Homoleptic and Heteroleptic Gallium(III) Compounds Containing Monosubstituted Cyclopentadienyl Ligands: $Ga(C_5H_4Me)_3$, $Ga(C_5H_4SiMe_3)_3$, and $R_2Ga(C_5H_4Me)$ (R = Me, Et)

O. T. Beachley, Jr.* and Michael T. Mosscrop

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000

Received June 21, 2000

The new gallium(III) cyclopentadienyl derivatives $Ga(C_5H_4Me)_3$ and $Ga(C_5H_4SiMe_3)_3$ have been synthesized by metathetical reactions. Subsequent stoichiometric ligand redistribution reactions with GaR_3 (R=Me, Et) were used to prepare $R_2Ga(C_5H_4Me)$ as pure single compounds. However, when the syntheses of $RGa(C_5H_4Me)_2$ (R=Me, Et) and $Me_nGa(C_5H_4SiMe_3)_{3-n}$ (n=1,2) by analogous stoichiometric ligand redistribution reactions were investigated, mixtures of compounds were the isolated products. The heteroleptic organogallium compound $Me_2Ga(C_5H_4Me)$ has also been prepared in high yields by using metathetical reactions between $Me_2Ga(C_5H_4Me)$ in pentane and between $Cl_2Ga(C_5H_4Me)$, formed in-situ from $Ga(C_5H_4Me)_3$ and $GaCl_3$ in diethyl ether, and LiMe. All pure compounds have been characterized by their physical properties, elemental analyses, NMR spectra, and cryoscopic molecular weight studies.

Introduction

Whether a heteroleptic organogallium compound of the type GaR₂R' exists as a single compound or undergoes a series of ligand redistribution reactions to form a mixture of GaR₂R', GaR'₂R, GaR'₃, and GaR₃ depends on the nature of the organic groups and the phase. When the organic groups are methyl and phenylethnyl as in Me₂Ga(C≡CPh),¹ a single compound exists in the solid phase and in benzene solution. Both the X-ray structural study of a crystal^{1c} and the cryoscopic molecular weight study of a benzene solution^{1a} identified the presence of dimers. The structure of the dimer in the solid phase had phenylethnyl groups bridging four coordinate gallium atoms.1c In contrast, the characterization data for gallium compounds that contained only methyl and tert-butyl groups as in Me₂Ga(t-Bu) were consistent with the existence of mixtures with GaMe₃, MeGa(t-Bu)₂, and Ga(t-Bu)₃.² When the organic substituents are a methyl or an ethyl group and a cyclopentadienyl group as in $Me_2Ga(C_5H_5)$, $^3Et_2Ga(C_5H_5)$, 3b,4 and EtGa(C5H5)2,4 single compounds exist in the solid phase, but dissolution in benzene produced equilibrium mixtures of monomeric species including GaR₃, R₂Ga- (C_5H_5) , RGa $(C_5H_5)_2$, and/or Ga $(C_5H_5)_3$ (R = Me, Et). In contrast, MeGa(C5H5)2 3a cannot be isolated as a pure

Results and Discussion

The cyclopentadienyl derivatives $Ga(C_5H_4Me)_3$ and $Ga(C_5H_4SiMe_3)_3$ were prepared by reacting $GaCl_3$ with $Li(C_5H_4R)$ (R=Me, $SiMe_3$) (eq 1) in diethyl ether. The

$$\begin{aligned} &\text{GaCl}_3 + 3 \text{ Li(C}_5 \text{H}_4 \text{R}) \xrightarrow[0 \text{ °C}]{\text{Et}_2 \text{O}} \text{Ga(C}_5 \text{H}_4 \text{R})_3 + 3 \text{ LiCl} \quad \textbf{(1)} \\ &\text{R} = \text{Me, SiMe}_3 \end{aligned}$$

desired product was separated from the LiCl and excess $\text{Li}(C_5H_4R)$ by extraction with pentane. Removal of the pentane by vacuum distillation at room temperature lead to the isolation of $\text{Ga}(C_5H_4\text{Me})_3$ as a golden-yellow oil. The trimethylsilyl derivative $\text{Ga}(C_5H_4\text{SiMe}_3)_3$ was a golden-brown/amber liquid. Even though both com-

compound in any phase. A benzene solution consisted of a mixture of MeGa(C₅H₅)₂, Me₂Ga(C₅H₅), and Ga-(C₅H₅)₃, whereas the product isolated after reacting Ga-(C₅H₅)₃ and GaMe₃ in a 2:1 mol ratio was a mixture of Me₂Ga(C₅H₅) and Ga(C₅H₅)₃. X-ray structural studies of $Me_2Ga(C_5H_5)$, ^{3d} $Et_2Ga(C_5H_5)$, ⁴ and $EtGa(C_5H_5)$ ₂ ⁴ identified polymeric structures with cyclopentadienyl units bridging four-coordinate gallium in each case. Even though these isolable solids are polymers, the parent Ga(C₅H₅)₃ is a monomer in the solid state and in benzene solution.⁵ In this paper we describe the nature of Ga(C₅H₄Me)₃ and Ga(C₅H₄SiMe₃)₃ and the effects of these monosubstituted cyclopentadienyl ligands on the chemistry of the heteroleptic organogallium compounds $R_nGa(C_5H_4Me)_{3-n}$ (R = Me, Et; n = 1, 2) and $Me_nGa(C_5H_4SiMe_3)_{3-n}$ (n = 1, 2).

^{(1) (}a) Jeffery, E. A.; Mole, T. J. J. Organomet. Chem. 1968, 11, 393. (b) Lee, K. E.; Higa, K. T. J. Organomet. Chem. 1993, 449, 53. (c) Tecle, B.; Ilsley, W. H.; Oliver, J. P. Inorg. Chem. 1981, 20, 2335. (2) Cleaver, W. M.; Barron, A. R. Chemtronics 1989, 4, 146.

^{(2) (}a) (a) Beachley, O. T., Jr.; Royster, T. L., Jr.; Arhar, J. R. J. Organomet. Chem. 1992, 434, 11. (b) Stadelhofer, J.; Weidlein, J.; Haaland, A. J. Organomet. Chem. 1975, 84, C1. (c) Stadelhofer, J.; Weidlein, J.; Fischer, P.; Haaland, A. J. Organomet. Chem. 1976, 116, 55. (d) Mertz, K.; Zettler, F.; Hausen, H.-D.; Weidlein, J. J. Organomet. Chem. 1976, 122, 159.

⁽⁴⁾ Beachley, O. T., Jr.; Rosenblum, D. B.; Churchill, M. R.; Lake, C. H.; Krajkowski, L. M. *Organometallics* **1995**, *14*, 4402.

⁽⁵⁾ Beachley, O. T., Jr.; Getman, T. D.; Kirss, R; Hallock, R. B.; Hunter, W. C.; Atwood, J. L. *Organometallics* **1985**, *4*, 751.

pounds are nonvolatile and decompose slowly at room temperature, they had acceptable elemental analyses for carbon and hydrogen. The original liquids became increasingly viscous and darker in color with time. These observations are consistent with the occurrence of prototropic rearrangements of the substituted cyclopentadienide rings (isomerization) and subsequent Diels-Alder dimerization reactions. Similar conclusions have been made for other heavy group 13 metal cyclopentadienyl derivatives.^{5,6–8} The closely related compound Ga(C₅H₅)₃ also decomposes/isomerizes at room temperature with a change in color from colorless to yellow.⁵ Since Ga(C₅H₄Me)₃ and Ga(C₅H₄SiMe₃)₃ cannot be distilled or recrystallized, the isolation of analytically pure compounds required the use of high-purity reagents and the minimization of potential side reactions that might produce impurities. Full details of the preparative procedures are described in the Experimental Section.

The ¹H NMR spectrum of Ga(C₅H₄Me)₃ exhibited three resonances, one for the ring methyl group and two for the cyclopentadienide ring protons. A fourth line at 5.99 ppm was observed, but it is believed to be due to an impurity of C₅H₅ that probably exists as Ga(C₅H₄-Me)₂(C₅H₅). Fractional distillation of the methylcyclopentadiene monomer prior to reaction with the Li(n-Bu) demonstrated that this impurity originated with the commercially available methylcyclopentadiene dimer. Even though this impurity was minimized to the extent that it did not significantly impact the elemental analysis of Ga(C₅H₄Me)₃, it could never be eliminated. The literature⁷ reveals that the related compound Al-(C₅H₄Me)₃, a light yellow oil, was also contaminated with an impurity of C₅H₅. The ¹³C NMR spectrum of Ga(C₅H₄Me)₃ had a total of four resonances with one for the methyl group and three for ring carbon atoms. Low-temperature ¹H NMR techniques (-50 °C was the lowest temperature studied) were unable to sufficiently slow the migration of the metal about the cyclopentadienyl ring so that the lines for the individual static structures could be observed. Similar observations have been made for $Ga(C_5H_5)_3$, $^5 In(C_5H_5)_3$, 8 and $In(C_5H_4Me)_3$. Even though the NMR spectra of Ga(C₅H₄Me)₃ are consistent with either fluxional or nonfluxional rings to gallium, the compound is believed to have fluxional rings with η^1 -bonding. If the compound were nonfluxional and had a "static" structure, the *ipso*-carbon atom of each of the three cyclopentadienyl rings would have to be bonded both to gallium and to a methyl group, a sterically unfavorable structure.

The resonances in the ¹H and ¹³C NMR spectrum of Ga(C₅H₄SiMe₃)₃ have chemical shifts that are as expected for this compound with fluxional cyclopentadienyl rings.⁶ However, all lines were considerably broader than those observed for Ga(C₅H₄Me)₃. This increased line broadening is related to the variety of sigmatropic rearrangement processes that occur for the molecule, including metallotropic shifts of the gallium fragment, silatropic shifts of the SiMe₃ group, and prototropic shifts of ring hydrogen atoms. The rate of the metallotropic shift of the gallium fragment is expected to occur

faster than the other rearrangements, as the rate of a sigmatropic rearrangement increases with the metallic character of the migrating group.⁶ Thus, the slower movement of the SiMe₃ group leads to two resonances, an intense line at 0.24 and a smaller line at -0.12 ppm. These lines may be assigned to the SiMe₃ group in different vinyl positions on the cyclopentadienyl ring.

The methyl-substituted cyclopentadienyl gallium compound $Ga(C_5H_4Me)_3$ is a Lewis acid, as it formed 1:1 adducts with NMe₃ and THF. Both adducts were solids at room temperature. The NMe₃ adduct was colorless, whereas the THF adduct was pale yellow. Both adducts were stable to dissociation of the base at room temperature. When sublimation of Ga(C₅H₄Me)₃·NMe₃ was attempted, only a small quantity of a colorless solid sublimed at 35 °C. Most of the material did not sublime but became brown, an indication of isomerization.⁶ In contrast, when the THF adduct was heated at its melting point of 78-81 °C, no color change was observed. Thus, these adducts have less tendency to decompose and/or isomerize than does Ga(C₅H₄Me)₃.

The heteroleptic organogallium compounds R₂Ga- (C_5H_4Me) (R = Me, Et) were prepared by stoichiometric ligand redistribution reactions^{3a,4} (eq 2) between Ga-(C₅H₄Me)₃ and GaMe₃ or GaEt₃, as appropriate. The

$$2 \text{ GaR}_3 + \text{Ga}(\text{C}_5\text{H}_4\text{Me})_3 \xrightarrow{\text{pentane}} 3 \text{ R}_2\text{Ga}(\text{C}_5\text{H}_4\text{Me}) \quad (2)$$

compound Me₂Ga(C₅H₄Me) was isolated by vacuum sublimation at room temperature, whereas Et₂Ga(C₅H₄-Me) was a mobile liquid that was purified by vacuum distillation at room temperature. The excellent elemental analysis and the sharp melting point of Me₂Ga(C₅H₄-Me) (61.5-62.0 °C) identify the solid as a single compound. Liquid Et₂Ga(C₅H₄Me) was also an analytically pure, single compound at room temperature. The ¹H NMR spectrum of this neat, colorless liquid exhibited one set of sharp lines that are consistent with Et₂Ga-(C₅H₄Me). One set of sharp resonances suggests the presence of one species, especially since either multiple sets of lines or line broadening is observed at room temperature when solutions of multiple species are formed by a ligand redistribution reaction (eq 3). The closely related compound Et₂Ga(C₅H₅)⁴ (mp 35–36 °C) also exists as a single species in the liquid state at 45 °C according to its ¹H NMR spectrum. Conversely, EtGa(C₅H₅)₂ exists in the solid state as a pure single compound, but its melt (mp 39.0-39.4 °C) forms multiple species according to its ¹H NMR spectrum at 45 °C.⁴ As Me₂Ga(C₅H₄Me) was a crystalline solid at room temperature, an X-ray structural study was attempted. However, the crystals of Me₂Ga(C₅H₄Me) were twinned and unsuitable for study. Crystals could not be obtained from either pentane, methylcyclohexane, or benzene solutions even though the compound was very soluble. It should be noted that Me₂Ga(C₅H₄Me) was more stable toward isomerization than was either Et₂-Ga(C₅H₄Me) or Ga(C₅H₄Me)₃. Crystals of Me₂Ga(C₅H₄-Me) were stored in sealed ampules at room temperature for over one year without any evidence of decomposition/ isomerization by ¹H NMR spectroscopy. In contrast, samples of liquid Et₂Ga(C₅H₄Me) in sealed ampules gradually changed color and became yellow-green and increasingly viscous with time at room temperature.

⁽⁶⁾ Jutzi, P. Chem. Rev. 1986, 86, 983, and references therein. (7) Fisher, J. D.; Budzelaar, P. H. M.; Shapiro, P. J.; Staples, R. J.; Yap, G. P. A.; Rheingold, A. L. *Organometallics* **1997**, *16*, 871. (8) Poland, J. S.; Tuck, D. G. *J. Organomet. Chem.* **1972**, *42*, 307.

Cryoscopic molecular weight studies of benzene solutions of $Me_2Ga(C_5H_4Me)$ identified the presence of monomeric species. 1H NMR spectral studies of solutions of $Me_2Ga(C_5H_4Me)$ in d_8 -THF, d_6 -benzene, d_8 -toluene, d_{12} -cyclohexane, $CDCl_3$, and CD_2Cl_2 revealed that $Me_2Ga(C_5H_4Me)$ does not exist as a single compound in solution but forms an equilibrium mixture of $Me_2Ga(C_5H_4Me)$, $MeGa(C_5H_4Me)_2$, and $GaMe_3$ (eq 3).

$$2~{\rm R_2Ga(C_5H_4Me)} \xrightarrow[K]{\rm solvent} {\rm GaR_3} + {\rm RGa(C_5H_4Me)_2} ~~(3)$$

The presence of multiple species at the normal operating temperature of the instrument was evident from the multiple gallium-methyl lines. When the solvent was d₈-THF, three sharp resonances were observed in the gallium-methyl region of the spectrum, whereas two sets of lines were observed for the protons of the C₅H₄-Me group. This multiplicity of lines is consistent with slow exchange between the species in eq 3. When the solvent was not a Lewis base, exchange was faster. Two broad lines were observed for the methyl groups bonded to gallium, and the C5H4Me group exhibited only one set of lines. The identity of the ¹H NMR lines was confirmed by comparing the observed spectrum with the spectrum recorded for a mixture of Ga(C₅H₄Me)₃ and GaMe₃ in a 1:1 mol ratio as well as with the spectra for pure GaMe₃ and Ga(C₅H₄Me)₃ in the same solvent. The equilibrium constant for the redistribution of Me₂Ga-(C₅H₄Me) in THF solution (eq 3) was estimated to be $2.3\,\times\,10^{-2}$ by using the integration data from the $^{\scriptscriptstyle 1}H$ NMR spectra at the normal operating temperature of the instrument. The corresponding equilibrium constant for Me₂Ga(C₅H₅) was 1.4×10^{-1} .^{3a}

The solution chemistry of Et₂Ga(C₅H₄Me) paralleled that of Me₂Ga(C₅H₄Me). A cryoscopic molecular weight study demonstrated the presence of monomeric species in benzene solution, whereas ¹H NMR spectral studies identified multiple species formed by a ligand redistribution reaction (eq 3). Multiple sets of gallium-ethyl lines were observed for each of the solvents including d_8 -THF, C_6D_6 , C_6D_{12} , and d_8 -toluene. When d_8 -THF was the solvent, the spectrum displayed three sharp triplets and three quartets for the ethyl group protons, one for each of the three species in the equilibrium (eq 3), $GaEt_3$, $Et_2Ga(C_5H_4Me)$, and $EtGa(C_5H_4Me)_2$. In addition, two sets of resonances were observed for the C₅H₄-Me ring protons, as observed for Me₂Ga(C₅H₄Me). When the solvent was not basic, such as C_6D_6 , C_6D_{12} , and d_8 toluene, broad singlets were observed in place of the expected triplets and/or quartets due to more rapid ethyl group exchange. The NMR spectrum of a d_8 -toluene solution at -40 °C displayed only broadening of the lines for the ethyl groups and a single set of lines for the C₅H₄-Me ring. Thus, the rate of the metallotropic shift remained sufficiently rapid that lines for the static structure of the C₅H₄Me ring were not observed.⁶ The equilibrium constant for the redistribution reaction (eq 3) in THF at ambient temperature, as calculated by using the integration values for the methyl, methylene, and cyclopentadienide ring protons, had a value of 1.5 \times 10⁻². The equilibrium constant for the redistribution of Et₂Ga(C₅H₅)⁴ as calculated from the ¹H NMR spectral data for eq 3 was 1.3×10^{-2} .

Ligand redistribution reactions (eq 4) were used for the attempted synthesis of the monoalkyl derivatives MeGa(C₅H₄Me)₂ and EtGa(C₅H₄Me)₂, but neither could be isolated as a single compound. Removal of solvent

$$GaR_3 + 2 Ga(C_5H_4Me)_3 \xrightarrow{pentane} 3 RGa(C_5H_4Me)_2$$
 (4)

resulted in the isolation of a liquid at room temperature in each case. Vacuum distillation of the resulting liquid at room temperature separated a distillate from a yellow-brown liquid residue. 1H NMR spectral studies of benzene solutions identified the distillate as mixture of RGa(C₅H₄Me)₂ and R₂Ga(C₅H₄Me) (R = Me, Et) and the yellow-brown residue as Ga(C₅H₄Me)₃ with a small amount of RGa(C₅H₄Me)₂. Thus, the chemistry of RGa-(C₅H₄Me)₂ (R = Me, Et) is similar to that of MeGa-(C₅H₅)₂, 3a as none of these compounds can be isolated as pure single compounds. In contrast, EtGa(C₅H₅)₂ is the only dicyclopentadienyl derivative that has been isolated as a pure single compound, and it has a polymeric structure in the solid phase.

A comparison of the 1H NMR spectra of solutions of GaR_3 (R = Me, Et) and $Ga(C_5H_4Me)_3$ mixed in 2:1 and 1:1 mol ratios in benzene with the spectra of the products isolated from the reaction designed to prepare $RGa(C_5H_4Me)_2$ (eq 4) demonstrated that the isolated products were mixtures and not originally pure compounds that were undergoing ligand redistribution reactions (eq 5) when placed in solution. When the

$$2 \text{ RGa}(\text{C}_5\text{H}_4\text{Me})_2 \xrightarrow{\text{solvent}} \text{R}_2\text{Ga}(\text{C}_5\text{H}_4\text{Me}) + \\ \text{Ga}(\text{C}_5\text{H}_4\text{Me})_3 \quad (5)$$

reagents were mixed in the stoichiometric ratio of 1:2 mol in C₆D₆, the resulting ¹H NMR spectrum had relative integrations of lines for the R group to the methyl line for the C₅H₄Me group that were consistent with the formula $RGa(C_5H_4Me)_2$, whereas the spectra for the isolated products did not. Second, the spectrum for the stoichiometric mixture had sharper lines than those observed in the spectra of either Me₂Ga(C₅H₄Me) or Et₂Ga(C₅H₄Me). Thus, the ethyl derivative displayed the expected triplet/quartet signals. Signal averaging for the C₅H₄Me group lines in the spectra of samples dissolved in C_6D_6 resulted in only one set of lines. The d₈-THF spectra once again showed a reduction in the rate of ligand exchange, as separate sets of lines were observed for the multiple C₅H₄Me groups and alkyl groups in the multiple species.

Ligand redistribution reactions between $Ga(C_5H_4-SiMe_3)_3$ and $GaMe_3$ were investigated as potential routes to $Me_2Ga(C_5H_4SiMe_3)$ and $MeGa(C_5H_4SiMe_3)_2$, but neither could be isolated as single compounds according to the 1H NMR spectral data. Instead, mixtures were formed by ligand redistribution reactions of the intended products (eqs 3 and 5). The additional fluxionality of the $SiMe_3$ group combined with the metallotropic shifts of the gallium probably hinders the formation of the cyclopentadienyl bridge, which appears necessary to stabilize these types of compounds in the condensed state and make them isolable as single compounds. The steric bulk of the $SiMe_3$ group might also be a factor to prevent bridging.

The compound Me₂Ga(C₅H₄Me) has also been prepared in ~85% yield by using a metathetical reaction

between Me₂GaCl¹¹ and excess Li(C₅H₄Me) in pentane solution (eq 6). The product isolated after removal of

$$\label{eq:me2} \begin{aligned} \text{Me}_2\text{GaCl} + \text{Li}(\text{C}_5\text{H}_4\text{Me}) \xrightarrow{\text{pentane}} \text{Me}_2\text{Ga}(\text{C}_5\text{H}_4\text{Me}) + \\ \text{LiCl} \ \ \ & \text{LiCl} \ \ \ \ \end{aligned}$$

solvent and subsequent sublimation at room temperature had excellent elemental analyses for C, H, and Ga and a sharp melting point. All characterization data were in agreement with those observed for the compound prepared by the ligand redistribution reaction. The synthesis of Me₂Ga(C₅H₄Me) by a metathetical reaction is significant because the first reported synthesis of Me₂Ga(C₅H₅) by a metathetical reaction in cyclohexane gave a low yield (30-60%) of an impure product.3b,c This original product had an unsatisfactory elemental analysis, and its melting point was significantly lower than that observed for the pure compound prepared by a ligand redistribution reaction.^{3a} The difference between the results of the syntheses of Me₂-Ga(C₅H₄Me) and of Me₂Ga(C₅H₅)^{3b,c} by metathetical reactions may be attributed to the solubility of these compounds in the reaction solvent. The product Me₂-Ga(C₅H₄Me) is soluble in pentane, whereas Me₂Ga- $(C_5H_5)^{3a}$ is insoluble in cyclohexane. Thus, the reaction between Me₂GaCl and an excess of Li(C₅H₅) in cyclohexane was probably incomplete, and samples of Me2-Ga(C₅H₅) might have been contaminated with Me₂GaCl, a compound with volatility similar to Me₂Ga(C₅H₅).

The third route to Me₂Ga(C₅H₄Me) in high yield involved a metathetical reaction between Cl₂Ga(C₅H₄-Me) and LiMe in diethyl ether solution (eq 7). The chloro

2
$$GaCl_3 + Ga(C_5H_4Me)_3 + 2 LiMe \xrightarrow{Et_2O}$$

3 $Me_2Ga(C_5H_4Me) + 2 LiCl$ (7)

derivative Cl₂Ga(C₅H₄Me) was formed in-situ by using a stoichiometric ligand redistribution reaction between Ga(C₅H₄Me)₃ and GaCl₃. Extensive research on these chlorogallium methylcyclopentadienyl derivatives has revealed that Cl₂Ga(C₅H₄Me) and ClGa(C₅H₄Me)₂ cannot be isolated and characterized because of the occurrence of facile isomerization/polymerization reactions. If Cl₂Ga(C₅H₄Me) and ClGa(C₅H₄Me)₂ are to be used as reagents, best results are obtained if they are reacted soon after formation in solvents that are Lewis bases, diethyl ether, or THF.

Five heteroleptic diorganogallium and -indium cyclopentadienyl derivatives, Me₂Ga(C₅H₅),^{3a} Et₂Ga(C₅H₅),⁴ $Me_2Ga(C_5H_4Me)$, $Et_2Ga(C_5H_4Me)$, and $Me_2In(C_5H_5)$, but only one dicyclopentadienyl derivative, EtGa-(C₅H₅)₂,⁴ have been prepared and isolated as analytically pure single compounds in the condensed phase at room temperature. However, when these compounds are dissolved, equilibrium mixtures of multiple species are formed by ligand redistribution reactions. 3a,4 All solids

that have been characterized by X-ray structural studies exist as linear polymers with the cyclopentadienyl groups bridging four-coordinate MR₂ moieties. 3d,4,8,9 In contrast, solutions are composed of monomers according to cryoscopic molecular weight studies.^{3,4} Thus, fourcoordinate metal centers formed by bridging cyclopentadienyl groups are necessary for the stabilization of a compound in the condensed phase, whereas the presence of monomers permits facile ligand redistribution reactions to form multiple species. As Me₂Ga(C₅H₄Me) and Et₂Ga(C₅H₄Me) exist as single compounds in the condensed state, they probably exist as polymers. The only dicyclopentadienyl derivative that has been isolated as a single pure compound is $EtGa(C_5H_5)_2$, ⁴ and its isolation required shifting the ligand redistribution equilibrium to minimize the presence of Et₂Ga(C₅H₅) in the solution prior to removal of solvent and isolation of the compound by sublimation. When the equilibrium had not been shifted, removal of solvent and subsequent sublimation produced a product with low carbon/ hydrogen analyses, probably a mixture of EtGa(C_5H_5)₂ and Et₂Ga(C₅H₅). Since Et₂Ga(C₅H₅) has weaker London dispersion forces and is more volatile than EtGa- $(C_5H_5)_2$, Et₂Ga (C_5H_5) sublimed before or with EtGa-(C₅H₅)₂ contaminated the desired product and produced low carbon and hydrogen analysis. Thus, EtGa(C₅H₅)₂ is the only example of a gallium or indium dicyclopentadienyl derivative, to date, that has the appropriate magnitude of the equilibrium constant for the redistribution equilibrium, has sufficiently strong bridges to stabilize the condensed phase with four-coordinate gallium and overcome the loss of entropy due to forming the polymer, but has sufficiently weak London dispersion forces and weak bridges to permit sublimation/ distillation prior to decomposition. In the case of the other gallium or indium dicyclopentadienide derivatives that have been investigated, two cyclopentadienide groups prevent formation of the bridge necessary for stabilization.

Experimental Section

All compounds described in this investigation were exceedingly sensitive to oxygen and moisture and were manipulated either under a purified argon atmosphere in a Vacuum Atmospheres drybox or by using standard vacuum line techniques. All solvents were dried by conventional procedures. The reagent Li(C₅H₄Me) was prepared by adding a solution of Li(n-Bu) in hexane/pentane to an excess of fractionally distilled C5H5Me at 0 °C. The insoluble product was washed three times with the reaction solvent and then thoroughly dried under vacuum. The trimethylsilyl derivative Li(C5H4-SiMe₃) was prepared by the literature method. ¹⁰ The compound Me₂GaCl^{11a,b} was prepared by a ligand redistribution reaction between GaMe₃ and GaCl₃ in pentane at room temperature. 11cd Elemental analyses were performed by E&R Microanalytical Laboratory, Parsippany, NJ. Melting points were determined with a Mel-Temp by using flame-sealed capillaries filled with argon and are uncorrected. Infrared spectra of samples as either neat liquids or Nujol mulls between CsI plates were recorded by using a Perkin-Elmer 683 spectrometer. ¹H NMR (400 MHz) and ¹³C NMR (125.7 MHz) spectra were recorded with Varian VXR-400 and Varian VXR-500 spectrometers, respectively. Proton chemical shifts are reported in δ (ppm) units and are referenced to SiMe₄ at δ 0.00 ppm and either C_6D_5H at δ 7.15 or the residual proton in the other deuterated solvents, as appropriate. Carbon-13 chemical shifts are refer-

^{(9) (}a) Beachley, O. T., Jr.; Robirds, E. S.; Atwood, D. A.; Wei, P. Organometallics 1999, 18, 2561. (b) Krommes, P.; Lorberth, J. J. Organomet. Chem. 1975, 88, 329.

⁽¹⁰⁾ Beachley, O. T., Jr.; Lees, J. F.; Glassman, T. E.; Churchill, M.

⁽¹⁰⁾ Beachiey, O. 1., Jr.; Lees, J. F.; Glassman, T. E.; Churchin, M. R.; Buttrey, L. A. *Organometallics* **1990**, *9*, 2488. (11) (a) Armer, B.; Schmidbaur, H. *Chem. Ber.* **1967**, *100*, 1521. (b) Magee, C. P.; Sneddon, L. G.; Beer, D. C.; Grimes, R. N. *J. Organomet. Chem.* **1975**, *86*, 159. (c) Rosenblum, D. B. Ph.D. Thesis, State University of New York at Buffalo, Buffalo, NY, 1997; p 52.

enced to SiMe₄ at δ 0.00 ppm and to C_6D_6 at δ 128.39 ppm. All samples for NMR spectra were contained in flame-sealed NMR tubes. Molecular weights were measured cryoscopically for benzene solutions by using an instrument similar to that described by Shriver and Drezdzon. 12

Synthesis of Ga(C₅H₄Me)₃. A Solv-Seal flask, charged with 6.31 g of Li(C₅H₄Me) (73.4 mmol) and approximately 125 mL of diethyl ether, was connected to a sidearm dumper that contained 4.07 g of freshly sublimed GaCl₃ (23.1 mmol) dissolved in approximately 50 mL of ether. After the Li(C₅H₄-Me)/Et₂O slurry was cooled to 0 °C, the GaCl₃/Et₂O solution was slowly added over a period of 1 h. The resulting mixture was stirred overnight while warming to room temperature. The Et₂O was then removed by vacuum distillation, and approximately 50 mL of pentane was added to the two-necked Schlenk flask. The product, Ga(C₅H₄Me)₃, was isolated by three extractions. The remaining LiCl was a colorless solid. The pentane was then removed from the apparatus by vacuum distillation followed by overnight pumping to leave 6.15 g (20.0 mmol, 86.7% yield, based on GaCl₃) of a pale golden-yellow liquid. Since $Ga(C_5H_4Me)_3$ decomposes slowly at room temperature as demonstrated by the original liquid becoming increasingly viscous and darker in color with time, it was stored under vacuum in sealed ampules at −20 °C. Ga(C₅H₄-Me)₃: 1 H NMR (C₆D₆, δ) 5.99 (s, 0.2, C₅ H_{5} , see Discussion), 5.82 (s, 4.2, ring-H), 5.46 (s, 4.6, ring-H), 2.08 (s, 9.0, ring- CH_3); $(d_8$ -THF, δ): 5.95 (s, 4.6, ring-H), 5.85 (s, 0.2, C_5H_5), 5.01 (s, 5.1, ring-H), 2.08 (s, 9.0, ring- CH_3); (neat liquid, capillary of C_6D_6 for reference, δ): 5.79 (s, 0.2, C_5H_5), 5.58 (s, 6.5, ring-*H*), 5.22 (s, 6.5, ring-*H*), 1.95 (s, 9.0, ring- CH_3); ¹³C NMR (C_6D_6 , δ) 139.56 (s, ring-C), 114.26 (s, ring-C), 112.72 (s, -C₅H₅), 103.05 (s, ring-C), 15.53 (s, $-CH_3$). Anal. Calcd for $C_{18}H_{21}Ga$: C, 70.40; H, 6.90. Found: C, 69.97; H, 6.88. Cryoscopic molecular weight, benzene solution, fw 307.08 (molality, obsd mol wt, assoc): 0.0868, 343, 1.12; 0.0695, 345, 1.12; 0.0458, 356, 1.16.

Synthesis of Ga(C₅H₄SiMe₃)₃. The synthesis of Ga(C₅H₄-SiMe₃)₃ was identical to that previously described for Ga(C₅H₄-Me)₃. A diethyl ether solution of GaCl₃ (3.53 g, 20.1 mmol) was added to an ether slurry of Li(C₅H₄SiMe₃) (8.73 g, 60.5 mmol) at -78 °C over a 30 min period. The reaction mixture was stirred overnight at −78 °C, and the Et₂O was removed by vacuum distillation. The product Ga(C5H4SiMe3)3 was isolated by three extractions with 50 mL of pentane. The pentane was then removed by vacuum distillation. Overnight pumping at -78 °C left 7.77 g (16.1 mmol, 80.3% yield based on GaCl₃) of Ga(C₅H₄SiMe₃)₃ as a golden-brown liquid. Ga(C₅H₄SiMe₃)₃: ¹H NMR (C_6D_6 , δ) 6.25 (s br, 5.2, ring-H), 5.96 (s, 1.4, C_5H_5 , see Discussion), 5.76 (s br, 52.3, ring-H), 0.24 (s, 27, Si Me_3), -0.12(s, 1.0, SiMe₃); 13 C NMR (C₆D₆, δ) 120.19 (br, ring-C), 113.45 (br, ring-C), 108.12 (br, ring-C), 1.74 (SiMe₃), 0.42 (SiMe₃), −1.68 (SiMe₃). Soluble in pentane, ether, and benzene. Anal. Calcd for C₂₄H₃₉GaSi₃: C, 59.86; H, 8.16. Found: C, 60.10; H,

Synthesis of Lewis Adducts of Ga(C₅H₄Me)₃. (a) NMe₃. The Lewis acid Ga(C₅H₄Me)₃ (1.402 g, 4.565 mmol) was combined with NMe₃ (0.371 g, 6.28 mmol) in approximately 30 mL of pentane to form a slightly soluble yellow solid at room temperature. The yellow solid was separated by extraction with pentane (four times) to leave a small amount of an unknown insoluble tan solid. The yellow solid was sublimed at 35 °C to a −78 °C coldfinger to give Ga(C₅H₄Me)₃·NMe₃ as a colorless solid. A brown solid remained at the bottom of the sublimator. Prolonged heating of colorless Ga(C₅H₄Me)₃·NMe₃ at 50 °C produced a brown solid that appeared identical to the unsublimed material. Ga(C₅H₄Me)₃·NMe₃: mp 72-73 °C melts with decomposition to a brown liquid; ¹H NMR (C₆D₆, δ) 6.37 (s, 5.1, ring-H), 6.13 (s, 0.3, C₅H₅), 5.19 (s, 5.7, ring-H),

2.24 (t, 9.0, ring-CH₃), 1.57 (s, 9.6, N-CH₃). Anal. Calcd for C21H30GaN: C, 68.88; H, 8.26. Found: C, 68.39; H, 8.04.

(b) THF. A solution of 0.631 g of $Ga(C_5H_4Me)_3$ (2.06 mmol) in THF (approximately 10 mL) was stirred for 2 h. Then the excess THF was removed from the resulting yellow solution by vacuum distillation to afford Ga(C₅H₄Me)₃·THF (0.668 g, 1.76 mmol, 85.6% yield) as a pale yellow solid. Ga(C₅H₄Me)₃. THF: mp 78–81 °C; ¹H NMR (C_6D_6 , δ) 6.06 (s, 0.2, C_5H_5), 5.99 (s, 4.0, ring-H), 5.39 (s, 4.9, ring-H), 3.46 (m, 3.9, THF), 2.15 (s, 9.0, CH₃), 1.28 (m, 3.2, THF)

Synthesis of Me₂Ga(C₅H₄Me) by a Ligand Redistribution Reaction. A flask containing Ga(C₅H₄Me)₃ (0.476 g, 1.55 mmol) was connected to a 90° elbow and a Schlenk flask. Then, 0.361 g of GaMe₃ (3.14 mmol) and 25 mL of pentane were vacuum distilled onto the Ga(C5H4Me)3 and the solution was allowed to stir overnight at room temperature. Removal of the pentane by vacuum distillation produced a colorless solid that was transferred by vacuum sublimation at room temperature to the attached Schlenk flask held at -196 °C and identified as Me₂Ga(C₅H₄Me) (0.700 g, 3.91 mmol, 84.1% yield based on Ga(C₅H₄Me)₃). Large colorless, hexagonal shaped crystalline plates were obtained by heating a sample under vacuum in a sealed tube at 35 °C. The crystals were twinned and were unsuitable for an X-ray structural study. Attempts to grow X-ray quality crystals of Me₂Ga(C₅H₄Me) by recrystallization from pentane, methylcyclohexane, and toluene solutions were unsuccessful. Me₂Ga(C₅H₄Me): mp 61.5-62 °C; ¹H NMR (C_6D_6, δ) 5.98 (s, 1.1, ring-H), 5.80 (s, 1.1, ring-H), 2.11 (s, 3.0, ring-C H_3), -0.43 (s br, 4.8, Me_3Ga/Me_2GaCp), -1.04 (s br, 0.3, MeGaCp₂); (d_8 -THF, δ): 5.84 (s, 0.3, MeGaCp₂ ring-H), 5.75 (s, 0.9, Me₂GaCp ring-H), 5.52 (s, 1.0, Me₂GaCp ring-H), 5.40 (s, 0.3, Me₂GaCp ring-H), 2.06 (s, 3.0, ring- CH_3), -0.49 (s, 0.9, Me_3Ga), -0.65 (s, 4.1, Me_2GaCp), -1.08 (s, 0.3, $MeGaCp_2$). Anal. Calcd for C₈H₁₃Ga: C, 53.71; H, 7.32. Found: C, 53.91; H, 7.48. Cryoscopic molecular weight, benzene solution, fw 178.91 (molality, obsd mol wt, assoc): 0.0711, 189, 1.06; 0.0578, 190, 1.06; 0.0400, 198, 1.10.

Synthesis of Me₂Ga(C₅H₄Me) by a Metathetical Reaction. A pentane solution of Me₂GaCl ^{11c} (1.15 g, 8.54 mmol) was combined with 0.755 g of Li(C₅H₄Me) (8.77 mmol) in 25 mL of pentane at 0 $^{\circ}\text{C}$ and stirred overnight. The pentane was removed by vacuum distillation to leave a colorless solid. Sublimation of the resulting solid at room temperature under static vacuum to a Schlenk flask maintained at -196 °C produced Me₂Ga(C₅H₄Me) (1.29 g, 7.20 mmol, 84.4% yield based on Me₂GaCl) as a colorless crystalline solid. The product tested negative for chloride ion (addition of Ag+ to a hydrolyzed solution). Colorless crystals of Me₂Ga(C₅H₄Me) were grown by sublimation at 35 °C in a sealed and evacuated tube placed at a 45° angle over a drying oven, but they proved unsuitable for an X-ray structural study. Me₂Ga(C₅H₄Me): mp (sublimed solid) 60-62 °C; (crystals) 62-63.5 °C. All spectral data were identical to that previously described for the compound prepared by a ligand redistribution reaction. Anal. Calcd for $C_8H_{13}Ga:\ C,\ 53.71;\ H,\ 7.32;\ Ga,\ 38.97.$ Found (sublimed solid): C, 53.42; H, 7.46. Found (crystals): C, 53.49; H, 7.49; Ga. 39.24.

Synthesis of Me₂Ga(C₅H₄Me) from Ga(C₅H₄Me)₃, GaCl₃, and LiMe. Two tubes with one containing 0.899 g (5.10 mmol) of GaCl₃ dissolved in 10 mL of Et₂O and the second containing 11.0 mL of a solution of LiMe in OEt₂ (1.4 M, 15.4 mmol) were attached to a round-bottomed flask charged with 0.785 g (2.56 mmol) of Ga(C₅H₄Me)₃ dissolved in 25 mL of Et₂O. First, the colorless GaCl₃/Et₂O solution was added to the pale yellow Ga-(C₅H₄Me)₃/Et₂O solution at 0 °C. After the resulting solution was allowed to stir for 30 min, the LiMe/Et₂O solution was added. A colorless precipitate formed immediately. This mixture was warmed to room temperature and stirred overnight. The ether was removed by vacuum distillation while holding the reaction flask at 0 °C until the pressure of the volatile components in the flask at room temperature was less than 2

mmHg. Then, a colorless solid was sublimed at room temperature from the reaction flask through an elbow into an attached Schlenk flask maintained at -196 °C. If the vapor pressure of the sublimed solid at room temperature was measurable, i.e., greater than about 2 mm, the volatile material (ether) was removed by vacuum distillation and discarded. The sublimed, colorless solid was identified as Me₂-Ga(C₅H₄Me) (0.970 g, 5.42 mmol, 70.9% based on GaCl₃) by its melting point and ¹H NMR spectrum. The nonvolatile offwhite solid, presumably LiCl, that remained in the reaction flask weighed 0.8542 g. Thus, 90% of the mass of the starting materials was accounted for by the masses of Me₂Ga(C₅H₄-Me) and the insoluble solid (LiCl). Me₂Ga(C₅H₄Me): mp 58-61.5 °C. All spectral data were identical to that previously described for the compound prepared by a ligand redistribution

Attempted Synthesis of MeGa(C5H4Me)2 by Ligand Redistribution Reaction. The reagents 0.850 g of Ga(C₅H₄-Me)₃ (2.77 mmol) and 0.155 g of GaMe₃ (1.35 mmol) were combined in approximately 25 mL of pentane and allowed to stir overnight at room temperature. The pentane was then removed by vacuum distillation to leave a yellow-brown liquid, from which a colorless liquid was transferred by vacuum distillation at ambient temperature to an attached Schlenk flask. A yellow-brown liquid remained in the original roundbottomed flask. ¹H NMR spectra identified the distillate as a mixture of MeGa(C₅H₄Me)₂ and Me₂Ga(C₅H₄Me), whereas the yellow-brown liquid was found to be predominantly Ga(C₅H₄-Me)₃ with a trace of MeGa(C₅H₄Me)₂. Similar results were obtained when the mol ratio of Ga(C5H4Me)3 to GaMe3 was increased to 2.8:1. Colorless liquid distillate: ¹H NMR (C₆D₆, δ) 5.97 (m, 2.2, ring-H), 5.375 (t, 2.3, ring-H), 2.09 (s, 6.0, ring $-CH_3$), -0.44 (s, 4.8, Me_2GaCp), -1.04 (s, 1.4, $MeGaCp_2$); (d_8 -THF, δ): 5.84 (s, 1.2, MeGaCp₂ ring-H), 5.75 (s, 1.3, Me₂GaCp ring-H), 5.52 (s, 1.4, Me₂GaCp ring-H), 5.40 (s, 1.3, MeGaCp₂ ring-H), 2.06 (s, 6.0, ring- CH_3), -0.49 (s, 0.6, $GaMe_3$), -0.65(s, 5.4, Me₂GaCp), -1.08 (s, 1.3, MeGaCp₂). Yellow-brown residue: ${}^{1}H$ NMR (C₆D₆, δ) 5.85 (s, 3.2, ring-*H*), 5.51 (s, 3.3, ring-*H*), 2.08 (s, 6.0, ring-C*H*₃), −1.04 (s, 0.3, *Me*GaCp₂).

¹H NMR Spectral Study of GaMe₃ and Ga(C₅H₄Me)₃ in a 1:2 mol Ratio. An NMR tube was attached to a very small reaction vessel that contained 0.128 g of Ga(C₅H₄Me)₃ (0.418 mmol). Then C₆D₆ followed by 0.0242 g of GaMe₃ (0.211 mmol) was added by vacuum distillation. The resulting solution was stirred and then poured into the NMR tube. The NMR tube was flame sealed. A second solution with d_8 -THF as solvent was prepared by using the identical procedure. ¹H NMR (C₆D₆, δ): 5.95 (s, 3.4, ring-H), 5.69 (s, 3.4, ring-H), 2.08 (s, 6.0, ring-CH₃), -0.44 (s, 1.1, Me₂GaCp), -1.05 (s, 1.9, MeGaCp₂); (d₈-THF): 5.94 (s, 0.9, GaCp₃ ring-H), 5.83 (s, 2.1, MeGaCp₂ ring-H), 5.75 (s, -, Me₂GaCp ring-H), 5.52 (s, -, Me₂GaCp ring-H), 5.39 (s, 2.2, MeGaCp₂ ring-H), 5.01 (s, 0.7, GaCp₃ ring-H), 2.06 (s, 6.0, ring- CH_3), -0.50 (s, -, $GaMe_3$), -0.65 (s, 0.4, Me₂GaCp), -1.08 (s, 1.5, MeGaCp₂).

¹H NMR Spectral Study of GaMe₃ and Ga(C₅H₄Me)₃ in a 1:1 mol Ratio. An NMR tube was attached to a small reaction vessel that contained 0.0847 g of Ga(C₅H₄Me)₃ (0.276 mmol). The solvent, d₈-THF, followed by 0.0327 g of GaMe₃ (0.285 mmol) was added by vacuum distillation. The resulting solution was stirred and poured into the NMR tube. The tube was flame sealed. ¹H NMR (d_8 -THF, δ): 5.83 (s, 2.3, MeGaCp₂ ring-H), 5.74 (s, 1.6, Me₂GaCp ring-H), 5.51 (s, 1.8, Me₂GaCp ring-H), 5.39 (s, 2.6, MeGaCp₂ ring-H), 2.06 (s, 4.5, ring- CH_3), -0.50 (s, 0.3, GaMe₃), -0.65 (s, 6.2, Me₂GaCp), -1.08 (s, 2.3,

Synthesis of Et₂Ga(C₅H₄Me) by Ligand Redistribution Reaction. A solution that was prepared on the vacuum line by combining 0.549 g of $Ga(C_5H_4Me)_3$ (1.79 mmol), 0.588 g of GaEt₃ (3.75 mmol), and approximately 25 mL of pentane was allowed to stir overnight. The pentane was removed by vacuum distillation to leave a yellow-green liquid. Vacuum distillation

of this yellow-green liquid with a short path still afforded pure Et₂Ga(C₅H₄Me) as a colorless liquid (1.04 g, 5.00 mmol, 93.1% yield based on Ga(C₅H₄Me)₃). Samples were stored in sealed ampules at −20 °C. Et₂Ga(C₅H₄Me): colorless liquid at ambient temperature; ¹H NMR (C_6D_6 , δ) 6.07 (s, 1.3, ring-H), 5.90 (t, 1.3, ring-H), 2.15 (s, 3.0, ring-CH₃), 1.02 (s br, 5.2, Et₃Ga/ Et₂GaCp-CH₃), 0.82 (t, 0.2, EtGaCp₂-CH₃), 0.21 (s br, 3.5, Et₃- $Ga/Et_2GaCp-CH_2$), -0.20 (q, 0.1, $EtGaCp_2-CH_2$); (d_8 -THF, δ): 5.92 (s, 0.2, EtGaCp₂ ring-H), 5.87 (s, 1.1, Et₂GaCp ring-H), 5.52 (s, 1.2, Et₂GaCp ring-H), 5.34 (s, 0.2 EtGaCp₂ ring-H), 2.08 (s, 3.0, ring- CH_3), 1.07 (t, 1.4, $GaEt_3-CH_3$), 0.99 (t, 4.5, Et₂GaCp-CH₃), 0.84 (t, 0.3, EtGaCp₂-CH₃), 0.27 (q, 1.0, $GaEt_3-CH_2$), 0.12 (q, 3.3, $Et_2GaCp-CH_2$), -0.13 (q, 0.1, EtGaCp₂- CH_2); (neat liquid, capillary of C_6D_6 for reference, δ): 6.14 (s, 0.04, $-C_5H_5$), 5.85 (s, 2.1, ring-H), 5.80 (s, 2.1, ring-H), 2.10 (s, 3.0, ring-CH₃), 0.94 (t, $J_{HH} = 8.0$ Hz, 7.1, Et₂GaCp- CH_3), 0.05 (q, $J_{HH} = 8.0$ Hz, 4.3, $Et_2GaCp-CH_2$); ¹³C NMR (C_6D_6, δ) 139.14 (s, ring-C), 112.35 (s, ring-C), 103.54 (s, ring-C), 15.71 (s, ring-Me), 10.72 (s, Et₂GaCp-CH₂), 6.38 (s, Et₂GaCp-CH₃). Anal. Calcd for C₁₀H₁₇Ga: C, 58.04; H, 8.28. Found: C, 58.11; H, 8.13. Cryoscopic molecular weight, benzene solution, fw 206.96 (molality, obsd mol wt, assoc): 0.0825, 177, 0.85; 0.0593, 173, 0.84; 0.0383, 167, 0.81.

Attempted Synthesis of EtGa(C5H4Me)2 by Ligand Redistribution Reaction. A solution prepared from Ga(C₅H₄-Me) $_3$ (0.922 g, 3.00 mmol), GaEt $_3$ (0.210 g, 1.34 mmol), and 25 mL of pentane was allowed to stir overnight at room temperature. Then the pentane was removed by vacuum distillation to leave a yellow liquid, which was vacuum distilled at room temperature. A yellow-green liquid distilled through a 90° elbow attached to a Schlenk flask held at -196 °C, whereas a yellow-brown liquid remained in the original reaction flask. ¹H NMR spectroscopy identified the yellow-brown liquid as predominantly $Ga(C_5H_4Me)_3$ with a trace of $EtGa(C_5H_4Me)_2$, while the distilled liquid was identified as a mixture of Et(C₅H₄Me)₂ and Et₂Ga(C₅H₄Me). Yellow-brown liquid: ¹H NMR (C_6D_6 , δ) 5.84 (s, 2.6, ring-H), 5.49 (s, 3.0, ring-H), 2.08 (s, 6.0, ring-C H_3), 0.83 (t, 0.4, EtGaC p_2 -C H_3), -0.20 (q, 0.1, EtGaCp₂-CH₂). Yellow-green distilled liquid: ¹H NMR (C₆D₆, δ) 6.01 (s, 2.4, ring-H), 5.77 (t, 2.6, ring-H), 2.12 (s, 6.0, ring-CH₃), 1.02 (t, 3.5, Et₂GaCp-CH₃), 0.82 (t, 2.2, EtGaCp₂-CH₃), 0.22 (q, 2.5, $Et_2GaCp-CH_2$), -0.21 (q, 1.4, $EtGaCp_2-CH_2$).

¹H NMR Spectral Study of GaEt₃ and Ga(C₅H₄Me)₃ in a 1:2 mol Ratio. An NMR tube was attached to a small reaction vessel that contained 0.128 g of Ga(C₅H₄Me)₃ (0.417 mmol). After the solvent C₆D₆ was added by vacuum distillation, 0.0334 g of GaMe₃ (0.213 mmol) was distilled into the vessel. The resulting solution was warmed from −196 °C to room temperature, stirred, and then poured into the NMR tube. The NMR tube was flame sealed. An identical procedure was carried out with d_8 -THF as solvent. The ¹H NMR spectra were indicative of an equilibrium mixture of species formed by a ligand redistribution reaction. ¹H NMR (C_6D_6 , δ): 5.98 (s, 2.4, ring-H), 5.70 (s, 2.5, ring-H), 2.11 (s, 6.0, ring- CH_3), 1.02 (t, 0.8, Et₂GaCp-CH₃), 0.83 (t, 2.6, EtGaCp₂-CH₃), 0.22 $(q, 0.6, Et_2GaCp-CH_2), -0.21 (q, 1.8, EtGaCp_2-CH_2);$ $(d_8\text{-THF})$: 5.94 (s, 1.3, GaCp₃ ring-H), 5.92 (s, 1.5, EtGaCp₂ ring-H), 5.87 (s, 0.4, Et₂GaCp ring-H), 5.52 (s, 0.4, Et₂GaCp ring-H), 5.34 (s, 1.3 EtGaCp₂ ring-H), 5.01 (s, 1.6, GaCp₃ ring-H), 2.08 (s, 6.0, ring-CH₃), 0.99 (t, 1.4, Et₂GaCp-CH₃), 0.84 $(t, 1.0, EtGaCp_2-CH_3), 0.11 (q, 1.0, Et_2GaCp-CH_2), -0.14 (q, 1.0, Et_2GaCp-CH_2), -0.14$ 1.7, EtGaCp₂ $-CH_2$).

Attempted Synthesis of Me₂Ga(C₅H₄SiMe₃) by a Ligand **Redistribution Reaction.** After a solution of Ga(C₅H₄SiMe₃)₃ (1.08 g, 2.25 mmol)) and GaMe₃ (0.520 g, 4.53 mmol) in 30 mL of pentane was allowed to stir for 16 h at room temperature, the pentane was removed at 0 °C to leave a yellow-orange viscous liquid and a small amount of a colorless solid. The pentane that had been removed was observed to "smoke" upon exposure to air due to the presence of GaMe3 formed by a ligand redistribution reaction of the proposed product. Vacuum

distillation of the yellow-orange viscous liquid at room temperature for 3 h through a 90° elbow connected to a Schlenk flask that had been cooled to −196 °C produced a colorless liquid (0.307 g) and a small amount of a colorless goo in the neck of the Schlenk flask. A golden-brown liquid (0.619 g) remained in the original distillation flask. Colorless liquid (mostly Me₂Ga(C₅H₄SiMe₃)): soluble in pentane and benzene; ¹H NMR (C_6D_6 , δ) 6.47 (s br, 1.1, ring-H), 6.35 (s br, 1.2, ring-H), 6.16 (s br, 0.1, C_5H_5), 0.18 (s, 9.0, $SiMe_3$), 0.12 (s, 0.1, $SiMe_3$), -0.04 (s, 0.4, $SiMe_3$), -0.13 (s, 0.2, $SiMe_3$), -0.38 (s br, 1.9, $GaMe_2$), -0.95 (s br, 1.0, GaMe). Colorless goo in neck of flask (mixture of Me₂Ga(C₅H₄SiMe₃) with impurity of Me₂-Ga(C₅H₅)): ¹H NMR (C₆D₆, δ) 6.53 (s br, 1.3, ring-*H*), 6.43 (s br, 1.5, ring-H), 6.19 (s br, 3.4, C_5H_5), 0.19 (s, 9.0, $SiMe_3$), -0.03(s, 0.9, SiMe₃), -0.13 (s, 0.7, SiMe₃), -0.44 (s br, 2.7, GaMe₂), -1.03 (s br, 1.4, GaMe). Golden-brown liquid (mixture of $MeGa(C_5H_4SiMe_3)_2$ and $Ga(C_5H_4SiMe_3)_3)$: soluble in pentane and benzene; ¹H NMR (C₆D₆) 6.44 (s br, 2.1, ring-H), 6.32 (s br, 2.1, ring-*H*), 6.15 (s br, 0.2, C₅*H*₅), 0.18 (s, 9.0, Si*Me*₃), -0.04 (s, 0.3, SiMe₃), -0.12 (s, 0.4, SiMe₃), -0.38 (s br, 0.7, GaMe₂), −0.94 (s br, 1.4, Ga*Me*).

Attempted Synthesis of MeGa(C5H4SiMe3)2 by Ligand **Redistribution Reaction.** The reagents GaMe₃ (0.0764 g, 0.665 mmol) and Ga(C₅H₄SiMe₃)₃ (0.640 g, 1.33 mmol) were combined in 15 mL of pentane at room temperature for 2 h. Then the material volatile at room temperature was removed by vacuum distillation to leave a golden-brown liquid (0.612 g, 85.4% by mass of starting materials). Golden-brown liquid: ¹H NMR (C_6D_6 , δ) 6.40 (s br, 1.9, ring-H), 6.30 (s br, 3.4, ring-H), 6.09 (s br, 0.4, C₅H₅), 0.23 (s, 2.0, SiMe₃, Ga(C₅H₄- $SiMe_3$)₃), 0.17 (s, 18, $SiMe_3$, $MeGa(C_5H_4SiMe_3)_2$), -0.12 (s, 0.1, vinyl Si Me_3), -0.94 (s br, 3.0, GaMe, MeGa(C₅H₄SiMe₃)₂).

¹H NMR Spectral Studies of GaMe₃ and Ga(C₅H₄SiMe₃)₃ in Various Molar Ratios. A small reaction vessel connected to an NMR tube was charged with Ga(C₅H₄SiMe₃)₃, and then C₆D₆ followed by the appropriate stoichiometric amount of GaMe₃ was added by vacuum distillation. The resulting solution was stirred and poured into the NMR tube, and then the NMR tube was flame sealed. (a) Reagents in 2:1 mol ratio: 0.125 g (0.259 mmol) of Ga(C₅H₄SiMe₃)₃ and 0.0592 g (0.516 mmol) of GaMe3; 1H NMR (C6D6, $\delta)$ 6.51 (s, 1.2, ring-H), 6.43 (s br, 1.1, ring-H), 6.19 (s, 0.2, C₅H₅), 0.22 (s, 0.4, $SiMe_3$), 0.18 (s, 9.0, $SiMe_3$), -0.12 (s, 0.5, $SiMe_3$), -0.32 (s br, 7.4, $GaMe_2/GaMe_3$), -0.93 (br. 0.03 GaMe). (b) Reagents in 1:2 mol ratio: 0.0668 g (0.139 mmol) of Ga(C₅H₄SiMe₃)₃ and 0.0079 g (0.069 mmol) of GaMe₃of GaMe₃; ¹H NMR (C₆D₆, δ) 6.45 (s, 2.5, ring-H), 6.33 (s, 2.5, ring-H), 6.15 (s, 0.4, C₅H₅), 0.17 (s, 18, $SiMe_3$), -0.13 (s, 0.6, $SiMe_3$), -0.28 (s br, 0.5, $Me_2Ga(C_5H_4-C_5H_4)$ $SiMe_3$), -0.94 (s br, 3.0, GaMe, $MeGa(C_5H_4SiMe_3)_2$). (c) Reagents in 1:1 mol ratio: 0.265 g (0.550 mmol) of Ga(C₅H₄-SiMe₃)₃ and 0.0636 g (0.554 mmol) of GaMe₃; ¹H NMR (C₆D₆, δ) 6.47 (s br, 2.1, ring-H), 6.35 (s br, 1.6, ring-H), 6.17 (br, 0.4, C_5H_5), 0.17 (s, 13.5, SiMe₃), -0.34 (s br, 3.7, GaMe₂, Me₂Ga- $(C_5H_4SiMe_3)$, -0.96 (s br, 1.3, $MeGa(C_5H_4SiMe_3)_2$).

Acknowledgment. This work was supported in part by the Office of Naval Reasearch (O.T.B.).

Supporting Information Available: Additional ¹H and ¹³C NMR spectral data as well as infrared spectral data for the pure compounds are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0005304