Determination of the Stereoelectronic Parameters of PF₃, PCl₃, PH₃, and P(CH₂CH₂CN)₃. The Quantitative Analysis of Ligand Effects (QALE)

David Woska, Alfred Prock,* and Warren P. Giering*

Department of Chemistry, Metcalf Science and Engineering Center, Boston University, Boston, Massachusetts 02215

Received June 9, 2000

Using the QALE model, we determined the electronic parameters for PF₃ ($\chi_d = 44 \pm 4$, $E_{\rm ar} = 0, \ \pi_{\rm p} = 14 \pm 1), \ {\rm PCl_3} \ (\chi_{\rm d} = 42 \pm 1, \ E_{\rm ar} = 4.1 \pm 0.3, \ \hat{\pi}_{\rm p} = 5.3 \pm 0.5), \ {\rm PH_3} \ (\chi_{\rm d} = 17 \pm 1, \ {\rm PCl_3} \ \chi_{\rm d} = 17 \pm 1, \ {\rm$ $E_{\rm ar}=0,\,\pi_{\rm p}=3.7\pm0.7),\,{\rm and}\,{\rm P(CH_2CH_2CN)_3}\,(\chi_{\rm d}=17.0\pm0.6,\,E_{\rm ar}=0,\,\pi_{\rm p}=1.2\pm0.2).\,{\rm These}$ values indicate that PF₃ and PCl₃ are comparable in σ donor ability and are the poorest σ donor ligands we have studied. Both PH₃ and P(CH₂CH₂CN)₃ are reasonably good σ donors, comparable in strength to $P(p\text{-}ClC_6H_4)_3$. PF_3 is by far the best π acid. The π acidity of PCl_3 is comparable to that of P[(OCH₂)₃]CEt, whereas the π acidity of PH₃ is intermediate between $P(O-p-XC_6H_4)_3$ and $P(OR)_3$. The analysis of data sets containing $PZ_{3-i}H_i$ sometimes requires the inclusion of "i" as a parameter, which we connect with changes in hybridization of these ligands. There are good correlations of χ_d and π_p with the theoretical results of Gonzalez-Blanco and Branchadell and those of Fantucci. The stereoelectronic parameters for 107 PZ₃ species are listed.

Introduction

The evaluation of π acidity and the separation of σ and π effects of phosphorus(III) ligands has perplexed the chemical community for almost 5 decades and today remains controversial even after years of empirical and theoretical study. 1-21 The original Dewar-Chatt^{22,23}

- (1) Song, S.; Alyea, E. C. Comments Inorg. Chem. 1996, 18, 145.
- (2) Alyea, E. C.; Song, S. *Comments Inorg. Chem.* **1996**, *18*, 189. (3) Crabtree, R. H. *The Organometallic Chemistry of the Transition* Metals, 2nd ed.; Wiley: New York, 1994.
- (4) Pignolet, L. H. Homogeneous Catalysis with Phosphine Complexes; Plenum: New York, 1983.
- (5) Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F. G. A., Abel, E. W.; Eds.; Pergamon Press: Oxford, U.K., 1982; Vol.
- (6) Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. In Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., 1987; Vol. 2.
- (7) Stelzer, O. In Topics in Phosphorus Chemistry, Griffith, E. J., Grayson, M., Eds.; Interscience: New York, 1977; Vol. 9.
- (8) Alyea, E. C. Catalytic Aspects of Metal Phosphine Complexes; Advances in Chemistry Series 196; American Chemical Society: Washington, DC, 1982.
- (9) Tossell, J. A.; Moore, J. H.; Giordan, J. C. Inorg. Chem. 1985, 24. 1100.
- (10) Rolke, J.; Brion, C. E. Chem. Phys. 1996, 207, 173.
- (11) Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. **1985**, 1310.
- (12) Orpen, A. G.; Connelly, N. G. *Organometallics* **1990**, *9*, 1206. (13) Dunne, B. J.; Morris, R. B.; Orpen, A. G. *J. Chem. Soc., Dalton* Trans. 1991, 653.
 - (14) Caffery, M.; Brown, T. L. *Inorg. Chem.* **1991**, *30*, 3907.
 (15) Lee, K. J.; Brown, T. L. *Inorg. Chem.* **1992**, *31*, 289.

 - (16) Brown, T. L. *Inorg. Chem.* **1992**, *31*, 1286.
 (17) Choi, M.-G.; Brown, T. L. *Inorg. Chem.* **1993**, *32*, 1548.
 (18) Choi, M.-G.; Brown, T. L. *Inorg. Chem.* **1993**, *32*, 5603.
- (19) Pacchioni, G.; Bagus, P. S. *Inorg. Chem.* **1992**, *31*, 4391. (20) Haberlen, O. D.; Rosch, N. *J. Phys. Chem.* **1993**, *97*, 4970.
- (21) Schmid, R.; Herrmann, W. A.; Frenking, G. Organometallics
 - (22) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
 - (23) Dewar, M. J. S. Bull. Soc. Chem. Fr. 1951, 18, C71.

model describes M-P bonding in terms of σ donation of the nonbonding phosphorus electrons to the metal and back π donation from the metal to phosphorus via a d_{π} d_{π} bond. More recently, empirical^{11,12} and theoretical^{19,24-27} studies have led to the consensus that the acceptor orbitals on the phosphorus are the σ^* orbitals of PZ₃. The relative σ donor and π acceptor abilities of PZ₃ remains hotly debated, however.

Theory has not yet provided a clear picture of M-P bonding or the partitioning of σ and π effects. Pacchioni and Bagus¹⁹ calculated that the π acidity of PZ₃ increases "markedly" along the series PMe3 < PH3 < P(OMe)₃ < PF₃ with even PMe₃ having a "remarkable" π acidity. Their calculations also showed that PF₃ is a good σ donor, only moderately weaker than PMe₃. Fantucci²⁸ calculated that PF₃ should be classified as a stronger σ donor and π acid than PH₃, in apparent contrast to an earlier paper, 27 where it was reported that the σ donicity decreased along the series PMe₃ > PH₃ > PF₃ while the π acidity followed the opposite trend. Rolke and Brion suggested that methyl groups are electron attracting relative to hydrogen when bonded to phosphorus. 10 Gonzalez-Blanco and Branchadell 29 claim that PF₃ and P(pyrrolyl)₃ are strong and comparable π acids, P(OMe)₃ and PH₃ are moderate π acids, whereas PR₃ are weak π acids. They also concluded that

⁽²⁴⁾ Ruiz-Morales, Y.; Ziegler, T. *J. Phys. Chem. A* **1998**, *102*, 3970. (25) Xiao, S.; Trogler, W. C.; Ellis, D. E.; Berkovitch-Yellin, Z. *J. Am. Chem. Soc.* **1983**, *105*, 7033.

⁽²⁶⁾ Marynik, D. S. *J. Am. Chem. Soc.* **1984**, *106*, 4064. (27) Fantucci, P. *Comments Inorg. Chem.* **1992**, *13*, 241.

⁽²⁸⁾ Fantucci, P.; Polezzo, S.; Sironi, M.; Bencini, A. J. Chem. Soc., Dalton Trans. 1995, 4121.

⁽²⁹⁾ Gonzalez-Banco, O.; Branchadell, V. Organometallics 1997, 16,

PF₃ is a weaker σ donor than PH₃.²⁹ Braga³⁰ suggested that PCl_3 is a poorer π acceptor and a better σ donor than PF₃, whereas Hillier^{31,32} and Topol³³ suggested that PCl_3 has a π acidity similar to PF_3 . Most recently, Ziegler reported that PCl₃ is calculated to be a stronger π acid than PF₃.²⁴

The separation of σ and π effects has been attempted empirically by a number of groups. Graham³⁴ and Treichel³⁵ attempted to separate the σ and π bonding properties of phosphorus(III) ligands by analyses of the force constants of $\nu_{\rm CO}$ of a series of molybdenum and tungsten complexes. These analyses led to some curious observations: e.g. PBu₃ is a better π acid than PPh₃. Bodner estimated the donor/acceptor ratios of phosphorus(III) ligands by analyses of ¹³C chemical shifts of CO carbons in LNi(CO)₃ but did not attempt to separate the two effects. On the basis of an analysis of the 95Mo chemical shifts of complexes of the type $L_xMo(CO)_{6-x}$ (x = 1-3), Alyea³⁶ proposed that PCl₃ is not a π acid at all. In the early stages of the development of the QALE model (quantitative analysis of ligand effects), we also proposed that PCl₃ is a pure σ donor.³⁷ The problem with empirical studies is that the total electron donor capacity of PZ3 is the result of the combination of at least two electronic properties (σ donicity and π acidity) when PZ_3 is bonded to a transition metal. 1,2,11,12,26,34,36,38-47 No method has been found to separate these electronic effects when only the properties of transition-metal complexes are considered.

Over the past 15 years, we and others have developed and used the QALE model for the interpretation of phosphorus(III) ligand effects. 48-70 Recently, we re-

ported that four stereoelectronic parameters (three electronic and one steric) are needed to describe P(OR)₃ and P(O-p-XC₆H₄)₃.⁷¹ The electronic properties are the σ donor capacity (described by the parameter χ_d), the $E_{\rm ar}$ effect, which we find is not restricted to aryl groups, and the π acidity (π_p) of the phosphorus(III) ligand.⁷¹ We determined values for these parameters by analysis of ν_{CO} for $(\eta$ -Cp)(CO)(L)Fe(COMe), E° and ΔH° for the $(\eta$ -Cp)(CO)(L)Fe(COMe)^{+/0} couple, and two properties that do not depend on M-P π bonding: namely, the p K_a values of HPR₃⁺ and the ionization potentials of PZ₃. With values of π_p for P(OR)₃ and P(O-p-XC₆H₄)₃ in hand, we are in a position to determine the stereoelectronic parameters of other putative π acids. Building on the properties of the phosphites, we recently reported the stereoelectronic parameters for $PPh_x(Pyr)_{3-x}$ (Pyr = pyrrolyl) and P(NC₄H₈)₃.⁷²

We will use the QALE model and the QALE equations (eqs 1 and 2) to determine the unknown stereoelectronic parameters of PF₃, PCl₃, PH₃, and P(CH₂CH₂CN)₃. In the QALE model, each physiochemical property is described by its own equation (e.g., eq 1) in terms of the stereoelectronic parameters of the phosphorus(III) ligands. 54,71 In the absence of a steric threshold this

$$prop = a\chi_{d} + b(\theta - \theta_{st})\lambda + cE_{ar} + d\pi_{p} + e$$
 (1)

equation reduces to eq 2. The parameters χ_d , θ , E_{ar} , and

$$prop = a\chi_d + b\theta + cE_{ar} + d\pi_p + e$$
 (2)

 $\pi_{\rm p}$ were defined earlier. $\theta_{\rm st}$ is the steric threshold, 37 and λ is the switching function that turns on the steric term after the size of the ligands surpasses the steric threshold.³⁷ Normally, we are interested in the values of the coefficients of eqs 1 and 2 for a single property, since these coefficients help us to understand how the property is responding to variations in the stereoelectronic properties of PZ₃. The coefficients are determined by regression analysis of a series of QALE equations (eqs 1 or 2), one for each PZ₃. For a single property and a variety of PZ₃, the coefficients remain constant while

⁽³⁰⁾ Braga, M. Quim. Nova 1988, 11, 71.(31) Hillier, L. H.; Saunders, V. R. J. Chem. Soc. D 1970, 1510.

⁽³²⁾ Hillier, L. H.; Saunders, V. R. J. Chem. Soc., Dalton Trans.

⁽³³⁾ Topol, I. A.; Kondratenko, V.; Mazalov, L. N.; Doelnko, G. N.; Cheznyi, S. A. *J. Struct. Chem. (Engl. Transl.)* **1981**, *22*, 161.

⁽³⁴⁾ Graham, W. A. G. Inorg. Chem. 1968, 7, 315.

⁽³⁵⁾ Treichel, P. M.; Stewart, R. P. *Inorg. Chem.* **1968**, *7*, 1942.
(36) Alyea, E. C.; Song, S. *Inorg. Chem.* **1995**, *34*, 3864.
(37) Liu, H.-Y.; Eriks, E.; Prock, A.; Giering, W. P. *Organometallics* **1990**. *9*. 1758.

⁽³⁸⁾ Cotton, F. A.; Edwards, W. T.; Rauch, F. C.; Graham, M. A.; Perutz, R. N.; Turner, J. J. J. Coord. Chem. **1973**, 2, 247. (39) Song, S.; Alyea, E. C. Can. J. Chem. **1996**, 74, 2304

⁽⁴⁰⁾ Alyea, E. C.; Song, S. *Inorg. Chem.* **1992**, *31*, 4909.
(41) Fielder, S. S.; Orborne, M. C.; Lever, A. B. P.; Pietro, W. J. *J.* Am. Chem. Soc. 1995, 117, 6990.

⁽⁴²⁾ Girolami, G. S.; Morris, R. J. Inorg. Chem. 1990, 29, 4169. (43) Krueger, S. T.; Poli, R.; Rheingold, A. L.; Staley, D. L. Inorg.

Chem. 1989, 28, 4599. (44) Ernst, R. D.; Freeman, J. W.; Stahl, L.; Wilson, D. R.; Arif, A.

M.; Nuber, B.; Ziegler, M. L. J. Am. Chem. Soc. 1995, 117, 5075.

⁽⁴⁵⁾ Barbeau, C.; Turcotte, J. Can. J. Chem. 1975, 54, 1603.
(46) Aroney, M. J.; Davies, M. S.; Hmabley, T. W.; Pierens, R. K. J.

Chem. Soc., Dalton Trans. 1994, 91. (47) Davies, M. S.; Aroney, M. J.; Buys, I. E.; Hambley, T. W. Inorg.

Chem. 1995, 34, 330. (48) Wilson, M. R.; Woska, D. C.; Prock, A.; Giering, W. P. Organo-

metallics 1993, 12, 1742.

⁽⁴⁹⁾ Wilson, M. R.; Liu, H.-Y.; Prock, A.; Giering, W. P. Organometallics 1993, 12, 2044.

⁽⁵⁰⁾ Tracey, A. A.; Eriks, K.; Prock.; Giering, W. P. Organometallics

⁽⁵¹⁾ Panek, J.; Prock, A.; Eriks, K.; Giering, W. P. Organometallics 1990, 9, 2175.

⁽⁵²⁾ Lorsbach, B. A.; Prock, A.; Giering, W. P. Organometallics 1995,

⁽⁵³⁾ Lorsbach, B. A.; Bennett, D. M.; Prock, A.; Giering, W. P. Organometallics 1995, 14, 869.

⁽⁵⁴⁾ Fernandez, A. L.; Reyes, C.; Wilson, M. R.; Woska, D. C.; Prock, A.; Giering, W. P. Organometallics 1997, 16, 342.

⁽⁵⁵⁾ Fernandez, A. L.; Prock, A.; Giering, W. P. Organometallics 1996, 15, 2784.

⁽⁵⁶⁾ Fernandez, A. L.; Prock, A.; Giering, W. P. Organometallics 1994, 13, 2767.

⁽⁵⁷⁾ Bartholomew, J.; Fernandez, A. L.; Lorsbach, B. A.; Wilson, M. R.; Prock, A.; Giering, W. P. Organometallics 1996, 15, 295.

⁽⁵⁸⁾ Poë, A. J.; Hudson, R. H. E. Organometallics 1995, 14, 3238. (59) Poë, A. J.; Farrar, D. H.; Zheng, Y. *J. Am. Chem. Soc.* **1992**,

⁽⁶⁰⁾ Neubrand, A.; Poë, A. J.; van Eldik, R. Organometallics 1995,

⁽⁶¹⁾ Farrar, D. H.; Poë, A. J.; Zheng, Y. J. Am. Chem. Soc. 1994,

⁽⁶²⁾ Chen, L. Z.; Poë, A. J. *Coord. Chem. Rev.* **1995**, *143*, 265. (63) Brodie, N. M. J.; Poë, A. J. *Can. J. Chem.* **1995**, *73*, 1187

⁽⁶⁴⁾ Romeo, R.; Arena, G.; Scolaro, L. M. Inorg. Chem. 1992, 31, 4879

⁽⁶⁵⁾ Luo, X.-L.; Kubas, G. J.; Burns, C. J.; Bryan, J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1995, 117, 1159.

⁽⁶⁶⁾ Bessel, C. A.; Margarucci, J. A.; Acquaye, J. H.; Rubino, R. S.; Crandall, J.; Jircitano, A. J.; Takeuchi, K. J. Inorg. Chem. 1993, 32,

⁽⁶⁷⁾ Moreno, C.; Delgado, S.; Macazaga, M. J. Organometallics 1991,

⁽⁶⁸⁾ Herrick, R. S.; Duff, R. R., Jr.; Frederick, A. B. J. Coord. Chem. **1994**, 32, 103.

⁽⁶⁹⁾ Farrar, D. H.; Hao, J.; Poë, A. J.; Stromnova, T. A. Organometallics 1997, 16, 2827.

⁽⁷⁰⁾ Romeo, R.; Alibrandi, G. Inorg. Chem. 1997, 36, 4822.

⁽⁷¹⁾ Fernandez, A. L.; Reyes, C.; Prock, A.; Giering, W. P. J. Chem. Soc., Perkin Trans. 2 2000, 1033.

⁽⁷²⁾ Fernandez, A. L.; Reyes, C.; Lee, T. Y.; Prock, A.; Giering, W. P.; Haar, C. M.; Nolan, S. P. *J. Chem. Soc., Perkin Trans. 2* **2000**,

Table 1. Stereoelectronic Parameters of Phosphorus(III) Compounds (PZ₃) and the A₁ v_{CO} Values for $(\mathbf{Z}_{2}\mathbf{P})\mathbf{Cr}(\mathbf{CO})_{5}^{a}$

						$(\mathbf{Z}_3\mathbf{P})\mathbf{C}$	r(CO)	5 ⁴					
no.	PZ_3	$\chi_{\mathbf{d}}{}^{b}$	θ^c	$E_{\rm ar}{}^d$	$\pi_{ m p}^{e}$	$\nu_{\mathrm{CO}}{}^f$	no.	PZ_3	$\chi_{\mathbf{d}}{}^{b}$	θ^c	$E_{\rm ar}{}^d$	$\pi_{ m p}^{e}$	ν_{CO}^f
1	PH ₃	17	87	0	3.7		55	P(octyl)(CH ₂ CH ₂ CN) ₂	13	133	0	0.8	
2	PMeH ₂	14.2	97	0	2.5		56	P(OEt)Ph ₂	14.1	133	2.4	1	
3	P[(OCH ₂) ₃]CEt	20.2	101	0.2	5		57	PPr_3	5.4	134	0	0	
4	P(octyl)H ₂	13	103	0	2.5		58	PBu(CH ₂ CH ₂ CN) ₂	13.1	134	0	0.8	
5	$PBuH_2$	13.1	103	0	2.5		59	$PPh(OC_6H_5)_2$	20.2	134	1.9	2.7	
6	PF_3	44	104	0	14		60	PMe(i-Bu) ₂	6.7	135	0	0	
7	P(i-Bu)H ₂	13.2	106	0	2.5		61	P(octyl) ₂ (CH ₂ CH ₂ CN)	9	135	0	0.4	
8	$PPhH_2$	15.8	106	1	2.5		62	PBu ₂ (CH ₂ CH ₂ CN)	9.2	135	0	0.4	
9	$P(OMe)_3$	17.9	107	1	2.8		63	P(Pent) ₃	5	136	0	0	
10	PMe_2H	11.4	108	0	1.2		64	P(octyl) ₃	5	136	0	0	
11	$P(OEt)_3$	15.8	109	1.1	2.9		65	PBu_3	5.25	136	0	0	2059.0
12	$PMeF_2$	32.2	109	0	9.3		66	$PPhEt_2$	8.6	136	1.1	0	
13	$P(OBu)_3$	15.9	110	1.3	2.7		67	PPh ₂ Me	12.6	136	2.2	0	2065.0
14	$P(OPr)_3$	15.9	110	1.3	2.7		68	PPh(CH ₂ CH ₂ CN) ₂	15.8	136	1	0.8	
15	$P(OCH_2CH_2Cl)_3$	20.3	110	0.4	3.6		69	PPh ₂ Cl	22.8	138	3.4	1.8	
16	$PMe(OEt)_2$	13.4	112	0.7	1.9		70	P(t-Bu)Me ₂	5.7	139	0	0	
17	PMe_2F	20.4	113	0	4.7		71	$PPhBu_2$	8.1	139	1.3	0	
18	$PMe_2(OEt)$	11	115	0.4	1		72	$PPh_2(OC_6H_4)$	16.7	139	2.4	1.4	
19	PCyH ₂	11.8	115	0	2.5		73	PPh₂Et	11.1	140	2.3	0	2063.0
20	P(CH ₂ CH ₂ CN) ₂ H	17	117	0	2		74	$PPh_2(CH_2CH_2CN)$	14.5	140	2	0.4	
21	PMe_3	8.55	118	0	0	2062.0	75	PPh₂Bu	11.3	142	2.1	0	
22	P(t-Bu)H ₂	11.3	119	0	2.5		76	$P(i-Bu)_3$	5.7	143	0	0	2059.0
23	P(Octyl) ₂ H	9	120	0	1.2		77	P(t-Bu)Cl ₂	28	143	2.7	3.5	
24	PBu ₂ H	9.2	120	0	1.2		78	PCy_2H	6.6	144	0	1.2	
25	P(O-i-Bu) ₃	15.5	120	1.4	3		79	$P(p-Me_2NC_6H_4)_3$	5.25	145	2.7	0	
26	$P(OMe)_2Ph$	16.4	120	1.7	1.9		80	$P(p\text{-MeOC}_6H_4)_3$	10.5	145	2.7	0	2061.0
27	PMe ₂ Cl	19.7	120	1.4	1.8		81	$P(C_6H_5)_2(p-Me_2NC_6H_4)$	10.6	145	2.7	0	
28	P(OEt) ₂ Ph	15	121	1.7	1.9		82	$P(p\text{-MeC}_6H_4)_3$	11.5	145	2.7	0	2062.0
29	$PPhMe_2$	10.5	122	1	0	2063.2	83	$PCy(CH_2CH_2CN)_2$	11.8	145	0	0.8	
30	PMeCl ₂	30.9	122	2.7	3.5		84	$P(C_6H_5)_2(p\text{-MeC}_6H_4)$	12.1	145	2.7	0	
31	PMe ₂ Et	7.8	123	0	0		85	$P(C_6H_5)_2(p\text{-MeOC}_6H_4)$	12.3	145	2.7	0	
32	$PMe_2(CH_2CH_2CN)$	11.4	123	0	0.4		86	$P(C_6H_5)_3$	13.25	145	2.7	0	2063.0
33	P(i-Bu) ₂ H	9.5	124	0	1.2		87	$P(C_6H_5)_2(p\text{-}ClC_6H_4)$	14.4	145	2.7	0	
34	PCl ₃	42	124	4.1	5.3		88	$P(p\text{-FC}_6H_4)_3$	15.7	145	2.7	0	
35	PPh ₂ H	14.5	126	2	1.2		89	$P(p-ClC_6H_4)_3$	16.8	145	2.7	0	2065.0
36	PMeEt ₂	7.1	127	0	0		90	PPh ₂ (Pyr)	19.5	145	3.1	0.6	
37	PPrCl ₂	29.8	127	2.7	3.5		91	$P(p-F_3CC_6H_4)_3$	20.5	145	2.7	0	2067.3
38	PMe(CH ₂ CH ₂ CN) ₂	14.2	128	0	0.8		92	PPh(Pyr) ₂	25.7	145	3.2	1.3	
39	$P(O-p-MeC_6H_4)_3$	22.4	128	1.4	4.1		93	P(Pyr) ₃	31.9	145	3.3	1.9	
40	$P(O-p-MeOC_6H_4)_3$	22.5	128	1.4	3.8		94	$P(NC_4H_8)_3$	-1.2	146	-0.6	0.9	
41	$P(OC_6H_5)_3$	23.6	128	1.3	4.1		95	$P(m\text{-MeC}_6H_4)_3$	11.3	148	2.7	0	
42	$P(O-p-ClC_6H_4)_3$	27.2	128	1.3	4		96	$P(m-ClC_6H_4)_3$	19.6	148	2.7	0	
43	PBuCl ₂	29.8	128	2.7	3.5		97	P(t-Bu) ₂ H	5.7	150	0	1.2	
44	$P(O-p-NCC_6H_4)_3$	31.7	128	1	3.7		98	P(i-Pr)Ph ₂	9.6	150	1.7	0	00000
45	P(O-i-Pr) ₃	13.4	130	1.3	2.9		99	PPh ₂ Cy	9.1	153	1.6	0	2060.0
46	$P(t-Bu)F_2$	29.3	130	0	9.3		100	P(t-Bu) ₂ F	14.7	156	0	4.7	
47	$P(O-p-MeOC_6H_4)Cl_2$	31.5	131	3.1	3.5		101	$P(CH_2CH_2CN)Cy2$	6.6	157	0	0.4	2052.0
48	PPhCl ₂	32.4	131	3.7	3.5	2000 2	102	P(i-Pr ₃)	3.45	160	0	0	2058.0
49	PEt ₃	6.3	132	0 0	0	2060.2	103	PPhCy ₂	5.7	162	1.6	0	2059.0
50	P(i-Pr)Me ₂	6.85	132				104	P(t-Bu) ₂ Cl	14	163	1.4	1.8	2050 1
51 52	PEt ₂ (CH ₂ CH ₂ CN)	9.9	132	0	0.4		105	PCy ₃	1.4	170	0	0	2056.1
52 53	PEt(CH ₂ CH ₂ CN) ₂	13.4 14.8	132 132	U 2.3	0.8 0.9		106 107	$P(o\text{-MeC}_6H_4)_3$	11.1 0	178 182	2.7 0	0	
53	P(OMe)Ph ₂	14.0	102	۵.3	1.9		107	P(t-Bu) ₃	U	102	U	U	

^a The values in Roman type are taken from the literature, whereas the values in boldface are reported here for the first time. The parameters for most mixed ligands (with the exception of PPh_iR_{3-i}) were determined by additivity. $^{b}\chi_{d}$ values for the phosphines and phosphites are taken from refs 71–74 or calculated by additivity using the data found in these references. c Values for cone angles (θ) are taken from refs 72 and 75 or calculated by additivity using the data found in these references. $^dE_{ar}$ values are taken from refs 71, 72, and 74. ${}^e\pi_p$ values are taken from refs 71 and 72. fD ata (cm⁻¹) were measured in dilute cyclohexane solution. Error is estimated to ± 0.5

the known values of the stereoelectronic parameters vary as PZ3 varies. We can turn this approach around and consider a single PZ₃ with unknown stereoelectronic parameters and a variety of properties for which we know the coefficients of the QALE equations. Now the stereoelectronic parameters remain constant while the coefficients vary. Using regression analysis we can then obtain values of the parameters of the single PZ₃.

17

132 0

1.2

P(CH₂CH₂CN)₃

Using this approach, we determined values for the three electronic parameters (χ_d , E_{ar} , and π_p) for PCl₃, P(CH₂CH₂CN)₃, PF₃, and PH₃. We present the analysis of PCl₃ in detail. The analyses of P(CH₂CH₂CN)₃ and PF₃ are analogous. The analysis of PH₃ is more complex and is discussed separately.

Determination of the Stereoelectronic Parameters of PCl₃

To determine the stereoelectronic parameters of PCl₃, we need a series of QALE equations (with known coefficients) for a variety of properties. To obtain these equations, we use data sets that include the π acidic

Table 2. Systems, Properties, and Ligands Used and Excluded in the QALE Analyses Used to Determine the Coefficients a-e of Eqs 1 and 2

no	quet	property	${ m ligands}^a$	ligands excluded	refs
no.	syst	property		excluded	
1	PZ_3	ionizn potentials	3, 9, 11, 21, 29, 49, 65, 67, 79, 80, 82, 86, 88, 89, 91, 95, 102, 107		76-83
2	$HPZ_3^+ = H^+ + PZ_3$	pK_a	3, 9, 11, 21, 26, 28, 29, 36, 41, 45, 49, 53, 56, 57, 63, 65, 66, 67, 73, 76, 79, 80, 82, 88, 89, 91, 95, 105, 106, 107		84-87
3	$(\eta\text{-Cp})\text{Fe}(\text{CO})(\text{PZ}_3)\text{COMe}^+ + \text{e} = (\eta\text{-Cp})\text{Fe}(\text{CO})(\text{PZ}_3)\text{COMe}^0$	E^0	2, 3, 9, 11, 21, 29, 41, 45, 49, 60, 66, 67, 65, 73, 76, 79, 80, 82, 86, 88, 89, 91, 99, 102, 103, 105		88
4	$(\eta\text{-Cp'})\text{Fe}(\text{CO})(\text{PZ}_3)\text{COMe}^+ + \text{e} = (\eta\text{-Cp'})\text{Fe}(\text{CO})(\text{PZ}_3)\text{COMe}^0$	E^0	3, 9, 11, 29, 41, 45, 49, 60, 66, 67, 65, 73, 76, 79, 80, 82, 86, 88, 89, 91, 99, 102, 103, 105	65	88
5	(norbornadiene)Mo(CO) ₄ + 2PZ ₃ = $(Z_3P)_2$ Mo(CO) ₄ + norbornadiene	$-\Delta H_{ m rx}$	9, 21, 29, 41, 49, 65, 67, 86		89, 90
6	Ru(CO)3(PZ3)(SiCl3)2 = Ru(CO)2(PZ3)(SiCl3)2 + CO	$\log k$	3, 9, 13, 26, 29, 41, 42, 65, 67, 80, 82, 86, 88, 89, 95, 96, 98	53	91
7	$PhN_3 + PZ_3 = N_2 + Z_3P = N$	$\log k$	9, 41, 65, 64, 80–82, 89, 84–87, 89		92
8	$(Z_3P)Ru(CO)_4 = (Z_3P)Ru(CO)_3 + CO$	$\log k$	3, 11, 21, 41, 49, 65, 66, 73, 80, 82, 86, 89, 105, 107		93
9	$(C_6H_7)Mn(CO)_3^+ + PZ_3 = [C_6H_7(PZ_3)]Mn(CO)_3^+$	$\log k$	9, 11, 13, 41, 65, 66, 80, 82, 84, 86, 88, 89, 105, 106		94
10	CpFe(CO)(PZ ₃)COMe	$ u_{\mathrm{CO}}$	3, 9, 11, 13, 15, 21, 25, 39–42, 44, 49, 65, 80, 82, 86, 88, 89, 91, 102, 105		71, 74, 88, 9
11	(η-Cp')Fe(CO)(PZ ₃)COMe	$ u_{\mathrm{CO}}$	3, 9, 11, 15, 41, 49, 65, 76, 80, 82, 86, 88, 89, 91, 102, 105		71, 74, 88, 9
12	$(Z_3P)Ni(CO)_3$	$ u_{\mathrm{CO}}$	3, 9, 11, 13, 21, 41, 42, 44, 45, 49, 65, 76, 79, 80, 82, 86, 88, 89, 91, 102, 105, 107		75
13	$(\eta$ -Cp)Mn(CO) ₂ (L)	$\nu_{ m CO}$	9, 11, 13, 15, 21, 39, 41, 49, 65, 82, 86, 102, 105		96
14	LMo(CO) ₅	ν_{CO}	3, 9, 11, 21, 41, 49, 65, 86, 95, 105, 107		2, 45
15	$L_2Mo(CO)_4$	$\nu_{ m CO}$	3, 9, 11, 15, 21, 41, 45, 49, 65, 86, 95	82	45, 82
16	$L_3Mo(CO)_3$	$\nu_{ m CO}$	3, 9, 11, 15, 21, 41, 45, 49, 65, 86		2, 45
17	$(\eta\text{-Cp})V(CO)_3(PZ_3)$	ν_{CO}	9, 11, 13, 15, 21, 39, 41, 49, 65, 82, 86, 102, 105		96
18	$(Z_3P)Cr(CO)_2(C_6H_3Me_3)$	$ u_{\mathrm{CO}}$	9, 11, 13, 21, 39, 41, 49, 65, 86, 105	15	96
19	$(Z_3P)Cr(CO)_2[C_6H_4(CO_2Me)_2]$	$ u_{\mathrm{CO}}$	9, 11, 13, 21, 39, 41, 49, 65, 86, 102, 105	15	96
20	$(Z_3P)Cr(CO)_5$	$ u_{\mathrm{CO}}$	9, 11, 13, 21, 39, 41, 49, 65, 80, 82, 86, 89, 91, 102, 105	15	96
21	$(Z_3P)Ru(CO)_4$	$\nu_{ m CO}$	3, 11, 21, 41, 49, 65, 80, 82, 86, 89, 105, 107		93
22	(PZ ₃)Ni(CO) ₃	¹³ C (CO) chem shift	3, 9, 11, 13, 15, 21, 29, 41, 42, 45, 49, 53, 65–67, 71–73, 75, 76, 79, 80, 82, 86, 88, 89, 102, 105, 107		97
23	$(Z_3P)Cr(CO)_5$	¹³ C (cis CO) chem shift	3, 9, 11, 15, 21, 29, 41, 42, 45, 49, 65–67, 73, 76, 86, 99	103, 105	97
24	$(Z_3P)Cr(CO)_5$	¹³ C (trans CO) chem shift	3, 9, 11, 15, 29, 41, 42, 45, 49, 65–67, 73, 76, 86, 99, 103, 105		97
25	$(Z_3P)Mo(CO)_5$	¹³ C (cis CO) chem shift	3, 9, 11, 15, 29, 41, 49, 67, 66, 65, 73, 86, 105, 107		97
26	$MeCo[dgm]_2(PZ_3)$	$J_{ m H/C}$	9, 21, 29, 41, 45, 49, 65, 66, 73, 79, 80, 82, 86, 88, 89, 98, 102, 105		98

^a Numbers listed refer to the entry numbers in Table 1.

 $P(OR)_3$, and $P(O-p-XC_6H_4)_3$, as well as a variety of PR_3 , $P(p-XC_6H_4)_3$, and PPh_iR_{3-i} , for all of which we know values of the four stereoelectronic parameters $(\chi, \theta, E_{ar}, \pi_d;$ listed in Table 1):⁷¹ these data sets must also include $PZ_{3-i}Cl_i$ as well. The coefficients a-e were then obtained from analysis of the subsets of data that exclude $PZ_{3-i}Cl_i$. The properties we consider are listed in Table 2.

We start by determining the regression coefficients (a-e) for the QALE equations, which will be eventually used to determine the stereoelectronic parameters for PCl₃. We describe this in detail for the particular property of ν_{CO} for $(Z_3P)Mo(CO)_5$ (entry 14 in Table 2). As with all our analyses, we start by graphically examining the data to test their appropriateness for inclusion in the QALE analysis.⁵⁷ In general, appropriate data will show a linear dependence on χ_d for P(p-XC₆H₄)₃ as well as for PR₃ (in the absence of a steric threshold) and a linear dependence on i for PZ $_i$ Y3 $_{-i}$. (When ν_{CO} is plotted versus i, the mixed PPh $_i$ R3 $_{-i}$ tend to give nonlinear plots. Accordingly, we routinely exclude these mixed ligands from the QALE analysis of

 $\nu_{\rm CO}$. Interestingly, PZ_iCl_{3-i} species give linear results and so later on are included in the analyses of $\nu_{\rm CO}$.) Other outliers that do not fit these general categories of ligands can be detected statistically. In all the analyses presented herein, we found that less than 2% (9 data) of the more than 550 data are outliers.

We have values for the parameters (see Table 1) of 11 ligands in $(Z_3P)Mo(CO)_5$ data set (entry 14, Table 2). Graphical analysis reveals no obvious outliers. We first did the regression analysis on these 11 data using all four of the QALE parameters (Table 1), and the results are summarized below (s = 1.286, $r^2 = 98.2\%$, $r^2(adj) = 96.9\%$):

predictor	coeff	stdev	t ratio	p
constant	2073.11	5.64	367.69	0.000
χd	0.4884	0.2522	1.94	0.101
θ	-0.04867	0.03255	-1.50	0.185
$E_{\rm ar}$	0.2019	0.8675	0.23	0.824
$\pi_{ m p}$	1.3840	0.6808	2.03	0.088

On the basis of the low t ratio and high p value we now

Table 3. Results of Regression Analyses (via Eq 1 or 2) of the Physicochemical Properties Listed in Table

no.	a	b	с	d	e	steric threshold	n	r^2	S
1	0.116 ± 0.005	0	-0.49 ± 0.02	0	7.63 ± 0.05		18	0.978	0.1082
2	-0.60 ± 0.02	-0.039 ± 0.007	-0.3 ± 0.1	0	17 ± 1		31	0.981	0.4864
3	0.0158 ± 0.0007	0	0	0.023 ± 0.002	0.112 ± 0.007		25	0.987	0.01381
4	0.0172 ± 0.0005	0.0007 ± 0.0002	0	0.025 ± 0.002	-0.03 ± 0.03		23	0.993	0.01028
5	0	-0.12 ± 0.04	-4.4 ± 0.5	-0.9 ± 0.3	47 ± 5		8	0.979	1.066
6	0	0.063 ± 0.006	0	-0.15 ± 0.04	-4.9 ± 0.1		17	0.968	0.1908
7	-0.18 ± 0.01	-0.039 ± 0.004	0.42 ± 0.005	-0.36 ± 0.06	5.46 ± 0.05		12	0.997	0.0755
8	0	0.133 ± 0.006	0.20 ± 0.03	-0.07 ± 0.02	-3.69 ± 0.06	160	14	0.984	0.1174
9	-0.26 ± 0.03	-0.119 ± 0.005	0.6 ± 0.1	-0.9 ± 0.1	9.2 ± 0.2	128	14	0.989	0.1982
10	1.05 ± 0.01	0.037 ± 0.003	-0.89 ± 0.06	4.28 ± 0.05	1905.1 ± 0.6		22	1.000	0.1848
11	0.87 ± 0.04	0.06 ± 0.02	0	5.1 ± 0.2	1989 ± 0.3		16	0.997	0.7584
12	0.96 ± 0.02	0	0	2.0 ± 0.1	0.4 ± 0.3		22	0.997	0.5866
13	1.4 ± 0.2	0.14 ± 0.04	0	2.5 ± 0.7	1902 ± 6		13	0.984	1.902
14	0.6 ± 0.2	0	0	1.3 ± 0.4	2065.2 ± 0.9		11	0.971	1.39
15	1.3 ± 0.1	0	0	2.2 ± 0.5	2006 ± 1		11	0.998	1.315
16	2.4 ± 0.4	0	0	5 ± 1	1911 ± 4		10	0.983	3.73
17	0.95 ± 0.09	0	0	1.9 ± 0.3	1944.4 ± 0.7		12	0.993	0.9439
18	$2.3\pm.1$	0.16 ± 0.03	-3.3 ± 0.7	0	1841 ± 5		10	0.994	1.33
19	1.1 ± 0.1	0	0	1.0 ± 0.4	1914.9 ± 0.7		11	0.993	0.9432
20	0.51 ± 0.02	-0.045 ± 0.008	0	1.7 ± 0.1	2063 ± 1		15	0.997	0.3994
21	1.1 ± 0.1	0.06 ± 0.02	-2.4 ± 0.4	0.9 ± 0.3	2045 ± 3		12	0.994	0.6332
22	-0.175 ± 0.009	0	0	-0.10 ± 0.03	6.59 ± 0.09		29	0.982	0.1798
23	-0.16 ± 0.01	0	0.13 ± 0.05	-0.12 ± 0.04	6.9 ± 0.1		17	0.992	0.1202
24	-0.22 ± 0.01	$0.013\pm.005$	0.71 ± 0.08	0	12.9 ± 0.7		18	0.975	0.2489
25	-0.158 ± 0.009	0	0	0	6.5 ± 0.1		14	0.96	0.2416
26	0.16 ± 0.01	0.067 ± 0.004	0	-0.25 ± 0.05	135.9 ± 0.2	122	18	0.958	0.2038

^a The letters a-e are the regression coefficients of these equations. Entry numbers correspond to the entry numbers in Table 2.

eliminate $E_{\rm ar}$ as a variable. 99 The results are (s = 1.196, $r^2 = 98.1\%$, $r^2(adj) = 97.3\%$:

predictor	coeff	stdev	t ratio	p
constant	2072.17	3.67	564.51	0.000
χd	0.5410	0.1041	5.19	0.000
θ	-0.04356	0.02236	-1.95	0.092
$\pi_{ exttt{D}}$	1.2549	0.3672	3.42	0.011

On the basis again of the low t ratio and high p value, we removed θ as a variable. The final results are (s =1.390, $R^2 = 97.1\%$, $R^2(\text{adj}) = 96.4\%$:

predictor	coeff	stdev	t ratio	p
constant	2065.18	0.89	2320.50	0.000
χd	0.6338	0.1075	5.89	0.000
$\pi_{ m p}$	1.3332	0.4240	3.14	0.014

(We note that the same results are obtained by eliminating θ first and then E_{ar} .) The results of this last analysis are included in entry 14 in Table 3. Each data set for the properties listed in Table 2 was treated by the analogous protocol. The results of these analyses are shown in Table 3.

We continue with the analysis of ν_{CO} for $(Z_3P)Mo$ (CO)₅. In general, we take equations such as (1) or (2) for each property, and by dividing each equation by its standard deviation (σ), we weight them and make them dimensionless. We then simplify the resulting equations by setting them equal to zero (eq 3). For PCl₃, eq 3

$$0 = (a/\sigma)\chi_{\rm d} + (b/\sigma)\theta + (c/\sigma)E_{\rm ar} + (d/\sigma)\pi_{\rm p} + (e/\sigma - \text{prop}/\sigma) = a'\chi_{\rm d} + b'\theta + c'E_{\rm ar} + d'\pi_{\rm p} + e'$$
 (3)

becomes eq 4 (based on the data presented in entry 14 of Table 3). Equation 4 (as well as eqs 5 and 6) is written

$$0 = (0.6x + (0)124 + (0)y + 1.3z + 2065.2 - 2095)/1.39$$
 (4)

in terms of x, y, and z, which stand for the values of the respective parameters χ_d , E_{ar} , and π_p for PCl₃, which we are seeking. Initially, we use Tolman's cone angle⁷⁵ for PCl_3 ($\theta = 124^{\circ}$). For purposes of illustration, we show

⁽⁷³⁾ Bartik, T.; Himmler, T.; Schulte, H.-G.; Seevogel, K. J. J. Organomet. Chem. 1984, 272, 29.

⁽⁷⁴⁾ Fernandez, A. L.; Lee, T. Y.; Reyes, C.; Prock, A.; Giering, W. P.; Haar, C. M.; Nolan, S. P. J. Chem. Soc., Perkin Trans. 2 1999, 2631. (75) Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽⁷⁶⁾ Schafer, W.; Schweig, A. Angew. Chem., Int. Ed. Engl. 1972,

⁽⁷⁷⁾ Lappert, M. F.; Pedley, J. B.; Wilkins, B. T.; Stelzer, O.; Unger, E. J. Chem. Soc. Dalton Trans. 1975, 1207.

⁽⁷⁸⁾ Debies, T. P.; Rablais, J. W. Inorg. Chem. 1974, 13, 308 (79) Weiner, M. A.; Lattman, M.; Grim, S. O. J. Org. Chem. 1975, 40, 1292

⁽⁸⁰⁾ Bock, H. Pure Appl. Chem. 1975, 44, 343.

⁽⁸¹⁾ Ikuta, S.; Kebarle, P.; Bancroft, G. M.; Chan, T.; Puddephatt, R. J. J. Am. Chem. Soc. 1982, 104, 3699.

⁽⁸²⁾ Stelzer, O.; Unger, E. *Chem. Ber.* **1975**, *108*, 1246. (83) Puddephatt, R. J.; Dignard-Bailey, L.; Bancroft, G. M. *Inorg.* Chim. Acta 1985, 96, L91.

⁽⁸⁴⁾ Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716.

⁽⁸⁵⁾ Streuli, C. A. *Anal. Chem.* **1960**, *32*, 985. (86) Henderson, W. A.; Streuli, C. A. *J. Am. Chem. Soc.* **1960**, *82*,

⁽⁸⁷⁾ Angelici, R. J. Acc. Chem. Res. 1995, 28, 51.

⁽⁸⁸⁾ Rahman, M. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1.

⁽⁸⁹⁾ Mukerjee, S. L.; Nolan, S. P.; Hoff, C. D.; de la Vega, R. L. *Inorg*. Chem. 1988, 27, 81.

⁽⁹⁰⁾ Hoff, C. D. Prog. Inorg. Chem. 1992, 40, 503.

⁽⁹¹⁾ Chalk, K. L.; Pomeroy, R. K. *Inorg. Chem.* **1984**, *23*, 444.
(92) Temple, R. D.; Leffler, J. E. *Tetrahedron Lett.* **1968**, 1893.

⁽⁹³⁾ Chen, L.; Poë, A. J. Inorg. Chem. 1989, 28, 3641.

⁽⁹⁴⁾ Atton, J. G.; Kane-Maguire, A. P. J. Chem. Soc., Dalton Trans. 1982. 1491.

⁽⁹⁵⁾ Fernandez, A. L.; Reyes, C.; Prock, A.; Giering, W. P. Organometallics **1998**, 17, 2503.

⁽⁹⁶⁾ Strohmeier, W.; Müller, F. J. Chem. Ber. 1967, 100, 2812.

⁽⁹⁷⁾ Bodner, G. M.; May, M. P.; McKinney, L. E. Inorg. Chem. 1980, 19, 1951.

⁽⁹⁸⁾ Moore, S. J.; Marzilli, L. G. Inorg. Chem. 1998, 37, 5329.

⁽⁹⁹⁾ Moore, D. S.; McCabe, G. P. Introduction to the Practice of Statistics; Freeman: New York, 1999.

Table 4. Ligands and Their Stereoelectronic Parameters^a

no.	PZ_3	χd	θ , deg	$E_{\rm ar}$	$\pi_{ m p}$	comments	n	I^2	σ
1A	PCl ₃	$\textbf{42} \pm \textbf{1}$	124	$\textbf{4.1} \pm \textbf{0.3}$	$\textbf{5.3} \pm \textbf{0.5}$		48	0.995	2.573
1B	PCl_3	42 ± 1	124	3.9 ± 0.4	5.3 ± 0.5	no IP	41	0.995	2.694
1C	PCl_3	42.0 ± 0.9	137 ± 5	4.3 ± 0.3	5.1 ± 0.5		48	0.997	2.394
1D	PCl_3	42 ± 1	137 ± 5	4.3 ± 0.3	5.2 ± 0.5	no IP	41	0.997	2.498
2A	PF_3	$\textbf{44} \pm \textbf{4}$	104	0	$\textbf{14} \pm \textbf{1}$		12	0.971	3.075
3A	P(CH ₂ CH ₂ CN) ₃	$\textbf{17.0} \pm \textbf{0.6}$	132	0	$\textbf{1.2} \pm \textbf{0.2}$		23	0.996	2.099
3B	$P(CH_2CH_2CN)_3$	17 ± 1	132	0	1.3 ± 0.3	no p $K_{\rm a}$	15	0.995	2.645
3C	$P(CH_2CH_2CN)_3$	17.2 ± 0.7	129 ± 3	0	1.2 ± 0.2		23	0.997	2.095
3D	$P(CH_2CH_2CN)_3$	17 ± 1	128 ± 4	0	1.3 ± 0.3	no p $K_{\rm a}$	15	0.996	2.660
4A	PH_3	30 ± 1	87	3.0 ± 0.4	-4.1 ± 0.9		33	0.985	2.271
4B	PH_3	19.0 ± 0.7	87	0	2.1 ± 0.5	no p K_a	24	0.990	1.687
4C	PH_3	17. \pm 1	87	0	$\textbf{3.7} \pm \textbf{0.7}$	no pKa or IP	17	0.997	1.006
4D	PH_3	19 ± 1	222 ± 36	0	2 ± 1	•	33	0.978	3.015
4E	PH_3	19.6 ± 0.8	50 ± 29	0	1.8 ± 0.6	no p $K_{\rm a}$	24	0.991	1.661
4F	PH_3	17 ± 1	80 ± 20	0	3.5 ± 0.9	no p K_a or IP	17	0.997	1.040

^a The values of the parameters given in boldface are the ones we suggest that best describe the stereoelectronic properties of the ligands.

Table 5. Data Sets for Systems and Properties Containing $PZ_{3-i}H_i$

no.	syst	property	ligands	$\mathrm{PZ}_{3-i}\mathrm{H}_i$	ligands excluded	refs
1	HPR ₃ ⁺	pK_a	a	1, 4, 5, 7, 10, 24, 23, 33, 35, 78		b
2	$PZ_3 + (\eta - indenyl)Rh(CO)_2 = (\eta - indenyl)Rh(CO)(PZ_3) + CO$	$\log k$	11, 65, 67, 80, 86, 99, 103, 105	35		111
3	$PZ_3 + EtI = EtPZ_3 + I^-$	$\log k$	21, 31, 36, 49, 57, 63, 65, 66, 73, 76, 80, 86	23, 24, 33	29, 105	b
4	$(CO)_3FeN_4Me_2 + PZ_3 =$ $(CO)_2(PZ_3)FeN_4Me_2 + CO$	$\log k$	9, 11, 21, 29, 65-67, 86, 105	8		112
5	trans-(NH ₃) ₄ Ru(PZ ₃) ₂ ³⁺ + e = $trans$ -(NH ₃) ₄ Ru(PZ ₃) ₂ ²⁺	E^0	3, 9, 11, 13–15, 45, 49, 65	19		113
6	$(\eta\text{-Cp})(\text{CO})(\text{L})\text{Fe}(\text{COMe})^2 + \text{e} = (\eta\text{-Cp})(\text{CO})(\text{L})\text{Fe}(\text{COMe})^0$	E^0	a	35		b
7	$(\eta - C_5H_4Me)(CO)(L)Fe(COMe)^+ + e = (\eta - C_5H_4Me)(CO)(L)Fe(COMe)^0$	E^0	a	35		b
8	$PZ_3 = PZ_3^+ + e$	IP	a	1, 2, 8, 10, 22, 35, 97		b
9	trans-(NH ₃) ₄ Ru(PZ ₃) ₂ ²⁺ + H ₂ O = $trans$ -(NH ₃) ₄ Ru(PZ ₃) ₂ ²⁺ + PZ ₃	log k	3, 9, 13-15, 45, 49, 65	19	11	113

^a All the ligands are listed in Table 2 under the relevant property. ^b References are listed in Table 2.

the θ and y (corresponding to E_{ar}) terms in eqs 4–6 even though their coefficients are zero for this data set.

Where we find data for PZ_iCl_{3-i} , we assume that their parameters are parametrically related to i (additive) and therefore can be calculated from the values for PZ_3 and PCl_3 . Each chlorophosphine was incorporated into the analysis by taking advantage of this assumption of additivity, as shown below. Thus, we incorporate $PPhCl_2$ and PPh_2Cl into the analysis (eqs 5 and 6, respectively)

$$0 = [0.6((0.333)13.25 + 0.667x) + 0((0.333)145 + (0.667)124) + 0(1 + 0.667y) + (1.3)0.667z + 2065.2 - 2086]/1.39 (5)$$

$$0 = [0.6((0.667)13.25 + 0.333x) + 0((0.667)145 + (0.6$$

$$0 = [0.6((0.667)13.25 + 0.333x) + 0((0.667)145 + (0.333)124) + 0(2 + 0.333y) + (1.3)0.333z + 2065.2 - 2081]/1.39 (6)$$

by using the additional parameters for PPh₃ ($\chi_d = 13.25$; $\theta = 145^\circ$; $E_{ar} = 1$ for one phenyl group, $E_{ar} = 2$ for 2 phenyl groups; $\pi_p = 0$). Other mixed chlorophosphines found in other data sets were treated analogously.

To determine the electronic parameters for PCl_3 , we used 17 properties (entries 1, 5–7, 12–20, and 22–25 in Tables 2 and 3), taken from the literature, which have been measured for PR_3 and $P(p\text{-}XC_6H_4)_3$ as well as at least two phosphites in addition to chlorophosphines. When we include data for the mixed PZ_3 – fCl_b we are

able to write 48 equations for PCl₃ based on the information provided in Table 3. The coefficients (a' - e') of these 48 equations are displayed in Table 1 in the Supporting Information (with θ set to 124°) and Table 2 in the Supporting Information (with θ as a variable).

To obtain values of χ_d , E_{ar} , and π_p for PCl $_3$, we did a regression analysis using all 48 equations in Table 1 in the Supporting Information (θ set to 124°). The results are displayed in entry 1A in Table 4. We repeated the analysis with θ as a variable (Table 2 in the Supporting Information) and found the electronic parameters (entry 1C in Table 4) to be virtually indistinguishable from the first analysis; however, the calculated value of θ (137 \pm 5°) is significantly larger than Tolman's value of 124°.75

To compare later these results with the analysis of PH_3 (vide infra), we removed the ionization potential (IP) equations and redid the analyses. These analyses were performed with θ set to 124° (entry 1B in Table 4) as well as with θ as a variable (entry 1D in Table 4). The results we obtained, in both cases, were virtually the same as the results we obtained with the full set of data.

Determination of the Stereoelectronic Parameters of P(CH₂CH₂CN)₃ and PF₃

The analysis of P(CH₂CH₂CN)₃ was performed in a manner similar to that described above using 23 of the

Table 6. Results of Regression Analyses (with and without the Variable i Added to Eq 1 or 2) of the Physicochemical Properties Listed in Table 5^a

no.	а	b	c	d	f	e	$\theta_{ m st}$	n	r^2	σ
1A	-0.57 ± 0.09	0.01 ± 0.02	0.0 ± 0.4	0		9 ± 4		41	0.773	1.713
1B	-0.60 ± 0.02	-0.041 ± 0.006	-0.3 ± 0.1	0	$\textbf{-2.7} \pm \textbf{0.1}$	18 ± 1		41	0.985	0.4494
2A	0	-0.05 ± 0.03	0	-1.2 ± 0.5		11 ± 4		9	0.565	0.8151
2B	0	-0.065 ± 0.009	0	-1.3 ± 0.2	$\textbf{-2.1} \pm \textbf{0.3}$	13 ± 1		9	0.956	0.2131
3A	-0.11 ± 0.4	-0.06 ± 0.04	1.6 ± 0.5	0		3 ± 1	123	15	0.674	0.5180
3B	-0.33 ± 0.07	-0.11 ± 0.01	0.7 ± 0.2	0	$\mathbf{-1.6} \pm 0.2$	0.4 ± 0.5	123	15	0.966	0.1759
4A	-0.37 ± 0.09	-0.20 ± 0.03	0	0		4 ± 1	126	10	0.850	0.9525
4B	-0.36 ± 0.05	-0.21 ± 0.02	0	0	$\textbf{-0.8} \pm \textbf{0.3}$	4.4 ± 0.7	126	10	0.955	0.5637
5A	0.010 ± 0.001	0	-0.019 ± 0.004	0.036 ± 0.004		0.413 ± 0.009		9	0.998	0.005687
5B	0.010 ± 0.002	0	-0.019 ± 0.005	0.036 ± 0.005	-0.0004 ± 0.004	0.41 ± 0.01		9	0.998	0.006361
6A	0.0158 ± 0.0007	0	0	0.023 ± 0.002		0.112 ± 0.007		26	0.987	$0.013\ 64$
6B	0.0159 ± 0.0007	0	0	0.023 ± 0.002	-0.006 ± 0.014	0.112 ± 0.007		26	0.987	$0.013\ 56$
7A	0.0163 ± 0.0007	0	0	0.021 ± 0.003		0.084 ± 0.007		25	0.985	0.013 33
7B	0.0167 ± 0.0007	0.0005 ± 0.0003	0	0.024 ± 0.003	-0.004 ± 0.014	0.00 ± 0.04		25	0.988	$0.013\ 64$
8A	0.131 ± 0.008	0	-0.56 ± 0.04	0		7.6 ± 0.1		26	0.942	0.2081
8B	0.118 ± 0.006	0	-0.48 ± 0.03	0	$\textbf{0.21} \pm \textbf{0.04}$	7.6 ± 0.07		26	0.973	0.1446
9A	0.1 ± 0.1	0.05 ± 0.03	0.1 ± 0.3	-0.2 ± 0.3		-11 ± 4		9	0.605	0.3988
9B	0.25 ± 0.03	0.072 ± 0.006	0.21 ± 0.06	-0.46 ± 0.6	$\textbf{1.1} \pm \textbf{0.1}$	-16 ± 1		9	0.986	0.086 41

^a Entry numbers refer to the entries in Table 5. The letters a-e are the regression coefficients of these equations, and where present, f is the coefficient of i, which refers to the number of hydrogens in $PZ_{3-i}H_{i}$.

24 equations presented in Tables 3 and 4 in the Supporting Information. (One of the equations was shown to be an outlier.) First, we analyzed the equations presented in Table 3 in the Supporting Information, where θ was set to 132°. The results are shown in entry 3A in Table 4. We then analyzed the equations shown in Table 4 in the Supporting Information, where θ was allowed to vary. The results of this analysis are shown in entry 3C and in Table 4. The two methods of analysis give values of the electronic parameters that are virtually indistinguishable. We find that the calculated θ value (129 \pm 3°) is statistically indistinguishable from the commonly used value ($\theta = 132^{\circ}$).

To compare with the PH₃ analysis (vide infra), we removed the p K_a equations and redid the analyses with θ set to 132° as well as with θ as a variable. The results (entries 3B and 3D in Table 4) are indistinguishable from those obtained with the full set of data (entries 3A and 3C in Table 4).

There are only limited data available for the analysis of PF₃ (Table 5 in the Supporting Information). We performed only a single analysis on this set of data using Tolman's value of θ (104°).⁷⁵ The results, which are shown in entry 2A of Table 4, have larger errors reflecting the limited set of data.

Analysis of PH₃

Initially, the analysis of PH₃ was performed in a manner analogous to that for PCl_3 with θ set to Tolman's value of 87°.75 Regression analysis of the full set of 33 equations (Table 6 in the Supporting Information) reveals a large negative value for π_p , suggesting that PH₃ is a much poorer π acid than PR₃ (results are shown in entry 4A in Table 4). We repeated the regression analysis without the p K_a equations (entry 4B in Table 4) and then additionally without the ionization potential equations (entry 4C in Table 4). We obtained significantly different results with each analysis.

We allowed θ for PH₃ to be a variable. Analysis of the full set of equations (Table 7 in the Supporting Information) gave an absurd value of 222° for θ (results are shown in entry 4D in Table 4). We then sequentially eliminated the pK_a and ionization potential equations

(entries 4E and 4F in Table 4, respectively). On examining the results, we note that entries 4A and 4D are very different. Entries 4B and 4E are in closer agreement, and finally 4C and 4F are in good agreement. The ramifications of these observations will be discussed below.

Discussion

In the QALE model, analysis of subsets of data should give the same results as the full set. For example, removal of IP equations from the analysis of PCl₃ or the pK_a equations from the analysis of $P(CH_2CH_2CN)_3$, indeed give results that are indistinguishable from the analyses of the full sets (entries 1B and 1D and entries 3B and 3D in Table 4, respectively). In contrast, the sequential removal of the pK_a equations and then the ionization potential equations from the analysis of PH3 causes a dramatic variation of the values of the parameters. When we eliminate both the pK_a values and ionization potentials, then with θ either fixed or variable we get essentially the same values for χ_d , E_{ar} , and π_p (entries 4C and 4F in Table 4). Furthermore, the calculated value of θ (80 \pm 20°, entry 4F) is statistically indistinguishable from Tolman's value⁷⁵ of 87°.

The largest variation in parameters occurs when the pK_a equations are removed from the PH₃ analysis. This raises the question as to what is special about the p K_a values of $PZ_{3-i}H_i$. We speculate that hybridization changes play a role in the behavior of PZ_{3-i}H_i. ^{100,101} Protonation of $PZ_{3-i}H_i$ causes a relatively large change in the average bond angles as compared to the protonation of other PZ₃ species. 102-107

⁽¹⁰⁰⁾ Henderson, W. A.; Buckler, S. A. J. Am. Chem. Soc. 1960, 82, 5794.

⁽¹⁰¹⁾ Gibbs, J. H. J. Chem. Phys. 1954, 22, 1460.

⁽¹⁰²⁾ Brenndorfer, M.; Brune, H. A.; Debaerdemaeker, T.; Hemmer, R. Z. Naturforsch. 1985, 40B, 357.

⁽¹⁰³⁾ Cotton, F. A.; Lu, J. Inorg, Chem. 1995, 34, 2639.

⁽¹⁰⁴⁾ Alyea, E. C.; Costin, A.; Fergusin, G.; Fey, G. T.; Goel, R. G.; Restivo, R. J. *J. Chem. Soc., Dalton Trans.* **1975**, 1295.

⁽¹⁰⁵⁾ Kociok-Kohn, G.; Winter, J. G.; Filippou, A. C. Acta Crystallogr., Sect. C 1999, C55, 351.

⁽¹⁰⁶⁾ Bricklebank, N.; Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. Acta Crystallogr., Sect. C 1993, C49, 1017.

⁽¹⁰⁷⁾ Kuwabra, E.; Bau, R. Acta Crystallogr., Sect. C 1994, C50, 1409.

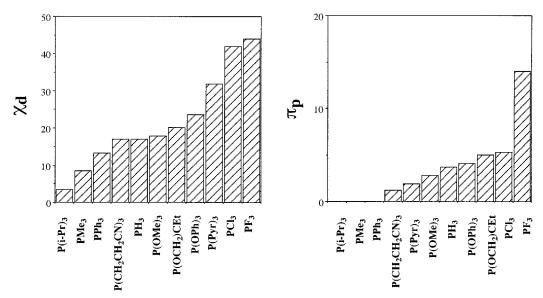


Figure 1. Bar graph presentations of χ_d and π_p for a variety of PZ_3 ligands. Note that that a large value of χ_d indicates a poor σ donor ligand. A large value of π_p indicates a strong π acid.

We introduce into the QALE model the idea of hybridization change in the following way. Since the average bond angle in PMe_{3-i}H_i¹⁰⁸⁻¹¹⁰ decreases monotonically with *i*, we performed a set of linear regression analyses of pK_a values and of ionization potentials where we used i as a parameter in addition to the parameters listed in entry 4C of Table 4. (We note that these latter parameters are based on the properties of transition-metal complexes where the structures of $PZ_{3-i}H_i$ are not expected to change.) We used data for PR_3 , PPh_iR_{3-i} , $P(p-XC_6H_4)_3$, $P(OR)_3$, and $P(O-p-XC_6H_4)_3$ as well as phosphines bearing P-H bonds. First, we analyzed the p K_a values using only χ_d , θ , and E_{ar} (entry 1 in Table 5). The analysis gives a poor fit (shown below), and the coefficients for θ and E_{ar} do not agree with those listed in entry 2 of Table 3 as they should according to the QALE model (n = 17, s = 1.713, $r^2 =$ 77.3%, $r^2(\text{adj}) = 75.4\%$:

predictor	coeff	stdev	t ratio	p
constant	9.068	3.475	2.61	0.013
χd	-0.57149	0.08695	-6.57	0.000
θ	0.01224	0.02261	0.54	0.592
$E_{ m ar}$	0.0264	0.3787	0.07	0.945

The situation improves dramatically when we include the parameter i (n = 17, s = 0.4494, $r^2 = 98.5\%$, r^2 (adj) = 98.3%):

predictor	coeff	stdev	t ratio	p
constant	17.6948	0.9897	17.88	0.000
χd	-0.59595	0.02284	-26.10	0.000
$\dot{\theta}$	-0.041180	0.006394	-6.44	0.000
$E_{ m ar}$	-0.2900	0.1004	-2.89	0.006
i	-2.7448	0.1226	-22.40	0.000

Not only do we see good statistics but also the coefficients now agree with those listed in entry 2 of Table 3. The large t ratio and small value of p associated with the parameter *i* clearly demonstrate its importance.

Similar but not as dramatic results were obtained when we performed a similar analysis of the ionization potentials of PZ_3 . When we exclude i from the analysis we get $(n = 26, s = 0.2081, r^2 = 94.2\%, r^2(adj))$ = 93.7%):

predictor	coeff	stdev	t ratio	p
constant	7.6443	0.1044	73.21	0.000
χd	0.130963	0.008456	15.49	0.000
$E_{ m ar}$	-0.56253	0.03572	-15.75	0.000

Note that the coefficients of the above analysis agree only marginally with those listed in entry 1 in Table 3. When we include i, we get better statistics and coefficients that agree well with the coefficients listed in entry 1 of Table 3. Again, the large t ratio and the small value of p demonstrate the importance of the parameter $i (n = 26, s = 0.1446, r^2 = 97.3\%, r^2(adj) = 97.0\%)$:

predictor	coeff	stdev	t ratio	p
constant	7.60371	0.07300	104.16	0.000
χd	0.118045	0.006407	18.43	0.000
E_{ar}	-0.48489	0.02918	-16.62	0.000
i	0.20.17	0.04053	5.06	0.000

It stands to reason that the protonation or coordination of $PZ_{3-i}H_i$ results in a thermodynamically unfavorable expansion^{100,101} of the bond angles about the phosphorus. This property of $PZ_{3-i}H_i$ is not accounted for in the stereoelectronic parameters of PH₃ (entry 4C in Table 4). Thus, we predict that $PZ_{3-i}H_i$ would give smaller than expected equilibrium constants and smaller than expected rates of reaction when analyzing associative reactions (i.e. protonation, entering-ligand-dependent substitution reactions, S_N2 reactions). Dissociative reactions should show the opposite effect. Accordingly, to incorporate $PZ_{3-i}H_i$ into the QALE analysis the additional parameter *i* might be required.

⁽¹⁰⁸⁾ Bruckmann, J.; Kruger, C. Acta Crystallogr., Sect. C 1995, C51. 1155.

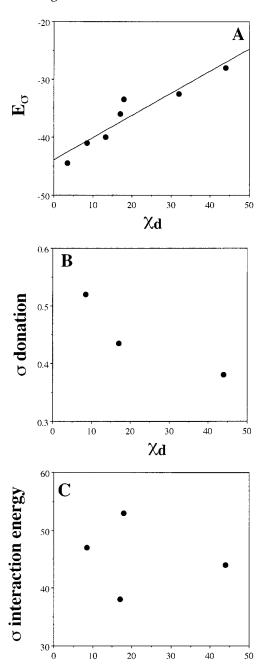
⁽¹⁰⁹⁾ Durig, J. R.; Hudson, S. D.; Jalilian, M. R.; Li, Y. S. J. Chem. Phys. 1981, 74, 772.

⁽¹¹⁰⁾ Byran, P. S.; Kuczkowski, R. L. Inorg. Chem. 1972, 11, 553.

⁽¹¹⁰⁾ Byran, F. S.; Kuczkowski, K. L. Holg. Chell. 1972, 11, 353.
(111) Rerek, M. E.; Basolo, F. Organometallics 1983, 2, 372.
(112) Chang, C.-Y.; Johnson, C. E.; Richmond, T. G.; Chen, Y.-T.;
Trogler, W. C.; Basolo, F. Inorg. Chem. 1981, 20, 3167.
(113) Franco, D. W. Coord. Chem. Rev. 1992, 119, 199.

Some examples of data sets that contain $PZ_{3-i}H_i$ are listed in Table 5. (There is a paucity of data for $PZ_{3-i}H_i$. In a number of cases only one representative of this class of ligands is present in a data set.) We performed QALE analyses on these sets of data with and without the parameter i. The results of these analyses are shown in Table 6. We have already done the analysis of the pK_a values of HPZ₃⁺ (vide supra). We see that the i coefficient is negative, indicating that as the number of pendant hydrogens increases, the acidity of HPZ₃⁺ increases. On the other hand, the analyses of E° values (entries 5–7 in Tables 5 and 6) reveal that the iparameter is unnecessary in order to obtain good statistics and agreement of the coefficients. We conclude that the structures of coordinated $PZ_{3-i}H_i$ do not change significantly when the oxidation state of the metal is changed. In contrast, the transformation of $HPZ_{3-i}H_i^+$ to $PZ_{3-i}H_i$ is associated with a large change in structure (vide supra).

With these results in mind, we now consider the analyses of three entering ligand substitution reactions (entries 2-4 in Tables 5 and 6). In each case the parameter i is required to get a good fit. We also note that in each case the coefficient of the *i* parameter is negative, indicating that the rate is reduced each time a hydrogen is added to the entering phosphine. It appears that in the transition state $PZ_{3-i}H_i$ species are undergoing a thermodynamically unfavorable expansion of bond angles—a phenomenon that increases the activation energy and retards the rate of reaction.

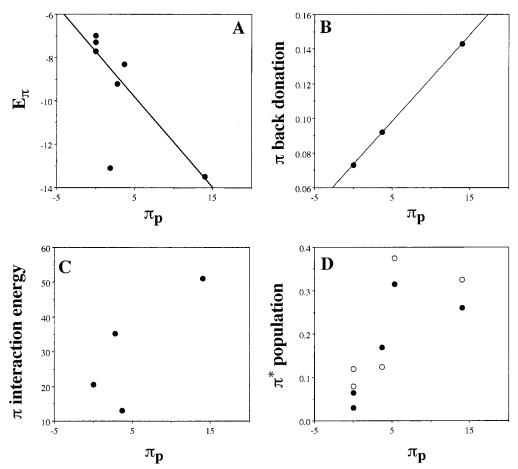

The analysis of log *k* for the dissociative aquation of $Ru(NH_3)_4(PZ_3)_2^{2+}$ (entry 9 in Tables 5 and 6) shows that the parameter *i* is necessary to obtain a good fit. Furthermore, the positive sign of the *i* coefficient is in harmony with the dissociative nature of this reaction. Thus, it appears that as the PCyH2 ligand is extruded from the coordination sphere of the metal, it undergoes a favorable contraction of the bond angles about the phosphorus.

The ionization potentials of the PZ₃ show a small positive value for the coefficient of i. The importance of this observation is not clear to us.

Consideration of the Stereoelectronic Proper**ties of** π **Acidic PZ₃.** We determined the electronic parameters for PCl₃, P(CH₂CH₂CN)₃, and PH₃ in two ways. In the first, we set θ equal to Tolman's cone angle and in the second we allowed θ to vary. For P(CH₂CH₂-CN)₃ and PH₃ we found that the calculated θ values are statistically indistinguishable from Tolman's values. However, for PCl₃ we find a calculated value of 137 \pm 5°, which is significantly larger than Tolman's value of $124 \pm 2^{\circ}.^{75}$ The significance of this observation is not yet clear.

For purposes of illustration, we show bar graphs of $\chi_{\rm d}$ and $\pi_{\rm p}$ values for a selection of PZ₃ species (Figure 1). We see that σ donor abilities (note that a large χ_d value indicates a poor σ donor) are in the order P(CH₂- $CH_2CN)_3 \approx PH_3 > PCl_3 \approx PF_3$. The χ_d values of PCl_3 and PF₃ are the largest (poorest σ donors) that we have yet uncovered.

The π acidity (as measured by π_p) of these ligands spans a large range (0-14; Figure 1). We find that PF₃ is, by far, the strongest π acid with a π acidity that is 2.5 times greater than that of PCl₃, the next strongest


Figure 2. Plots versus χ_d of (A) E_σ for (Z₃P)Fe(CO)₄ (model system; Z = H, F, MeO, Me, Ph, i-Pr, Pyr), (B) σ donation for Pt(PZ₃)₂ (Z = H, F, Me), and (C) σ interaction energies for $Pd(PZ_3)$ (Z = H, F, MeO, Me). Theoretical data are taken from refs 29, 27, and 19, respectively.

 $\chi_{\mathbf{d}}$

 π acid. The π acidity of PCl₃ is comparable to that of $P[(OCH_2)_3]CEt.^{71}$ PH₃ is a stronger π acid than $P(OR)_3$ but slightly weaker than P(O-p-XC₆H₄)₃. P(CH₂CH₂CN)₃ is a weak π acid with a π acidity that is a little less than half that of P(OR)₃.

Additionally, PCl_3 shows an E_{ar} effect, which is the largest that we have observed, whereas P(CH₂CH₂CN)₃, PH_3 , and PF_3 have an E_{ar} parameter of zero.

Comparison of the QALE Parameters with Theoretically Derived Properties. In Figures 2 and 3, we plot the σ donor parameter, χ_d , and the π acceptor parameter, π_p , versus theoretical results from the literature that pertain to σ donicity and π acidity. We

Figure 3. Plots versus π_p of (A) E_π for $(Z_3P)Fe(CO)_4$ (model system; Z = H, F, MeO, Me, Ph, i-Pr, Pyr), (B) π backdonation for Pt(PZ₃)₂ (Z = H, F, Me), (C) π interaction energies for Pd(PZ₃) (H, F, MeO, Me), and (D) π^* population for M(CO)₅(PZ₃) (M = Cr (open circles), Mo (filled circles); Z = H, F, Me, Cl, Ph) Theoretical data are taken from refs 29, 27, 19, and 24, respectively.

note that there is a strikingly good correlation between our results and those of Gonzalez-Blanco and Branchadell²⁹ for both χ_d and π_p (except for π_p for P(Pyr)₃) (Figures 2A and 3A). There is also reasonably good correlation of our results with those of Fantucci²⁷ (Figures 1B and 2B). Poorer correlations are observed with the Pacchioni and Bagus data¹⁹ and Ruiz-Morales and Ziegler²⁴ data (Figures 2C and 3C,D).

Conclusions

Four stereoelectronic parameters appear to be sufficient to describe the stereoelectronic properties of PF₃, PCl₃, PH₃ (in special cases), and P(CH₂CH₂CN)₃. PF₃ and PCl_3 are the weakest σ donors, whereas PH_3 and P(CH₂CH₂CN)₃ are comparable to P(p-ClC₆H₄)₃. We find that PF₃ is the strongest π acid, around 2.5 times as strong as PCl₃. PH₃ is a modest π acid not very different from the alkyl and aryl phosphites. P(CH₂CH₂CN)₃ is a weak π acid with a π acidity less than half that of $P(OR)_3$. PCl_3 has the largest E_{ar} parameter yet uncovered, whereas the E_{ar} parameters for the other three ligands are zero.

These parameters are sufficient to describe properties of PH₃ complexes when the property does not involve a significant change in structure of the PH₃ ligand. When a change does occur, it appears that the parameter i (which refers to the number of hydrogens in $PZ_{3-i}H_i$) is required. It further appears that the coefficient of *i* is negative for log *k* for associative reactions and positive for log k for dissociative reactions. These observations are in harmony with the idea that the average bond angle of the pendant groups of PZ_{3-i}H_i increases upon coordination. We note that PH3 is often used in theoretical calculations with the expectation that this ligand would be a good model for PMe3 and PPh3. Our work reveals that the stereoelectronic properties of PH3 are very different from those of PMe₃ and PPh₃.

There is good correlation between our results and theoretical work of Gonzalez-Blanco and Branchadell, as well as the work of Fantucci.

Supporting Information Available: Tables giving the coefficients of eq 3 for the various phosphine complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0004850