Cationic Ansa-Zirconocene and Hafnocene Derivatives of a Monoanionic Phosphonium-Bridged Bis(permethylcyclopentadienyl) Ligand: Synthesis and Structural Characterization of $\{[Me_2P(C_5Me_4)_2]MCl_2\}^+$ (M = Zr, Hf) and $\{[Me_2P(C_5Me_4)_2]ZrMe_2\}^+$

Jun Ho Shin, Brian M. Bridgewater, and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027

Received June 23, 2000

The phosphonium-bridged ansa-metallocene complexes {[Me₂P(C₅Me₄)₂]ZrCl₂}⁺ and $\{[Me_2P(C_5Me_4)_2]HfCl_2\}^+$ have been prepared by the reactions of $\{[Me_2P(C_5Me_4)_2]Li_2\}I$ with ZrCl₄ and HfCl₄, respectively; the isolation and structural characterization of {[Me₂P-(C₅Me₄)₂|ZrCl₂|⁺ complete a series of isostructural zirconocene derivatives, namely, [R₂P(Cp^R)₂- $ZrCl_2$]⁺, $[R_2E(Cp^R)_2ZrCl_2]$ (E = C, Si, Ge), and $[R_2B(Cp^R)_2ZrCl_2]$ ⁻, which differ according to the charge on the complex.

Introduction

Ansa-metallocene complexes, [ACpR₂]MX_n, and in particular zirconocene derivatives, presently feature prominently in organometallic chemistry due to their use in organic syntheses¹ and as catalyst precursors for olefin polymerization.² Although a principal motivation for the application of ansa-metallocenes may be attributed to the configurational stability imparted by the ansa bridge, the electronic and geometric perturbation introduced by the *ansa* bridge can also be profound.³ For example, we have recently demonstrated how incorporation of a [Me₂Si] bridge (i) promotes C-H, C-C, and C-S cleavage reactions in permethylmolybdenocene chemistry,⁴ (ii) enhances reductive elimination and olefin insertion in permethyltantalocene chemistry,⁵ and (iii) increases the electrophilicity of zirconocene complexes.⁶ In this paper, we report the synthesis of a permethylated *ansa* ligand which incorporates a [Me₂P] phosphonium bridge, namely, $[Me_2P(C_5Me_4)_2]^-$, which is a monoanionic counterpart to the isoelectronic $[MeP(C_5Me_4)_2]^{2-}$ and $[Me_2Si(C_5Me_4)_2]^{2-}$ ligands.

Results and Discussion

To date, the majority of studies on ansa-metallocene complexes that incorporate single atom linkers has

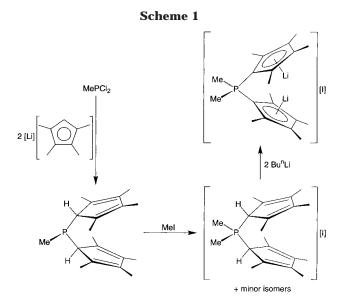
(1) See, for example: Hoveyda, A. H.; Morken, J. P. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1262–1284, and references therein.

focused on derivatives in which the ansa bridges are formally dianionic in their closed shell configurations, 7,8 e.g., $[RB]^{2-}$, $[R(L)B]^{2-}$ (L = Me₃P, Me₂S), $[R_2X]^{2-}$ (X = C, Si, Ge, Sn), $[RX^{III}]^{2-}$ (X = P, As), and $[S]^{2-}$, with only two reports of ansa bridges that do not fall into this category, namely, $[R_2P^V]^{+9,10}$ and $[R_2B]^{-1.11}$ The ability to incorporate ansa bridges of different formal charges is, nevertheless, of significance since such substitution would be expected to exert an electronic influence that would modulate the reactivity of the metal center. Furthermore, incorporation of *ansa* bridges with different formal charges provides potential for the synthesis of isostructural complexes for metals of different periodic groups, e.g., [R₂P(Cp^R)₂]ZrH₃, [R₂Si(Cp^R)₂]TaH₃, and [R₂B(Cp^R)₂]MoH₃, in a manner analogous to that achieved by exchange between cyclopentadienyl and benzene, e.g., $(\eta-C_5H_5)_2$ Fe and $(\eta-C_6H_6)_2$ Cr.

We have recently reported the synthesis of permethylated ansa ligands that incorporate [RP] bridges, namely, $[RP(C_5Me_4)_2]^{2-}$ (R = Me, Ph), together with several titanium, zirconium, and hafnium derivatives, [RP(C5- Me_4 ₂ MX_2 (R = Me, Ph; M = Ti, Zr, Hf).^{7,12} Extending this study, we now report that the monoanionic counterpart $[Me_2P(C_5Me_4)_2]^-$, as its $\{[Me_2P(C_5Me_4)_2]Li_2\}I$ derivative, may be obtained by the procedure illustrated in Scheme 1, a method that is analogous to that used by Brintzinger to generate $[R_2P(C_5H_2-2-Me-4-Bu^t)_2]^{-.9}$

⁽²⁾ See, for example: (a) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1143–1170. (b) Grubbs, R. H.; Coates, G. W. *Acc. Chem. Res.* **1996**, *29*, 85–93. (c) Kaminsky, W. *J. Chem. Soc., Dalton Trans.* **1998**, 1413–

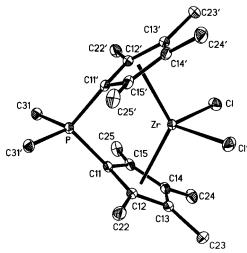
⁽³⁾ Green, J. C. *Chem. Soc. Rev.* **1998**, *27*, 263–271. (4) (a) Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.; Bridgewater, B. M.; Parkin, G. *Organometallics* **1999**, *18*, 2403–2406. (b) Churchill, D. G.; Bridgewater, B. M.; Parkin, G. *J. Am. Chem. Soc.* **2000**, 122, 178-179.


⁽⁵⁾ Shin, J. H.; Parkin, G. *Chem. Commun.* **1999**, 887–888. (6) Lee, H.; Desrosiers, P. J.; Guzei, I.; Rheingold, A. L.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 3255-3256.

⁽⁷⁾ Shin, J. H.; Hascall, T.; Parkin, G. Organometallics 1999, 18, 6-9, and references therein.

⁽⁸⁾ Ivchenko P. V., Nifantev I. E. Z. Organich. Khim. 1998, 34, 9-38. (9) Leyser, N.; Schmidt, K.; Brintzinger, H.-H. Organometallics **1998**, 17, 2155-2161.

⁽¹⁰⁾ Peckham, T. J.; Lough, A. J.; Manners, I. Organometallics 1999,


<sup>18, 1030–1040.
(11)</sup> Burns, C. T.; Stelck, D. S.; Shapiro, P. J.; Vij, A.; Kunz, K.; Kehr, G.; Concolino, T.; Rheingold, A. L. *Organometallics* 1999, 18, 5432–5434.
(12) For other recent examples of zirconocene derivatives with [RP] bridges, see: (a) Alt, H. G.; Jung, M. J. Organomet. Chem. 1998, 568, 127–131. (b) Schaverien, C. J.; Ernst, R.; Terlouw, W.; Schut, P.; Sudmeijer, O.; Budzelaar, P. H. M. J. Mol. Catal. A—Chem. 1998, 128, 245–256. (c) Anderson, G. K.; Lin, M. Organometallics 1988, 7, 2285–2288

Scheme 2 C(O)Me m MCl_4 (M = Zr, Hf) CO MeMgi [1] (M = Zr)Me M = Zr, Hf

Thus, $\{[Me_2P(C_5Me_4)_2]Li_2\}I$ may be generated by alkylation of MeP(C₅Me₄H)₂ with MeI followed by deprotonation with BuⁿLi (2 equiv). Subsequent treatment of {[Me₂P(C₅Me₄)₂]Li₂}I with either ZrCl₄ or HfCl₄ yields the corresponding metallocene derivative, {[Me₂P(C₅-Me₄)₂]MCl₂}I (Scheme 2).¹³ The molecular structures of $\{[Me_2P(C_5Me_4)_2]MCl_2\}I\ (M=Zr,\ Hf)\ have\ been\ deter$ mined by X-ray diffraction, as illustrated in Figure 1 for the zirconium derivative.

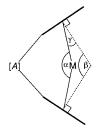
The synthesis and structural characterization of $\{[Me_2P(C_5Me_4)_2]ZrCl_2\}I$ and $\{[Me_2P(C_5Me_4)_2]HfCl_2\}I$ are particularly noteworthy because such species have so far eluded isolation. For example, although {[Me₂P-Bu^t)₂|ZrCl₂}I have recently been mentioned in the literature, 9 the complexes could not be isolated in pure form. Specifically, NMR spectroscopy demonstrated that both $\{[Me_2P(C_5H_2-2-Me-4-Bu^t)_2]ZrCl_2\}I$ and $\{[Bu^n_2P-4-Bu^t]_2\}I$ (C₅H₂-2-Me-4-Bu^t)₂|ZrCl₂}I consisted of a mixture of

Figure 1. Molecular structure of $\{[Me_2P(C_5Me_4)_2]ZrCl_2\}I$ (only cation is shown). Selected bond lengths (Å) and angles (deg), with values for the hafnium derivative in brackets: Zr-Cl 2.4159(6) [2.449(2)], Zr-C(11) 2.465(2) [2.461(7)], Zr-C(12) 2.509(2) [2.499(7)], Zr-C(13) 2.600(2) [2.585(7)], Zr-C(14) 2.623(2) [2.604(8)], Zr-C(15) 2.535(2) [2.526(8)]; Cl-Zr-Cl 99.31(4) [96.4(1)].

species, which were proposed to be either (i) a combination of C_{s^-} and C_2 -symmetric species or (ii) an isomeric mixture in which one of the chloride ligands was replaced by the iodide counterion.¹⁴ The title compounds, $\{[Me_2P(C_5Me_4)_2]MCl_2\}I$ (M = Zr, Hf), however, may be isolated in pure form, with both NMR spectroscopy and X-ray diffraction indicating that halide interchange did not occur.

Selected bond length and angle data for {[Me₂P(C₅-Me₄)₂]MCl₂}⁺ are compared with the related neutral counterparts, [RP(C₅Me₄)₂]MCl₂ and [Me₂Si(C₅Me₄)₂]-MCl₂, in Table 1. The data indicate that the zirconium and hafnium coordination environments are relatively insensitive to the nature of the ansa bridge, with each complex exhibiting a similar distortion from the ideal metallocene geometry as judged by (i) the spread of M-C bond lengths and (ii) the cyclopentadienyl tilt angle (γ). Furthermore, the Zr–Cl and Cl–Zr–Cl bond lengths and angles in these neutral and cationic complexes are comparable with those recently reported by Shapiro for the anionic $\{Me(Ph)B(C_5H_4)_2ZrCl_2\}^-$ species (2.46 Å and 99.3°, respectively).11 The synthesis and structural characterization of $\{[Me_2P(C_5Me_4)_2]MCl_2\}^+$ thus complete a series of ansa-metallocene derivatives, namely, $[R_2P(Cp^R)_2ZrCl_2]^+$, $[R_2E(Cp^R)_2ZrCl_2]$ (E = C, Si, Ge), and [R₂B(Cp^R)₂ZrCl₂]⁻, which differ according to the charge on the complex.

The most notable spectroscopic feature of { [Me₂P(C₅- Me_4 ₂ MCl_2 ⁺ (M = Zr, Hf) is associated with their ³¹P NMR spectroscopic signals, which are at substantially lower field than those of their neutral [PhP(C₅Me₄)₂]-MCl₂ analogues (Table 2); for example, the resonance for $\{[Me_2P(C_5Me_4)_2]ZrCl_2\}^+$ is observed at 16.0 ppm, whereas that for [PhP(C₅Me₄)₂]ZrCl₂ is observed at -37.7 ppm. The ³¹P NMR signal for {[Me₂P(C₅Me₄)₂]- $ZrCl_2$ ⁺ is, however, comparable to the value of 17.9 ppm for the counterpart with a [PhP(O)] ansa bridge, [PhP-


⁽¹³⁾ Brintzinger has noted that materials of composition [R₂P(C₅H₂-2-Me-4-But)2|Li are unreactive toward ZrCl4 and HfCl4, whereas LiI adducts $\{[R_2P(C_5H_2-2\text{-Me-4-Bu}^t)_2Li_2\}I$ are reactive (ref 9). Likewise, we observe that the use of 1 equiv of BunLi generates a material, presumably [Me₂P(C₅Me₄)₂]Li, that is unreactive toward ZrCl₄.

⁽¹⁴⁾ Furthermore, in the case of $\{[Bu^n_2P(C_5H_2-2-Me-4-Bu^t)_2]ZrCl_2\}I$, the product obtained was also contaminated with the protonated ligand, $[Bu^{n_2}P(C_5H_3-2-Me-4-Bu^{t})_2]I$ (ref 9).

Table 1. Geometrical Data for $\{[Me_2P(C_5Me_4)_2]MCl_2\}^+$, $[Me_2Si(C_5Me_4)_2]MCl_2$, and $[RP(C_5Me_4)_2]MX_2$ **Derivatives**

	d(M-Cl)/Å	Cl-M-Cl/deg	$d(M-Cp_{cent})$ /Å	d(M-C) range /Å	α/deg	$\beta/{ m deg}$	γ/deg
$\frac{1}{\{[Me_2P(C_5Me_4)_2]ZrCl_2\}I}$	2.416	99.3	2.240	0.158	126.0	116.9	4.6
$[Me_2Si(C_5Me_4)_2]ZrCl_2^a$	2.437	99.2	2.243	0.151	128.5	119.0	4.8
$[MeP(C_5Me_4)_2]ZrCl_2^a$	2.432	99.8	2.226	0.158	125.8	116.0	4.9
$\{[Me_2P(C_5Me_4)_2]HfCl_2\}I$	2.449	96.4	2.225	0.143	126.2	117.6	4.3
$[Me_2Si(C_5Me_4)_2]HfCl_2^a$	2.407	98.0	2.222	0.143	128.9	119.5	4.7
[PhP(C ₅ Me ₄) ₂]HfCl ₂ ^a	2.410	98.5	2.212	0.159	126.3	117.0	4.7

^a Data taken from ref 7.

 $\alpha = Cp_{cent} - M - Cp_{cent}$ $\beta = Cp_{norm}/Cp_{norm}$ $\gamma = (\alpha - \beta)/2$

Table 2. 31P NMR Data for Phosphorus Bridged Ansa-Metallocene Derivativesa

	δ ³¹ P/ppm		
	M = Zr	M = Hf	
${[Me_2P(C_5Me_4)_2]MCl_2}I$	16.0	15.3	
$\{[Me_2P(C_5Me_4)_2]MMe_2\}I$	12.7		
$[PhP(O)(C_5Me_4)_2]MCl_2$	17.9		
$[PhP(C_5Me_4)_2]MCl_2$	-37.7	-37.2	
$[PhP(C_5Me_4)_2]MMe_2$	-38.8	-38.8	
$[PhP(C_5Me_4)_2]M(CO)_2$	-33.9		
$[PhP(C_5Me_4)_2]M(Te_3)$	-42.3		

^a Data taken from this paper and ref 7.

(O)(C₅Me₄)₂|ZrCl₂; thus, it is evident that the ³¹P NMR spectroscopic shift is not so much dependent upon whether the complex is charged or not, but is rather dependent upon whether the phosphorus of the bridge is in the P^{III} or P^V oxidation state.

Methylation of the zirconium complex {[Me₂P(C₅-Me₄)₂]ZrCl₂}I with MeMgI yields the methyl derivative $\{[Me_2P(C_5Me_4)_2]ZrMe_2\}I$ (Scheme 2). The latter complex is characterized by signals at -0.56 and 40.1 (${}^{1}J_{C-H} =$ 117) in the ¹H and ¹³C NMR spectra, respectively, attributable to the Zr-CH₃ ligands. {[Me₂P(C₅Me₄)₂]-ZrMe2}I is extremely sensitive to air and water and reacts instantaneously with HCl to regenerate { [Me₂P(C₅- $Me_4)_2]ZrCl_2\}^+$. { $[Me_2P(C_5Me_4)_2]ZrCl_2\}^+$ is also obtained by hydrogenation of {[Me₂P(C₅Me₄)₂]ZrMe₂}⁺ in CDCl₃ solution at 65 °C, presumably due to a secondary reaction of $\{[Me_2P(C_5Me_4)_2]ZrH_2\}^+$ with the solvent.¹⁵ Finally, {[Me₂P(C₅Me₄)₂]ZrMe₂}I reacts rapidly with CO at room temperature to give the acyl derivative { [Me₂P- $(C_5Me_4)_2$]Zr[C(O)Me]Me}I (Scheme 2),¹⁶ which is characterized by singlet resonances at −0.32 and 2.75 ppm in the ¹H NMR spectrum attributable to the ZrMe and ZrC(O)Me moieties, respectively. Although {[Me₂P(C₅-Me₄)₂]Zr[C(O)Me]Me}I has not been isolated due to its facile decomposition in solution, η^2 -zirconocene acyl derivatives are well precedented.¹⁷

Experimental Section

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum, and Schlenk techniques. 18 Solvents were purified and degassed by standard procedures. NMR spectra were recorded on Bruker Avance 300wb DRX, Bruker Avance 400 DRX, and Bruker Avance 500 DMX spectrometers. ¹H and ¹³C chemical shifts are reported in ppm relative to $SiMe_4$ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity or the ¹³C resonances, respectively. ³¹P NMR spectra are referenced relative to 85% H_3PO_4 ($\delta = 0$) using $P(OMe)_3$ as an external reference ($\delta = 141.0$). All coupling constants are reported in hertz. IR spectra were recorded as KBr pellets on Perkin-Elmer 1430 or 1600 spectrophotometers and are reported in cm⁻¹. C, H, and N elemental analyses were measured using a Perkin-Elmer 2400 CHN elemental analyzer.

Preparation of [Me₂P(C₅Me₄H)₂]I. A solution of tetramethylcyclopentadiene (20.0 g, 164 mmol) in THF (150 mL) was slowly treated with BuⁿLi (103 mL of a 1.6 M solution in hexane, 165 mmol) at -78 °C, depositing a white solid. The mixture was allowed to warm to room temperature and was stirred for 2 h. After this period, the mixture was cooled to -78 °C, and MePCl₂ (7.34 mL, 81.9 mmol) was slowly added. The mixture was allowed to warm to room temperature and stirred for 4 h. After this period all volatile components were removed from the mixture in vacuo overnight, giving an oily residue. The residue was extracted into pentane (300 mL) and filtered. The pentane filtrate was then slowly treated with MeI (16 mL, 257 mmol) at −78 °C, warmed to room temperature, and stirred overnight, giving a white solid. The white solid was isolated by filtration, washed with pentane (2 \times 50 mL), and dried in vacuo to give [Me₂P(C₅Me₄H)₂]I as a white solid (30.1 g, 85% yield based on MePCl₂). Anal. Calcd for [Me₂P(C₅-Me₄H)₂]I: C, 55.8; H, 7.5. Found: C, 54.9; H, 8.1. IR (KBr pellet, cm⁻¹): 2942 (vs), 2818 (vs), 1646 (s), 1542 (s), 1441 (vs), 1388 (vs), 1330 (m), 1298 (vs), 1260 (m), 1217 (s), 1173 (s), 1148 (vs), 1115 (vs), 1031 (s), 1007 (s), 957 (vs), 928 (vs), 873 (s), 760 (s), 722 (m), 704 (w), 688 (m), 572 (w), 502 (m), 468 (w). ¹H NMR (CDCl₃): 1.83 [d, ${}^{4}J_{P-H} = 4$, 2 Me of C₅(CH₃)₄H], 1.86 [d, ${}^{2}J_{P-H} = 13$, P(CH₃)₂], 2.07 [s, 2 Me of C₅(CH₃)₄H], 4.05 [d, ${}^{2}J_{P-H} = 21$, $C_{5}(CH_{3})_{4}H$]. ${}^{13}C$ NMR (CDCl₃): 11.7 [q,

⁽¹⁵⁾ In accord with this suggestion, the reaction is accompanied by formation of CH₄ and CHDCl₂

⁽¹⁶⁾ $\{[Me_2P(C_5Me_4)_2]Zr[C(\tilde{O})Me]Me\}I$ decomposes in CDCl₃ to give $\{[Me_2P(C_5Me_4)_2]ZrCl_2\}^+$ over a period of hours at room temperature.

⁽¹⁷⁾ For examples of reversible insertion of CO into zirconocene alkyls to give η^2 -acyl derivatives $Cp^R_2Zr[C(0)R]X$, see: (a) Fachinetti, G.; Floriani, C.; Marchetti, F.; Merlino, S. *J. Chem. Soc., Chem.* Commun. 1976, 522-523. (b) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716-2724. (c) Christou, V.; Wuller, S. P.; Arnold, J. J. Am. Chem. Soc. 1993, 115, 10545-10552. (d) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 2049-2056.

^{(18) (}a) McNally, J. P.; Leong, V. S.; Cooper, N. J. In Experimental (18) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. In Experimental Organometallic Chemistry, Wayda, A. L., Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 2, pp 6–23. (b) Burger, B. J.; Bercaw, J. E. In Experimental Organometallic Chemistry, Wayda, A. L., Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 4, pp 79–98. (c) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley-Interscience: New York, 1986.

 $^{1}J_{C-H} = 128$, 2 Me of $C_{5}(CH_{3})_{4}H$], 15.1 [q, $^{1}J_{C-H} = 128$, 2 Me of $C_{5}(CH_{3})_{4}H$], 51.2 [dd, $^{1}J_{P-C} = 36$, $^{1}J_{C-H} = 137$, 1 C of $C_{5}(CH_{3})_{4}H$], 127.8 [d, $J_{P-C} = 5$, 2 C of $C_{5}(CH_{3})_{4}H$], 145.0 [d, $J_{P-C} = 8$, 2 C of $C_{5}(CH_{3})_{4}H$], 6.4 [dq, $^{1}J_{P-C} = 52$, $^{1}J_{C-H} = 135$, $P(CH_{3})_{2}$]. ^{31}P NMR (CDCl₃): 26.1, s.

Synthesis of [Me₂P(C₅Me₄)₂ZrCl₂]I. A suspension of $[Me_2P(C_5Me_4H)_2]I$ (5.0 g, 11.62 mmol) in THF (100 mL) was treated with BuⁿLi (15.0 mL of a 1.6 M solution in hexane, 24.0 mmol) at -78 °C and then allowed to warm to room temperature and stirred overnight. During this period a variety of changes were observed: the white suspension sequentially converted to an orange suspension, a reddish solution, and finally a brown suspension. After this period, all volatile components were removed in vacuo. Toluene (100 mL) was added to the residue, and the suspension obtained was slowly added to a suspension of ZrCl₄ (2.5 g, 10.73 mmol) in toluene (50 mL). The mixture was heated at 80 °C for 3 days. After the period the mixture was filtered and the precipitate obtained was washed with toluene (20 mL) and dried. The precipitate was extracted into CHCl₃ (300 mL) and filtered. The volatile components were removed from the filtrate in vacuo, and the residue obtained was washed with THF (30 mL) and pentane (2 \times 30 mL) and finally dried in vacuo to give [Me₂P(C₅Me₄)₂ZrCl₂]I as a yellow solid (4.0 g, 63% yield based on ZrCl₄). Anal. Calcd for [Me₂P(C₅Me₄)₂ZrCl₂]I: C, 40.7; H, 5.1. Found: C, 40.9; H, 5.2. IR (KBr pellet, cm⁻¹): 3034 (s), 2955 (vs), 2917 (vs), 1634 (w), 1538 (m), 1447 (s), 1383 (vs), 1310 (s), 1285 (s), 1135 (m), 1020 (s), 930 (vs), 868 (m), 820 (w), 779 (m), 759 (m), 711 (w), 648 (m), 639 (w), 629 (w), 569 (w), 498 (s), 415 (w). ¹H NMR (CDCl₃, saturated): 2.10 [s, 2 Me of $C_5(CH_3)_4$], 2.14 [br s, 2 Me of $C_5(CH_3)_4$], 3.46 [d, ${}^2J_{P-H}$ = 14, P(C H_3)₂]. ¹³C NMR (CDCl₃, saturated): 12.6 [q, ¹ J_{C-H} = 129, 2 Me of $C_5(CH_3)_4$], 15.0 [dq, ${}^1J_{P-C} = 55$, ${}^1J_{C-H} = 134$, $P(CH_3)_2$, 15.3 [q, ${}^1J_{C-H}$ = 129, 2 Me of $C_5(CH_3)_4$], 74.8 [d, ${}^1J_{P-C}$ = 85, 1 C of $C_5(CH_3)_4$], 123.7 [d, J_{P-C} = 12, 2 C of $C_5(CH_3)_4$], 137.8 [d, $J_{P-C} = 12$, 2 C of $C_5(CH_3)_4$].

Synthesis of [Me₂P(C₅Me₄)₂ZrMe₂]I. A suspension of $[Me_2P(C_5Me_4)_2ZrCl_2]I$ (200 mg, 0.34 mmol) in THF (20 mL) was treated with MeMgI (0.23 mL of a 3.0 M solution in diethyl ether, 0.69 mmol) at room temperature. The mixture was stirred for 2 h, after which the mixture was filtered and the precipitate obtained was washed with THF (20 mL) and ether $(2 \times 20 \text{ mL})$ and then dried in vacuo to give $[Me_2P(C_5Me_4)_2-$ ZrMe₂]I as a white solid (150 mg, 81%). Anal. Calcd for $[Me_2P(C_5Me_4)_2ZrMe_2]I\cdot MgI_2\cdot THF$: C, 34.7; H, 4.9. Found: C, 34.8; H, 4.9. IR (KBr pellet, cm⁻¹): 2978 (s), 2914 (s), 1623 (s), 1542 (w), 1448 (w), 1387 (w), 1298 (m), 1125 (w), 1027 (m), 923 (m), 870 (w), 779 (w), 761 (w), 652 (s), 499 (m), 474 (m). ¹H NMR (CDCl₃, saturated): -0.56 [s, Zr(C H_3)₂], 2.02 [d, $^4J_{P-H}$ = 0.4, 2 Me of $C_5(CH_3)_4$, 2.08 [s, 2 Me of $C_5(CH_3)_4$], 3.07 [d, ${}^{2}J_{P-H} = 14$, P(CH₃)₂]. ${}^{13}C$ NMR (CDCl₃, saturated): 11.9 [q, ${}^{1}J_{C-H} = 128$, 2 Me of $C_{5}(CH_{3})_{4}$], 14.5 [q, ${}^{1}J_{C-H} = 128$, 2 Me of $C_5(CH_3)_4$], 15.0 [dq, ${}^1J_{P-C} = 56$, ${}^1J_{C-H} = 135$, $P(CH_3)_2$], 40.1 [q, ${}^{1}J_{C-H} = 117$, $Zr(CH_{3})_{2}$, 68.7 [d, ${}^{1}J_{P-C} = 78$, 1 C of $C_{5}(CH_{3})_{4}$], 121.1 [d, $J_{P-C} = 12$, 2 C of $C_5(CH_3)_4$], 130.3 [d, $J_{P-C} = 12$, 2 C of $C_5(CH_3)_4$].

Synthesis of [Me₂P(C₅Me₄)₂Zr{C(O)Me}(Me)]I. A solution of [Me₂P(C₅Me₄)₂ZrMe₂]I (ca. 10 mg) in CDCl₃ (1 mL) was treated with CO (1 atm) at room temperature. The reaction was monitored by 1 H NMR spectroscopy, which demonstrated the formation of [Me₂P(C₅Me₄)₂Zr{C(O)Me}(Me)]I over a period of 20 min. 1 H NMR (CDCl₃): -0.32 [s, Zr(C H_3)], 1.31 [s, 1 Me of C₅(C H_3)₄], 1.77 [s, 1 Me of C₅(C H_3)₄], 2.13 [s, 1 Me of C₅(C H_3)₄], 2.48 [s, 1 Me of C₅(C H_3)₄], 2.75 [s, Zr{C(O)C H_3 }], 3.01 [d, ${}^{2}J_{P-H} = 14$, 1 Me of P(C H_3)₂].

Synthesis of [Me₂P(C₅Me₄)₂HfCl₂]I. A suspension of [Me₂P(C₅Me₄H)₂]I (2.0 g, 4.65 mmol) in THF (30 mL) was treated with BuⁿLi (4.0 mL, 2.5 M solution in hexane, 10.0 mmol) at -78 °C, warmed to room temperature, and stirred overnight. After this period, all volatile components were

Table 3. Crystal, Intensity Collection, and Refinement Data

	$[Me_2P(C_5Me_4)\ _2ZrCl_2]I$	$[Me_2P(C_5Me_4)\ _2HfCl_2]I$
lattice	orthorhombic	orthorhombic
formula	$C_{20}H_{30}Cl_2IPZr$	$C_{20}H_{30}Cl_{2}IPHf$
fw	590.43	677.70
space group	Pcca (No. 54)	Pcca (No. 54)
a/Å	11.2444(6)	11.312(1)
b/Å	15.0735(9)	15.128(1)
c/Å	13.5240(8)	13.520(1)
α/deg	90	90
β/\deg	90	90
γ/deg	90	90
V/ų	2292.2(2)	2313.6(4)
Z	4	4
temp (K)	218	233
radiation (λ, Å)	0.71073	0.71073
ρ (calcd), g cm ⁻³	1.711	1.946
$\mu(\text{Mo K}\alpha), \text{ mm}^{-1}$	2.132	6.145
θ max, deg	28.3	28.3
no. of data	2695	2698
no. of params	121	121
$R1^a$	0.0201	0.0408
$wR2^a$	0.0602	0.1193
GOF	1.173	1.135

 a R1 = $\sum ||F_{0}| - |F_{c}|| \}/\sum |F_{0}|$ for $[I \ge 2\sigma(I)]$; wR2 = $\{\sum [w(F_{0}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{0}^{2})^{2}]\}^{1/2}$ for $[I \ge 2\sigma(I)]$.

removed from the mixture in vacuo and dried. Toluene (30 mL) was added to the residue, and the suspension obtained was slowly added to a suspension of HfCl₄ (1.50 g, 4.68 mmol) in toluene (30 mL). The mixture was heated at 80 °C for 3 days. After this period the mixture was filtered, and the precipitate obtained was washed with toluene (20 mL) and dried in vacuo. The residue was extracted into CHCl₃ (100 mL) and filtered. The volatile components were removed in vacuo, and the residue obtained was washed with THF (30 mL) and pentane $(2 \times 20 \text{ mL})$ and dried in vacuo to give $[Me_2P(C_5Me_4)_2HfCl_2]I$ as a yellow solid (1.51 g, 48% yield). Anal. Calcd for [Me₂P(C₅-Me₄) ₂HfCl₂]I: C, 35.4; H, 4.5. Found: C, 35.5; H, 4.8. IR (KBr pellet, cm⁻¹): 3034 (s), 2955 (vs), 2916 (vs), 1638 (w), 1542 (w), 1443 (s), 1381 (s), 1310 (s), 1295 (s), 1286 (s), 1137 (m), 1026 (s), 951 (s), 931 (vs), 868 (m), 820 (w), 780 (s), 756 (s), 712 (m), 648 (m), 627 (w), 570 (w), 523 (w), 495 (s), 436 (w), 417 (w). ¹H NMR (CDCl₃, saturated): 2.13 [s, 2 Me of $C_5(CH_3)_4$], 2.22 [s, 2 Me of $C_5(CH_3)_4$], 3.44 [d, ${}^2J_{P-H} = 14$, $P(CH_3)_2$]. ¹³C NMR (CDCl₃, saturated): 12.4 [q, ¹ J_{C-H} = 128, 2 Me of $C_5(CH_3)_4$], 15.0 [dq, ¹ J_{P-C} = 55, ¹ J_{C-H} = 135, $P(CH_3)_2$], 15.1 [q, ${}^{1}J_{C-H} = 129$, 2 Me of $C_{5}(CH_{3})_{4}$], 77.2 [d, ${}^{1}J_{P-C} = 86$, 1 C of $C_5(CH_3)_4$], 121.1 [d, $J_{P-C} = 12$, 2 C of $C_5(CH_3)_4$], 136.4 [d, $J_{P-C} = 12$, 2 C of $C_5(CH_3)_4$].

X-ray Structure Determinations. X-ray diffraction data for $[Me_2P(C_5Me_4)\ _2ZrCl_2]I$ and $[Me_2P(C_5Me_4)\ _2HfCl_2]I$ were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector, and crystal data, data collection, and refinement parameters are summarized in Table 3. The structures were solved using direct methods and standard difference map techniques and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (version 5.03). ¹⁹ Hydrogen atoms on carbon were included in calculated positions.

Summary

In summary, the phosphonium-bridged bis(tetramethylcyclopentadienyl) ligand, $[Me_2P(C_5Me_4)_2]^-$, has been constructed by the sequential reaction of $MePCl_2$ with 2 equiv of $Li(C_5Me_4H)$, followed by methylation with MeI and final deprotonation with Bu^nLi . Subse-

⁽¹⁹⁾ Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Federal Republic of Germany, 1981.

quent treatment with ZrCl4 and HfCl4 yields the phosphonium-bridged ansa-metallocene complexes {[Me₂P(C₅- Me_4 ₂ $ZrCl_2$ ⁺ and { $[Me_2P(C_5Me_4)_2]HfCl_2$ }⁺, respectively. The structural characterization of $\{[Me_2P(C_5Me_4)_2]$ ZrCl₂}⁺ thus completes a series of structurally related zirconocene derivatives, namely, [R₂P(Cp^R)₂ZrCl₂]⁺, $[R_2E(Cp^R)_2ZrCl_2]$ (E = C, Si, Ge), and $[R_2B(Cp^R)_2ZrCl_2]^-$, which differ according to the charge on the complex.

Acknowledgment. We thank the U.S. Department of Energy, Office of Basic Energy Sciences (#DE-FG02-93ER14339), for support of this research.

Supporting Information Available: Crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000536T