Reaction of 2,3-Dihydro-1*H*-1,3,2-diazaboroles and Diphenylketene: A Novel Synthesis of 1,3,2-Oxazaborolidines

Lothar Weber,* Markus Schnieder, T. Claudete Maciel, Henning B. Wartig, and Michaela Schimmel

> Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Roland Boese and Dieter Bläser

Institut für Anorganische Chemie der Universität Essen GH, Universitätsstrasse 5-7, D-45141 Essen, Germany

Received August 30, 2000

Summary: Reaction of equimolar amounts of diphenylketene with a series of 1,3-di-tert-butyl-2,3-dihydro-1H-

1,3,2-diazaboroles tBuNCH=CH-N(tBu)BX [X = Br](1a), F (1b), NH₂ (1c), NMe₂ (1d), Me (1e), SnMe₃ (1f), $CH=C(SnMe_3)C_6H_4-4-Cl$ (**1g**)] regioselectively afforded

good yields of the 1,3,2-oxazaborolidines tBuN-CH-

 $(CH=NtBu)C(=CPh_2)OBX$ (**2a**-**g**). The X-ray structure analysis of 2d revealed an essentially planar fivemembered heterocycle with a long B-O bond and a strong exocyclic BN $-\pi$ bond.

Introduction

The chemistry of 1,3,2-oxazaborolidines originated in the 1970s with the first studies by Cragg.¹ Interest in these heterocycles increased markedly in the past decade with the recognition that compounds of this type are efficient catalysts in a series of chemical transformations. Usually oxazaborolidines were prepared from boranes RBX_2 (X = leaving group) and 1,2-amino alcohols.^{1,2} The employment of chiral amino alcohols such as (S)-(-)-2-(diphenylhydroxymethyl)pyrrolidine,^{3,4} ephedrine,4-7 and pseudoephedrine8a or others8b furnished chiral oxazaborolidines⁸ which enantioselectively catalyzed borane reduction of prochiral ketones to give

J. M.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 1994, 116, 866–878.
(8) (a) Berenguer, R.; Garcia, J.; González, M.; Vilarrasa, J. Tetrahedron Asymmetry 1993, 4, 13–16. (b) Le Toumelin, J.-B.; Baboulène, M. Tetrahedron Asymmetry 1997, 8, 1259–1265.

chiral secondary alcohols^{3,8,9} and the enantioselective addition of diethylzinc to aldehydes to afford secondary alcohols.5,6

A series of 1,3,2-oxazaborolidin-5-ones were obtained by the borylation of (S)-alanine, (S)-valine, (S)-leucine, (S)-isoleucine, and (S,R)-tert-leucine with (tert-butylimino)-(2,2,6,6-tetramethylpiperidino)borane. 10 Amino acid derived oxazaborolidin-5-ones are excellent catalysts for highly enantioselective Diels-Alder reactions,11-13 the Mukaiyama aldol reaction of aldehydes and silyl enol ethers, 14,15 and asymmetric aldol reactions of silyl ketene acetals. 16,17

In a program on functionalized 2,3-dihydro-1*H*-1,3,2diazaboroles it was demonstrated that the 2-haloderivatives^{18,19} can easily be converted into 2-cyano-, 19 2-isocyanato-,19 2-isothiocyanato-,19 2-hydro-,20 2-alkyl-,20 2-alkynyl-,²⁰ 2-amino-,²¹ and 2-stannyl-2,3-dihydro-1*H*-1,3,2-diazaboroles²⁰ by halide substitution with the respective nucleophile. Various alkynes were inserted into the B-Sn bond of the latter compound to afford highly functionalized 2-alkenyl-2,3-dihydro-1*H*-1,3,2-

⁽¹⁾ Cragg, R. H.; Weston, A. F. J. Chem. Soc., Dalton Trans. 1975,

⁽²⁾ Maringgele, W.; Meller, A. J. Organomet. Chem. 1980, 188, 401-

^{(3) (}a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. **1987**, 109, 5551–5553. (b) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. **1987**, 109, 7925–7926. (c) Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. **1988**, 53,

⁽⁴⁾ Chavant, Y. Y.; Vaultier, M. *J. Organomet. Chem.* **1993**, 455, 37–46.

⁽⁵⁾ Joshi, N. N.; Srebnik, M.; Brown, H. C. *Tetrahedron Lett.* **1989**, *30*, 5551–5554.

⁽⁶⁾ El Moualij, N.; Caze, C. Eur. Polym. J. 1995, 31, 193-198.
(7) (a) Brown, J. M.; Lloyd-Jones, G. C. Tetrahedron Asymmetry 1990, 1, 869. (b) Brown, J. M.; Leppard, S. W.; Lloyd-Jones, G. C. Tetrahedron Asymmetry 1992, 3, 261-266. (c) Brown, J. M.; Lloyd-Jones, G. C. J. Chem. Soc., Chem. Commun. 1992, 710-712. (d) Brown, J. M.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 1994, 116, 866-878.

⁽⁹⁾ Review: Deloux, L.; Srebnik, M. Chem. Rev. 1993, 93, 763-784.

⁽¹⁰⁾ Geisberger, G.; Nöth, H. *Chem. Ber.* **1990**, *123*, 953–961. (11) (a) Corey, E. J.; Loh, T.-P. *J. Am. Chem. Soc.* **1991**, *113*, 8966– 8967. (b) Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimiora, M. D.; Noe, M. C. J. Am. Chem. Soc. 1992, 114, 8290-8292. (c) Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979-3982. (d) Corey, E. J.; Guzman-Perez, A.; Loh. T.-P. J. Am. Chem. Soc. 1994, 116, 3611-3612.

⁽¹²⁾ Takasu, M.; Yamamoto, H. Synlett 1990, 194-196.

^{(13) (}a) Sartor, D.; Saffrich, J.; Helmchen, G. Synlett 1990, 197-198. (b) Sartor, D.; Saffrich, J.; Helmchen, G. Richards, C. J.; Lambert, H. Tetrahedron Asymmetry 1991, 2, 639-642.

⁽¹⁴⁾ Corey, E. J.; Cywin, C. L.; Roper, T. D. Tetrahedron Lett. 1992,

⁽¹⁵⁾ Ishihara, K.; Kondo, S.; Yamamoto, H. Synlett 1999, 1283-

^{(16) (}a) Kiyooka, S.; Kaneko, Y.; Konaura, M.; Matsuo, H.; Nakano, M. *J. Org. Chem.* **1991**, *56*, 2276–2278. (b) Kiyooka, S.; Kaneko, Y.; Kume, K. *Tetrahedron Lett.* **1992**, 4927–4930.

Kume, K. *Ietranearon Lett.* 1992, 4921–4950.

(17) (a) Parmee, E. R.; Tempkin, O.; Masanume, S.; Abiko, A. *J. Am. Chem. Soc.* 1991, *113*, 9365–9366. (b) Parmee, E. R.; Hong, Y.; Tempkin, O.; Masanume, S. *Tetrahedron Lett.* 1992, *33*, 1729–1732. (18) Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. *Chem. Ber./Recl.* 1997, *130*, 705–710.

⁽¹⁹⁾ Weber, L.; Dobbert, E.; Boese, R.; Kirchner, M. T.; Bläser, D. *Eur. J. Inorg. Chem.* **1998**, 1145–1152.

⁽²⁰⁾ Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. Eur. J. Inorg. Chem. 1999, 491–497.
(21) Weber, L.; Dobbert, E.; Rausch, A.; Stammler, H.-G.; Neumann,

B. Z. Naturforsch. 1999, 54b, 363-371.

diazaboroles.²² Almost all transformations occur at the periphery of the heterocycle, and little information on processes involving the core of the ring system is available.²³

The aim of the work described herein was to provide a novel synthesis of 1,3,2-oxazaborolidines from 1,3,2diazaboroles by treatment with diphenylketene.

Experimental Section

All operations were performed under dry, oxygen-free dinitrogen using standard Schlenk techniques. Solvents were dried by standard methods and freshly distilled under nitrogen prior to use. 1 H, 11 B, 13 C, 19 F, and 119 Sn NMR spectra were recorded in C₆D₆ with Bruker AC 100 (1 H, 100.13 MHz, 11 B, 32.13 MHz) and Bruker Avance DRX 500 (1 H, 500.13 MHz, 11 B, 160.46 MHz, 13 C, 125.75 MHz, 19 F, 470.60 MHz, 119 Sn, 186.51 MHz). References: SiMe₄ (11 H, 13 C), BF₃·OEt₂ (11 B), CFCl₃ (19 F), SnMe₄ (119 Sn).

Compounds tBuN-CH=CH-N(tBu)BR (1a), tBuN-CH=CH-N(tBu)BR (1b), $tBuN-CH=CH-N(tBu)BNH_2$ (1c), $tBuN-CH=CH-N(tBu)B-CH_3$ (1e), $tBuN-CH=CH-N(t-Bu)BSNMe_3$ (1f), $tBuN-CH=CH-N(tBu)B-CH=C(SnMe_3)-(C_6H_4-4-Cl)$ (1g), $tBuN-CH=C(SnMe_3)-(C_6H_4-4-Cl)$ (1g), $tBuN-CH=C(SnMe_3)-(C_6H_4-4-Cl)$

tBuN−CH=CH−N(tBu)BNMe₂ (**1d**). Gaseous dimethylamine was bubbled into a solution of 1,3-di-*tert*-butyl-2-bromo-2,3-dihydro-1*H*-1,3,2-diazaborole (**1a**) (3.00 g, 11.6 mmol) in 60 mL of *n*-hexane at 20 °C during a period of 15 min. Excess amine was removed by a flow of argon. It was filtered, and the filtrate was liberated from solvent and volatile components in vacuo. Compound **1d** was obtained as a yellow oil (1.88 g, 72% yield). ¹H NMR: δ 1.33 [s, 18H, C(CH₃)₃], 2.46 [s, 6H, N(CH₃)₂], 6.25 (s, 2H, NCH). 13 C{¹H} NMR: δ 31.6 [s, C(*C*H₃)₃], 41.2 (s, NCH₃), 51.8 [s, *C*(CH₃)₃], 111.4 (s, NCH). 11 B{¹H} NMR: δ 22.8 s. MS/EI: *m/z* (relative intensity) 223 (63) [M⁺]. Anal. Calcd for C₁₂H₂₆BN₃ (223.17): C, 64.58; H, 11.74; N, 18.83. Found: C, 64.37; H, 12.08; N, 18.52.

tBuN-CH(CH=NtBu)C(=CPh2)OBBr (2a). A solution of diphenylketene (0.62 g, 3.2 mmol) in 10 mL of *n*-hexane was added dropwise to a chilled solution (-20 °C) of 1a (0.83 g, 3.2 mmol) in n-hexane (40 mL). The mixture was warmed to ambient temperature. After 2 h of stirring it was filtered, and the light yellow filtrate was concentrated in vacuo until it became cloudy. After storing for 24 h at −30 °C 2a precipitated as a yellow solid (yield: 0.97 g, 67%). ¹H NMR: δ 0.87 [s, 9H, $C(CH_3)_3$, 1.21 [s, 9H, $C(CH_3)_3$], 5.13 (d, ${}^3J_{HH} = 6.6$ Hz, 1H, CH_{ring}), 7.00–7.13 (m, 9H, Ph + CH=N), 7.66 (d, ${}^{3}J_{HH} = 7.4$ Hz, 2H, Ph). ${}^{13}C\{{}^{1}H\}$ NMR: δ 28.9 [s, $C(CH_3)_3$], 31.0 [s, $C(CH_3)_3$, 52.6 [s, $C(CH_3)_3$], 56.7 [s, $C(CH_3)_3$], 67.3 (s, CH_{ring}), 119.4 (s, CPh₂), 126.6, 127.3, 128.9, 129.8, 131.1, 139.0, 139.1 (Ph), 149.1 (s, $C=CPh_2$), 153.9 (s, CH=N). ¹¹B{¹H} NMR: δ 26.0 s. Anal. Calcd for C24H30BBrN2O (453.22): C, 63.60; H, 6.67; N, 6.18. Found: C, 63.48; H, 6.82; N, 6.08.

tBuN−CH(CH=NtBu)C(=CPh₂)OBF (2b). Analogously, a sample of diphenylketene (0.37 g, 1.90 mmol) was reacted with 1b (0.38 g, 1.90 mmol) to afford 0.47 g (64%) of 2b as a light yellow solid. ¹H NMR: δ 0.87 [s, 9H, C(CH₃)₃], 1.07 [s, 9H, C(CH₃)₃], 5.10 (d, ³ J_{HH} = 6.9 Hz, 1H, CH_{ring}), 7.02−7.19

(m, 9H, Ph + CH=N), 7.62 (d, ${}^3J_{\text{HH}} = 7.5$ Hz, 2H, Ph). ${}^{13}\text{C-}\{{}^{1}\text{H}\}$ NMR: δ 28.9 [s, C($C\text{H}_3$)₃], 30.5 [s, C($C\text{H}_3$)₃], 51.3 [s, C(CH₃)₃], 56.2 [s, C(CH₃)₃], 65.4 (s, CH_{ring}), 119.7 (s, CPh₂), 126.7, 127.2, 128.9, 129.0, 131.2, 139.0, 139.6 (Ph), 147.1 (s, C=CPh₂), 154.4 (s, CH=N). ${}^{11}\text{B}\{{}^{1}\text{H}\}$ NMR: δ 22.3 s. ${}^{19}\text{F}\{{}^{1}\text{H}\}$ NMR: δ 176.9 s. Anal. Calcd for C₂₄H₃₀BFN₂O (392.32): C, 73.48; H, 7.71; N, 7.14. Found: C, 73.56; H, 7.64; N, 7.14.

tBun−CH(CH=NtBu)C(=CPh₂)OBNH₂ (2c). Colorless 2c (0.28 g, 64%) precipitated from the reaction mixture of diphenylketene (0.22 g, 1.13 mmol) and 1c (0.22 g, 1.13 mmol) in *n*-hexane (40 mL) at −40 °C. IR (KBr): $\tilde{\nu}$ 3511 s (ν NH), 3417 s (ν NH) cm⁻¹. ¹H NMR: δ 0.91 [s, 9H, C(CH₃)₃], 1.06 [s, 9H, C(CH₃)₃], 1.81 (s, 2H, NH₂), 5.10 (d, ³J_{HH} = 7.0 Hz, 1H, CH_{ring}), 7.00−7.24 (m, 9H, Ph + CH=N), 7.75 (d, ³J_{HH} = 7.6 Hz, 2H, Ph). ¹³C{¹H} NMR: δ 29.1 [s, C(CH₃)₃], 31.0 [s, C(CH₃)₃], 50.8 [s, C(CH₃)₃], 56.3 [s, C(CH₃)₃], 66.1 (s, CH_{ring}), 116.7 (s, CPh₂), 126.1, 126.8, 128.0, 128.7, 130.0, 131.5, 140.1, 140.8 (Ph), 150.8 (s, C=CPh₂), 155.8 (s, CH=N). ¹¹B{¹H} NMR (d₆-DMSO): δ 25.2 s. Anal. Calcd for C₂₄H₃₂BN₃O (389.35): C, 74.04; H, 8.28; N, 10.79. Found: C, 73.86; H, 8.54; N, 10.50.

tBuN−CH(CH=NtBu)C(=CPh₂)OBNMe₂ (**2d**). Analogously, reaction of **1d** (0.66 g, 3.0 mmol) and 0.57 g (3.0 mmol) of diphenylketene resulted in the formation of yellow microcrystalline **2d** (0.90 g, 73%). Recrystallization from toluene at -30 °C afforded crystals suitable for an X-ray structural analysis. ¹H NMR: δ 0.94 [s, 9H, C(CH₃)₃], 1.23 [s, 9H, C(CH₃)₃], 2.68 (s, 6H, NMe₂), 5.18 (d, $^3J_{\text{HH}}$ = 6.9 Hz, 1H, CH_{ring}), 7.06−7.25 (m, 9H, Ph + CH=N), 7.81 (d, $^3J_{\text{HH}}$ = 6.9 Hz, 2H, Ph). 13 C{¹H} NMR: δ 28.9 [s, C(CH₃)₃], 31.7 [s, C(CH₃)₃], 39.7 (s, NCH₃), 50.9 [s, C(CH₃)₃], 56.1 [s, C(CH₃)₃], 66.6 (s, CH_{ring}), 115.5 (s, CPh₂), 125.6, 126.6, 128.1, 128.6, 129.4, 130.0, 131.4, 140.0, 140.4 (Ph), 149.7 (s, C=CPh₂), 155.4 (s, CH=N). 11 B{¹H} NMR: δ 24.8 s. Anal. Calcd for C₂₆H₃₆-BN₃O (417.39): C, 74.82; H, 8.69; N, 10.07. Found: C, 74.76; H, 8.76; N, 9.89.

Bun – CH(CH=NfBu)C(=CPh₂)OBMe (2e). Analogously, reaction of 0.55 g (2.8 mmol) of 1e with 0.54 g (2.8 mmol) of diphenylketene in 50 mL of *n*-hexane afforded 0.76 g (70%) of colorless microcrystalline 2e. ¹H NMR: δ 0.56 (s, 3H, BCH₃), 0.92 [s, 9H, C(CH₃)₃], 1.10 [s, 9H, C(CH₃)₃], 5.14 (d, ³J_{HH} = 6.9 Hz, 1H, CH_{ring}), 7.02–7.22 (m, 9H, Ph + CH=N), 7.77 (d, ³J_{HH} = 6.9 Hz, 2H, Ph). ¹³C{¹H} NMR: δ 29.0 [s, C(CH₃)₃], 31.4 [s, C(CH₃)₃], 51.2 [s, C(CH₃)₃], 56.5 [s, C(CH₃)₃], 66.6 (s, CH_{ring}), 117.3 (s, CPh₂), 126.3, 126.9, 128.3, 128.8, 129.9, 131.4, 140.0, 140.4 (Ph), 151.6 (s, C=CPh₂), 155.2 (s, CH=N). ¹¹B-{¹H} NMR: δ 34.5 s. Anal. Calcd for C₂₅H₃₃BN₂O (388.35): C, 77.32; H, 8.56; N, 7.21. Found: C, 77.19; H, 8.46; N, 7.28.

tBuN-CH(CH=NtBu)C(=CPh2)OBSnMe3 (2f). A sample of diphenylketene (0.33 g, 1.7 mmol) was slowly added at room temperature to the solution of **1f** (0.55 g, 1.6 mmol) in 5 mL of benzene. After stirring for 3 h solvent was removed in vacuo, and the residue was dissolved in 2 mL of benzene. Product 2f separated as colorless needles (yield: 0.59 g, 69%). ¹H NMR: δ 0.31 [s, 9H, ${}^{2}J_{SnH}$ = 49.9 Hz, Sn(CH₃)₃], 0.87 [s, 9H, C(CH₃)₃], 1.17 [s, 9H, C(CH₃)₃], 5.20 (d, ${}^{3}J_{HH} = 7.0$ Hz, 1H, CH_{ring}), 7.04-7.23 (m, 9H, Ph + CH=N), 7.22 (d, ${}^{3}J_{HH} = 7.4$ Hz, ${}^{2}H$, Ph). ¹³C{¹H} NMR: δ -10.5 [s, ¹ J_{SnC} = 289.2 Hz, Sn(CH₃)₃], 28.9 [s, $C(CH_3)_3$], 32.4 [s, $C(CH_3)_3$], 52.3 [s, $C(CH_3)_3$], 56.9 [s, C(CH₃)₃], 66.0 (s, CH_{ring}), 118.2 (s, CPh₂), 126.5, 127.0, 128.9, 129.9, 131.2, 139.7, 140.0 (Ph), 152.9 (s, ${}^{3}J_{SnC} = 49.4$ Hz, *C*=CPh₂), 154.7 (s, CH=N). $^{11}B\{^{1}H\}$ NMR: δ 38.2 s. ^{119}Sn -{¹H} NMR: δ -110.7. MS/EI m/z (relative intensity): 538 (75) [M⁺]. Anal. Calcd for C₂₇H₃₉BN₂OSn (537.14): C, 60.37; H, 7.32; N, 5.22. Found: C, 60.45; H, 7.40; N, 5.47.

#BuN-CH(CH=N#Bu)C(=CPh₂)OB-CH=C(SnMe₃)C₆H₄-4-Cl (2g). Analogously reaction of 1g (0.56 g, 1.2 mmol) and 0.25 g of diphenylketene (1.3 mmol) in 5 mL of benzene for 6 h afforded colorless crystalline 2g (yield: 0.49 g, 62%) ¹H

⁽²²⁾ Weber, L.; Wartig, H. B.; Stammler, H.-G.; Stammler, A.; Neumann, B. *Organometallics* **2000**, *19*, 2891.

⁽²³⁾ For earlier work on 2,3-dihydro-1*H*-1,3,2-diazaboroles see: Schmid, G.; Polk, M.; Boese, R. *Inorg. Chem.* **1990**, *29*, 4421–4429, and references therein.

⁽²⁴⁾ Schmid, G.; Schulze, J. Chem. Ber. 1977, 110, 2744-2750.
(25) Taylor, E. C.; McKillop, A.; Hawks, G. H. Org. Synth. 1972, 52, 36.

Scheme 1

$$tBu - N - tBu + Ph_2C = C = O$$

$$tBu - N - tBu + Ph_2C = C = O$$

$$tBu - N - tBu + Ph_2C = C = O$$

$$tBu - N - tBu - tBu - tBu - N - tBu - N - tBu - N - tBu -$$

NMR: δ 0.13 [s, 9H, $^2J_{\rm SnH}=55.3$ Hz, Sn(CH₃)₃], 0.93 [s, 9H, C(CH₃)₃], 1.22 [s, 9H, C(CH₃)₃], 5.38 (d, $^3J_{\rm HH}=6.3$ Hz, 1H, CH_{ring}), 6.82 (s, 1H, BCH), 6.93–7.24 (m, 13H, Ph + CH=N + p-ClC₆H₄), 7.54 (d, $^3J_{\rm HH}=7.2$ Hz, 2H, Ph). 13 C{ 1 H} NMR: δ –7.3 [s, $^1J_{\rm SnC}=347.1$ Hz, Sn(CH₃)₃], 29.1 [s, C(CH₃)₃], 31.9 [s, C(CH₃)₃], 52.2 [s, C(CH₃)₃], 56.5 [s, C(CH₃)₃], 66.1 (s, CH_{ring}), 119.2 (s, CPh₂), 127.6, 128.3, 128.7, 128.8, 129.8, 130.3, 131.0, 132.4, 140.4, 148.0 (Ph), 138.5 (s, br, BC), 151.2 (s, C=CPh₂), 154.7 (s, CH=N), 163.8 (s, =C-Sn). 11 B{ 1 H} NMR: δ 30.9 s br. 119 Sn{ 1 H} NMR: δ –38.8 s. MS/EI m/z (relative intensity): 674 (6) [M⁺], 559 (33), 167 (100). Anal. Calcd for C₃₅H₄₄-BClN₂OSn (673.72): C, 62.40; H, 6.58; N, 4.16. Found: C, 62.58; H, 6.69; N, 4.14.

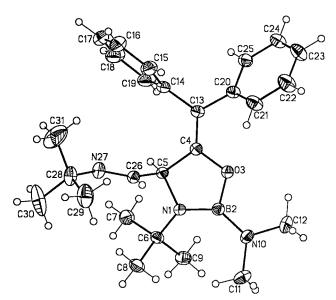
Results and Discussions

Reaction of diphenylketene and equimolar amounts of the 2,3-dihydro-1H-1,3,2-diazaboroles $1\mathbf{a}-\mathbf{e}$ in n-hexane in the temperature range between -20 and +20 °C led to the formation of the 1,3,2-oxazaborolidines $2\mathbf{a}-\mathbf{e}$ in 64-70% yield. Similarly, the 1,3,2-diazaboroles $1\mathbf{f}$ and $1\mathbf{g}$ were converted into the corresponding 1,3,2-oxazaborolidines $2\mathbf{f}$ and $2\mathbf{g}$ by treatment with $Ph_2C=C=0$ in benzene at room temperature. The progress of this transformation was monitored by ^{11}B NMR spectroscopy, and products $2\mathbf{a}-\mathbf{e}$ were obtained as light yellow to colorless crystals from n-pentane. The derivatives $2\mathbf{f}$ and $2\mathbf{g}$ were isolated as colorless deliquescent crystals from benzene (Scheme 1).

The 1,3,2-oxazaborolidines 2a-g are less soluble than the starting materials 1a-g. It is obvious that the ring transformation reaction tolerates halide substituents, amino groups, the Me₃Sn unit, and alkenyl groups at the boron atom. No reactions were observed with the 2-hydro-, 2-cyano-, and 2-diphenylketimino derivatives and 1,3,2-diazaboroles bearing 2,6-dimethylphenyl substituents at both nitrogen atoms.

The IR spectra of the products confirmed the absence of a $\nu(C=0)$ vibration, which implies a reaction involving the carbonyl unit of the ketene. From the 1H and ^{13}C NMR spectra of the products **2** it is obvious that the vertical mirror plane of the precursor molecules **1** is no longer present. Thus the singlet for the 18 protons of the *tert*-butyl groups, ranging from δ 1.24 to 1.43, in **1** is replaced by two singlet resonances at δ 0.87–0.94 and δ 1.06–1.23, which are attributed to the chemically and nonequivalent *tert*-butyl groups at the ring nitrogen atom and at the exocyclic methane imino group in **2**. A

Scheme 2


doublet for the proton at the ring carbon atom in 2 was observed at δ 5.10–5.38 (${}^{3}J_{HH} = 6.3-7.0$ Hz). In the precursors 1 the two equivalent ring protons gave rise to singlets at δ 5.99–6.50. The second CH group in **1** was converted into the exocyclic methane imino functionality in 2, the proton signal of which is obscured by the phenyl hydrogens. The ¹³C carbon atom of the CH= N group gives rise to singlets at δ 153.9–155.8 in the ¹³C{¹H} NMR spectra of the products, whereas the ring carbon atom is assigned to a singlet at δ 65.4–67.3. A singlet in the range δ 147.1–152.9 is due to the sp²hybridized ring carbon atom introduced by the ketene building block. The exocyclic carbon atom of the double bond in **2** was observed as a singlet at δ 115.5–119.7. In **2b** (X = F), **2c** $(X = NH_2)$, and **2d** $(X = NMe_2)$, where the boron atoms are linked to π -donating groups X the ¹¹B NMR resonances (δ 22.3–25.2) are deshielded by only δ 2.0–3.1 on going from **1** to **2**. For comparison 1,3,2-oxazaborolidin-5-ones derived from α -amino acids and an amino-iminoborane display 11 B resonances at δ $27.0-27.4.^{10}$ In the remaining products **2a** (X = Br, δ 26.0), **2e** (X = Me, δ 34.5), **2f** (X = SnMe₃, δ 38.2), and **2g** (X = alkenyl, δ 30.9) a more pronounced deshielding $(\Delta \delta 8.3-12.4)$ of the boron nuclei relative to the corresponding 1,3,2-diazaborole precursors is observed.

In the $^{19}F\{^1H\}$ NMR spectrum of **2b** a singlet was registered at δ 176.9. This resonance compares well with the one in the nonaromatic heterocycle MeNCH₂CH₂N-(Me)BF (δ 168)²⁶ but is markedly deshielded with respect to precursor **1b** (δ 56.57).

In line with Zweifel's²⁷ and Herberich's²⁸ results on the reaction of 3-borolenes with aldehydes, ketones, and ketenes to give 1,2-oxaborolane derivatives it is conceivable that the formation of **2** is initiated by a nucleophilic attack of the ketene oxygen atom at the boron atom of the ring to give zwitterion **I**. Attack of the electron-deficient ketene carbon center at the C=C bond of the ring leads to **II**. Fission of the BN bond of **II** eventually afforded **2** as a pair of enantiomers. The reaction between a 2,3-dihydro-1*H*-1,3,2-diazaborole and a ketene constitutes a novel synthetic approach to oxazaborolidines with a stereogenic center at the ring carbon atom. Experiments focusing on the asymmetric synthesis of such heterocycles are underway.

⁽²⁶⁾ Fussstetter, H.; Nöth, H.; Wrackmeyer, B. Chem. Ber. 1977, 110, 3172–3182.

⁽²⁷⁾ Zweifel, G.; Shoup, T. M. J. Am. Chem. Soc. 1988, 110, 5578.
(28) Herberich, G. E.; Englert, U.; Wang, S. Chem. Ber. 1993, 126, 297.

Figure 1. Molecular structure of **2d** in the crystal. The thermal ellipsoids correspond to 50% probability.

X-ray Structural Analysis of 2d. The structure of **2d** was confirmed by an X-ray analysis (Figure 1)²⁹

Single crystals of the compound were grown from toluene at -30 °C. An essential structural feature is an almost planar five-membered heterocycle (the largest deviation from the best plane is 0.065 Å). The sum of the endocyclic angles is 538.68°; which is close to the theoretical value of 540°. The endocyclic bonds N(1)–B(2) [1.429(2) Å] and B(2)–O(3) [1.411(2) Å] are com-

(29) The crystallographic data for **2d** (atomic coordinates and bonding parameters) have been placed in the Supporting Information.

parable. The BO bond is markedly elongated when compared with the BO distances in {tBuNCH=CHN- $(tBu)\dot{B}_{2}O$ (III) [1.365(4), 1.354(4) Å], whereas the BN bond lengths in **III** are similar [1.439(4), 1.434(4), 1.442(3) Å]. The C₂N plane of the dimethylamino substituent and the plane of the oxazaborolidine ring possess an interplanar angle of 22°, which allows for a relatively strong exocyclic BN $-\pi$ -bond of 1.405(2) Å. The bond length C(4)-C(13) of 1.334(2) Å is that of a localized double bond, as it is observed for the C=N bond [1.251(2) Å] of the exocyclic *N-tert*-butylmethane imino group. Due to steric congestion the exocyclic angles B(2)-N(1)-C(6) [133.13(12)°] and N(1)-B(2)-N(10)[134.88(14)°] are markedly widened, when compared with angles C(6)-N(1)-C(5) [118.96(11)°] and O(3)-B(2)-N(10) [116.06(13)°]. The same strain is obvious from the angles at the planar dimethylamino group $[B(2)-N(10)-C(11) 127.40(14)^{\circ} \text{ and } B(2)-N(10)-C(12)$ 119.91(13)°].

Acknowledgment. The present work was financially supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany) and the Fonds der Chemischen Industrie (Frankfurt/M., Germany), which is gratefully acknowledged.

Supporting Information Available: Table of X-ray data, atomic coordinates, thermal parameters, and complete bond distances and angles and thermal ellipsoid plots for compound **2d**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000757Z