyl sulfides to Pt(C₂H₄)(PPh₃)₂ also gave the cis products: Kuniyasu, H.; Otaka, A.; Nakazono, T.; Kurosawa, H. *J. Am. Chem. Soc.* **2000**, *122*, 2375.


⁽²⁾ Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665.
(3) Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1993, 12, 1992. Baize, M. W.; Blosser, P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1996, 15, 164

⁽⁴⁾ Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa, E. *Adv. Organomet. Chem.* **1995**, *37*, 39. Wojcicki, A. *New J. Chem.* **1994**, *18*, 61

 ⁽⁵⁾ Tsuji, J.; Mandai, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 2587.
 (6) Ogoshi, S.; Fukunishi, Y.; Tsutsumi, K.; Kurosawa, H. Inorg. Chim. Acta 1997, 265, 9.

Table 1. Kinetic Results of the Reaction of Pt(PPh₃)₄ with PhC≡CCH₂Cl

run	[PPh ₃] (mol/L)	1/[PPh ₃] (L/mol)	$k_{\text{obs}}/[\text{PhC} = \text{CCH}_2\text{Cl}]$ (L/(mol s))
1	$2.49 imes 10^{-3}$	$4.02 imes 10^2$	5.10
2	$4.00 imes 10^{-3}$	$2.50 imes 10^2$	3.92
3	$6.67 imes10^{-3}$	$1.50 imes 10^2$	3.21
4	$2.50 imes10^{-2}$	4.00×10	2.20
5	$5.14 imes10^{-2}$	1.95 imes 10	2.14
6	$1.03 imes10^{-1}$	9.71	2.12
7	$2.51 imes 10^{-1}$	3.98	2.09

Figure 1. $1/[PPh_3]$ vs $k_{obs}/[PhC \equiv CCH_2Cl]$.

proceeded gradually at room temperature in the toluened₈ solution to give 100% trans isomer after 17 h.

The kinetic product of the reaction of $Pt(C_2H_4)(PPh_3)_2$ with PhC=CCH₂Cl was also confirmed *cis*-Pt(η^1 -CH₂C= CPh)(Cl)(PPh₃)₂ in toluene- d_8 at -30 °C (eq 1; L = C₂H₄, n = 1), as reported³ in the corresponding reaction of the

Kinetics. The rates of the reaction of Pt(PPh₃)₄ with PhC≡CCH₂Cl were measured spectrophotometrically in benzene at 25 °C. The measurements employed [PhC≡ CCH2Cl] and [PPh3] in sufficient excess over the Pt complex, the initial concentration ranges being 6.99 \times 10^{-5} mol/L for Pt(PPh₃)₄, 2.66 × 10^{-3} to 1.59 × 10^{-2} mol/L for PhC \equiv CCH₂Cl and 2.49 \times 10⁻³ to 2.51 \times 10⁻¹ mol/L for PPh₃. In each run the pseudo-first-order rate constant $k_{\rm obs}$ was obtained by plots of $\ln A$ (absorbance of Pt(0) complex at 410 nm) vs time, and the $k_{\rm obs}/$ [PhC≡CCH₂Cl] value at a given [PPh₃] was obtained from slopes of plots of k_{obs} vs [PhC=CCH₂Cl]. Then, plotting $k_{\text{obs}}/[PhC \equiv CCH_2Cl]$ vs $1/[PPh_3]$ gave a straight line (Table 1 and Figure 1) from which the following experimental kinetic equation is given:

$$\frac{k_{\text{obs}}}{[\text{PhC} = \text{CCH}_2\text{Cl}]} = 2.01 + 7.70 \times 10^{-3} \frac{1}{[\text{PPh}_3]}$$
 (2)

Discussion

It has been established that Pt(PPh₃)₄ dissociates to the two active species Pt(PPh₃)₃ and Pt(PPh₃)₂ in solution. The concentration of Pt(PPh₃)₄ can be neglected under the kinetic conditions, since the equilibrium constant for the dissociation of this species is

Table 2. Rate Constants for Reactions of Pt(PPh₃)₃ (k_1) and Pt(PPh₃)₂ (k_3)

substrate	k_1 (L/(mol s))	k_3 (L/(mol s))
PhC≡CCH ₂ Cl	2.0	4.8×10
CH_3I	$3.5 imes10^{-3}$	$2.0 imes10^{-2}$
$PhC = CCH_3$	$5.0 imes10^{-2}$	2.0×10

greater than 10 mol/L.7 The kinetic behavior observed in eq 2 can be accommodated by the mechanism, which includes the contributions of two simultaneous pathways to the reaction: (a) the pathway corresponding to eq 3 and (b) the pathway described by eqs 4 and 5.

$$Pt(PPh_3)_3 + Ph \xrightarrow{\qquad \qquad \qquad } Ph \xrightarrow{\qquad \qquad } Pt + PPh_3 \quad (3)$$

$$Pt(PPh_3)_3 \stackrel{K_2}{=\!=\!=} Ph(PPh_3)_2 + PPh_3$$
 (4)

$$Pt(PPh_3)_2 + Ph \xrightarrow{\qquad \qquad k_3 \qquad Ph} Pt \xrightarrow{\qquad \qquad Ph_3P} Pt \qquad (5)$$

Equations 3–5 give rise to the rate law shown in eq

$$-\frac{\mathrm{d}[\mathrm{Pt}(0)]}{\mathrm{d}t} = k_{\mathrm{obs}}[\mathrm{Pt}(0)] = \frac{k_{1}[\mathrm{PPh}_{3}] + k_{3}K_{2}}{K_{2} + [\mathrm{PPh}_{3}]}[\mathrm{PhC} = \mathrm{CCH}_{2}\mathrm{Cl}][\mathrm{Pt}(0)]$$
(6)

The K_2 value of eq 4 has been previously evaluated as 1.6×10^{-4} mol/L (benzene, 25 °C) by Halpern, 9 which can be neglected relative to [PPh3] (the minimum being $2.5\times 10^{-3}\, mol/L)$ in the denominator of eq 6, so that eq 6 can be simplified to eq 7. This equation conforms to the experimental rate law of eq 2.10a

$$\frac{k_{\text{obs}}}{[\text{PhC} \equiv \text{CCCH}_2\text{Cl}]} = k_1 + k_3 K_2 \frac{1}{[\text{PPh}_3]}$$
 (7)

Table 2 shows the rate constants k_1 and k_3 , calculated by comparing eqs 2 and 7, which represent the oxidative addition rates of Pt(PPh₃)₃ and Pt(PPh₃)₂ species with PhC≡CCH₂Cl, respectively. For comparison, Table 2 also includes the rate of the reaction of the two Pt(0) active species with CH_3I^8 and $PhC \equiv CCH_3^{10b,11}$ measured under the same conditions. Interestingly, both k_1 and k_3 for the reaction with PhC=CCH₂Cl were much larger (by an order of 10³) than the corresponding rate constants of the oxidative addition reaction of CH₃I⁸ (Table 2). The rates of the reaction of propargyl halides with a range of nucleophiles other than low-valent metal

⁽⁷⁾ Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. **1972**. 94. 2669.

⁽⁸⁾ Pearson, R. G.; Rajaram, J. *Inorg. Chem.* 1974, *13*, 246.
(9) Birk, J. P.; Halpern, J.; Pickard, A. L. *Inorg. Chem.* 1968, *7*, 2673.
(10) (a) Another kinetic treatment of eqs 3–5 assumes steady-state concentrations of active complexes,¹¹ giving the rate law k_{obs} [PhC=CCH₂-Cl] = $k_1 + k_2$ /[(k_2/k_3)[PPh₃] + [PhC=CCH₂Cl]], where $K_2 = k_2/k_{-2}$. In the denominator of the second term [PhC \equiv CCH₂Cl] (2.66 \times 10⁻³ to 1.59×10^{-2} mol/L) could be neglected relative to (k_2/k_3) [PPh₃] under the kinetic conditions $(k_{-2}/k_3 \text{ for PhC} = CCH_3 \text{ was observed}^{11} \text{ as } 2.5 \times CCH_3 \text{ was observed$ 10^2). This gives a kinetic law consistent with eq 7. (b) The k_{-2} value was estimated as 5.7×10^3 L/(mol s) on the basis of the observed k_2 $(0.91 \text{ s}^{-1})^{11}$ and the estimated value of K_2 . This, together with the known k_{-2}/k_3 , leads us to estimate k_3 for the reaction of PhC=CCH₃ shown in Table 2

⁽¹¹⁾ Halpern, J.; Weil, T. A. J. Chem. Soc., Chem. Commun. 1973, 631.

Scheme 1

species are normally rather slower than those of CH₃I.¹² These results suggest the importance of the triple bond coordination to Pt(0) prior to or during the oxidative addition.

It is important to note that the k_3 value for the reaction of PhC≡CCH2Cl was similar to the rate of coordination of PhC \equiv CCH₃ to Pt(PPh₃)₂^{10b} (Table 2). This result suggests that the rate-determining step of the oxidative addition of PhC \equiv CCH₂Cl to Pt(PPh₃)₂ is the coordination of the triple bond. To gain further support for this notion, the competition between PhC≡ CCH_2Cl and $PhC = CCH_2Br$ in the reaction with Pt- $(C_2H_4)(PPh_3)_2$ was attempted in toluene- d_8 at room temperature. The concentrations of the two halides were set equal to each other and were in excess relative to the Pt(0) complex. The yields of products, *cis*-Pt(η^1 - $CH_2C \equiv CPh(X)(PPh_3)_2$, obtained from a mixture of the two substrates were similar (1:1.5) for the chloride vs bromide. If the rate-determining step of the oxidative addition involved the C-halogen bond cleavage, the reactivity of the bromide would have been considerably greater than that of the chloride.

The rate-determining formation of $Pt(\eta^2-PhC = CCH_2 Cl)(PPh_3)_2$ from $Pt(PPh_3)_2$ and $PhC = CCH_2Cl$ would be followed by rapid collapse of this complex to the ion pair $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2]Cl$, which necessarily keeps two PPh₃ groups cis to each other (Scheme 1). It was also confirmed that the separately isolated cationic complex $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2](OTf)$ reacts readily with Cl⁻ to give *cis*-Pt(η^1 -CH₂C \equiv CPh)(Cl)(PPh₃)₂, as also reported³ in the corresponding reaction with Br⁻.

With regard to the reaction of Pt(PPh₃)₃, it is remarkable that the rate constant k_1 for the reaction with PhC≡CCH₂Cl is 40 times larger than that with PhC≡ CCH₃ (Table 2). In the latter case, it is possible that the triple bond coordination to form an intermediate of the type $Pt(\eta^2-PhC \equiv CCH_3)(PPh_3)_3$ is not a rate-determining step. This intermediate, if formed as a discrete species, might have to overcome a subsequent higher barrier process, namely dissociation of PPh₃. On the other hand, in the case of the reaction of PhC≡CCH₂Cl the C \equiv C coordination complex Pt(η^2 -PhC \equiv CCH₂Cl)-(PPh₃)₃ formed first could undergo very facile ionization of the C-Cl bond to afford [Pt(\(\eta^3\)-CH2CCPh)(PPh3)3]Cl (Scheme 2). In a search for further support, the competitive experiment was carried out by employing an equimolar mixture of PhC≡CCH₂Cl and PhC≡CCH₂-Br which are in excess relative to Pt(PPh₃)₄ in the presence of a high concentration of PPh₃ (1.66 \times 10⁻¹ mol/L), where the contribution of Pt(PPh₃)₃ species to the overall oxidative addition is expected to exceed

Scheme 2

$$\begin{array}{c} Ph \longrightarrow C \\ \hline Ph \longrightarrow Ph_3 \\ \hline Ph_3 \\$$

98%.¹³ This reaction yielded *cis*-Pt(η^1 -CH₂C \equiv CPh)(X)- $(PPh_3)_2$ in a 1:1.2 ratio for X = Cl vs X = Br, suggesting that the rate-determining step of the reaction does not involve a carbon-halogen bond cleavage.

In contrast to the straightforward course of the reaction from Pt(PPh₃)₂ shown in Scheme 1, it is not certain at the moment how the proposed initial oxidative addition product [Pt(\eta^3-CH_2CCPh)(PPh_3)_3]Cl from Pt-(PPh₃)₃ is converted to the observable kinetic product, *cis*-Pt(η^1 -CH₂C≡CPh)(Cl)(PPh₃)₂. The cationic 18-electron η^3 -propargyl complex might undergo either dissociation of one PPh₃ to give $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2]Cl$ or η^3 to η^1 conversion, which gives $[Pt(\eta^1-CH_2C\equiv CPh) (PPh_3)_3$ Cl. In fact, a separate treatment of $[Pt(\eta^3-CH_2-H_3)_3]$ Cl. CCPh)(PPh₃)₂|OTf with 1 equiv of PPh₃ resulted in the observation of NMR resonances attributable to the complex $[Pt(\eta^1-CH_2C\equiv CPh)(PPh_3)_3](OTf)$ together with additional minor resonances possibly due to cis-{(PPh₃)₂Pt[CH₂C(PPh₃)CPh]}(OTf).¹⁴ When further treated with Cl⁻, the mixture was completely converted to cis-Pt(η^1 -CH₂C \equiv CPh)(Cl)(PPh₃)₂. It is likely that the cationic η^1 -propargyl intermediate [Pt(η^1 -CH₂C \equiv CPh)-(PPh₃)₃|Cl is formed before the observable cis product.¹⁵

Conclusions

The oxidative addition reaction of propargyl halides to Pt(PPh₃)₄ proceeded via the two active species Pt-(PPh₃)₂ and Pt(PPh₃)₃. The rate-determining step of the reaction of Pt(PPh₃)₂ is the coordination of the triple bond of PhC≡CCH₂X, which is followed by rapid collapse of $Pt(\eta^2-PhC \equiv CCH_2X)(PPh_3)_2$ to $[Pt(\eta^3-CH_2CCPh) (PPh_3)_2$ Cl and finally to *cis*-Pt(η^1 -CH₂C \equiv CPh)(Cl)-(PPh₃)₂. The rate-determining step of the reaction of Pt(PPh₃)₃ would also involve the coordination of the triple bond to form $Pt(\eta^2-PhC \equiv CCH_2X)(PPh_3)_3$, which then undergoes C-Cl bond cleavage without dissociation of PPh₃ ligand. These reaction profiles must be also essential in the oxidative addition of allylic electrophiles with zerovalent group 10 metal complexes.

Experimental Section

General Considerations. All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or drybox techniques. ¹H and ³¹P nuclear magnetic resonance (NMR) spectra were recorded on a JEOL GSX-270 spectrometer. Kinetic measurements were carried out by using a

(16) Unpublished results.

^{(12) (}a) Vernon, C. A. *J. Chem. Soc.* **1954**, 4462. (b) de la More, P. B. D. *J. Chem. Soc.* **1955**, 3169. (c) Hughes, E. D.; Ingold. C. K.; Mackie, J. D. H. J. Chem. Soc. 1955, 3177.

⁽¹³⁾ The second term of eq 2 amounts to ca. 4.64×10^{-2} . (14) Cheng, Y.-C.; Chen, Y.-K.; Huang, T.-M.; Yu, C.-I.; Lee, G.-H.; Wang, Y.; Chen, J.-T. *Organometallics* **1998**, *17*, 2953. (15) A similar cationic complex, [Pt(CH₃)(PPh₃)₃]BF₄, was converted

to the cis product cis-Pt(CH₃)(Cl)(PPh₃)₂ when treated with Cl⁻, while trans-Pt(CH₃)(I)(PPh₃)₂ was the only observable product when [Pt-(CH₃)(PPh₃)₃]BF₄ was treated with I⁻.16

Hitachi U3500 UV-vis spectrometer. Solvents and reagents were purchased from commercial vendors and distilled and degassed prior to use. Benzene, tetrahydrofuran, and hexane were purified by distillation from sodium benzophenone ketyl. CH₂Cl₂ and CHCl₃ were purified by distillation from CaH
₂. Acetone was purified by distillation from sodium sulfate. Literature procedures were followed to synthesize Pt(PPh₃)₄, $Pt(PPh_3)_2(C_2H_4)$, $cis-Pt(CH_2C\equiv CPh)(Cl)(PPh_3)_2$, and $[Pt(\eta^3-\eta^3-\eta^2)]_2$ CH₂CCPh)(PPh₃)₂](OTf).³

Reaction of Ph=CCH2Cl with Pt(PPh3)4 in the Presence of a Large Excess of PPh₃. To a solution of Pt(PPh₃)₄ $(4.9 \text{ mg}, 3.9 \times 10^{-3} \text{ mmol}) \text{ and PPh}_3 (19.1 \text{ mg}, 7.3 \times 10^{-2} \text{ mmol})$ in toluene-d₈ (0.6 mL) was added PhC≡CCH₂Cl (1.1 mg, 7.3 \times 10⁻³ mmol) at -78 °C. The reaction mixture was analyzed by ¹H and ³¹P NMR at temperatures from -60 to 0 °C. The initial product was confirmed to be formed at -40 °C, whose ³¹P NMR data coincided with those of *cis*-Pt(η^1 -CH₂C \equiv CPh)-(Cl)(PPh₃)₂. Then the product began to isomerize to trans-Pt- $(\eta^1\text{-CH}_2\text{C}\equiv\text{CPh})(\text{Cl})(\text{PPh}_3)_2$ at about 0 °C.

Reaction of PhC=CCH2Cl and PhC=CCH2Br with Pt- $(C_2H_4)(PPh_3)_2$. To a solution of $Pt(C_2H_4)(PPh_3)_2$ (10.5 mg, 1.4 \times 10⁻² mmol) in toluene- d_8 (0.6 mL) were added PhC=CCH₂-Cl (21.1 mg, 1.4×10^{-1} mmol) and PhC=CCH₂Br (27.4 mg, 1.4×10^{-1} mmol) at -78 °C. The reaction mixture was analyzed by ¹H and ³¹P NMR at -30 °C. This reaction yielded *cis*-Pt(η^1 -CH₂C≡CPh)(X)(PPh₃)₂ in 1:1.5 ratio for X = Cl vs X

Reaction of PhC≡CCH₂Cl and PhC≡CCH₂Br with Pt-(PPh₃)₄ in the Presence of a Large Excess of PPh₃. To a solution of Pt(PPh₃)₄ (12.1 mg, 1.0×10^{-2} mmol) and PPh₃ (26.6 mg, 1.0×10^{-1} mmol) in C₆D₆ (0.6 mL) were added PhC=CCH₂-Cl (15.0 mg, 1.0×10^{-1} mmol) and PhC=CCH₂Br (20.0 mg, 1.0×10^{-1} mmol) at -20 °C. The reaction mixture was analyzed by 1H and 31P NMR at room temperature. The reaction yielded *cis*-Pt(η^1 -CH₂C \equiv CPh)(X)(PPh₃)₂ in a 1:1.2 ratio for X = Cl vs X = Br after 10 min. Then the products began to isomerize to trans isomers.

Reaction of [Pt(η^3 -CH₂CCPh)(PPh₃)₂](OTf) with ⁿBu₄-**NCl.** To a solution of $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2](OTf)$ (4.8 mg, 4.9×10^{-3} mmol) in CD_2Cl_2 (0.6 mL) was added nBu_4NCl (2.4 mg, 8.8 \times 10^{-3} mmol) at -78 °C. The reaction mixture was analyzed by ¹H and ³¹P NMR at −60 °C to room temperature to show the formation of *cis*-Pt(η^1 -CH₂C \equiv CPh)(Cl)(PPh₃)₂.

Reaction of $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2](OTf)$ with nBu_4 -**NCl in the Presence of PPh₃.** $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2](OTf)$

 $(13.8 \text{ mg}, 1.4 \times 10^{-2} \text{ mmol}) \text{ and PPh}_3 (3.7 \text{ mg}, 1.4 \times 10^{-2} \text{ mmol})$ in CD₂Cl₂ (0.6 mL) were added in an NMR tube at room temperature. The reaction mixture was analyzed by ¹H and ³¹P NMR after 10 min. $[Pt(\eta^3-CH_2CCPh)(PPh_3)_2](OTf)$ disappeared almost completely, and instead two products (3:1 ratio) were visible. We assume the major product to be $[Pt(\eta^1-CH_2C)]$ CPh)(PPh₃)₃](OTf): ¹H NMR δ 1.18 (t, $J_{PH} = 6.5$ Hz, 2H); ³¹P NMR δ 23.79 (d, $J_{PP} = 23.3$ Hz, $J_{PtP} = 2989$ Hz), 16.98 (t, J_{PP} = 22.0 Hz, J_{PtP} = 2018 Hz). We assume the minor to be *cis*- ${(PPh_3)_2}\dot{P}t[CH_2C(PPh_3)\dot{C}Ph]}(OTf): {}^1H NMR \delta 0.7 (s, 2H); {}^{31}P$ NMR δ 5.20 (dd, $J_{PP} = 37$, 28 Hz), 19.5 (dd, $J_{PP} = 33.0$, 11 Hz), 20.0 (dd, $J_{PP} = 28.1$, 11 Hz). The data for the latter are analogous to the spectral data of cis-{(PPh₃)₂Pt[CH₂C(PPh₃)-CH]}(BF4).14

Then $^{n}Bu_{4}NCl$ (20.6 mg, 7.4×10^{-2} mmol) was added in the tube containing the above mixture at room temperature. cis- $Pt(n^1-CH_2C \equiv CPh)(Cl)(PPh_3)_2$ was observed after 10 min in 91% yield, which isomerized to the trans isomer after 14 h at room temperature.

Kinetic Measurements. The oxidative addition reactions were followed spectrophotometrically using a U3500 recording spectrophotometer with the cell compartment thermostated to 25 \pm 0.1 °C. The rates of the reactions were measured by following the disappearance of the absorption due to the reactant Pt(0) complex at 410 nm. The measurements employed [PPh₃] and [PhC≡CCH₂Cl] in sufficient excess over [Pt-(PPh₃)₄]. In each experiment, sample solutions were prepared under an N₂ atmosphere. The initial concentration ranges of PPh₃ and other species were as follows: 6.69×10^{-5} mol/L, $Pt(PPh_3)_4$; 2.66 × 10⁻³ to 1.59 × 10⁻² mol/L, PhC=CCH₂Cl; 2.49×10^{-3} to 2.51×10^{-1} mol/L, PPh3.

Acknowledgment. Thanks are due to Professor N. Kambe and Dr. H. Kuniyasu for advice on UV-vis analysis and to the Analytical Center, Faculty of Engineering, Osaka University, for NMR facilities.

Supporting Information Available: Figures giving plots of k_{obs} vs [PhC \equiv CCH₂Cl] in each run at a given [PPh₃]. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000376L