

Synthesis, Characterization, and Reaction Chemistry of $\text{PtCl}_2[\text{P}(\text{m-C}_6\text{H}_4\text{SO}_3\text{Na})_3]_2$, an Alkyne Hydration Catalyst

Laura W. Francisco,[†] Debra A. Moreno, and Jim D. Atwood*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000

Received June 7, 2001

The preparation and reactions of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (TPPTS = $\text{P}(\text{m-C}_6\text{H}_4\text{SO}_3\text{Na})_3$) in aqueous solution are described. In the absence of excess Cl^- , *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ exists as a mixture with 20% of *cis*- $\text{Pt}(\text{Cl})(\text{H}_2\text{O})(\text{TPPTS})_2^{2+}$; the aqua complex was prepared independently by reaction with Ag^+ . As a result of the aquation *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ is slightly acidic. Increasing the pH for a solution of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ leads to $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2^{2+}$; a subsequent decrease in pH leads to *cis*- $\text{Pt}(\text{OH}_2)_2(\text{TPPTS})_2^{2+}$ and, ultimately, *cis*- $\text{PtCl}_2(\text{TPPTS})_2$. All of these complexes were characterized by ^{31}P and ^{195}Pt NMR. *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ functions as an effective hydration catalyst for the water-soluble alkynes 4-pentyn-1-ol and 3-pentyn-1-ol. Both hydrations are stereospecific to 5-hydroxy-2-pentanone. Hydration of 4-pentyn-1-ol occurs by a 5-exo-dig mechanism, while hydration of 3-pentyn-1-ol occurs through a 5-endo-dig mechanism.

Introduction

Organic transformations catalyzed by transition metals in aqueous media have become increasingly important due to the benign nature of water and the cost benefits.¹ Water-soluble transition-metal complexes can also be models for biological systems.² Much work has been done in recent years to develop water-soluble ligands for transition metals, and sulfonated phosphines such as TPPTS (TPPTS = $\text{P}(\text{m-C}_6\text{H}_4\text{SO}_3\text{Na})_3$) are now quite common.³

Of particular significance have been water-soluble transition-metal-catalyzed transformations of olefins such as hydroformylation,^{4,5a} hydrogenation,⁵ alkylation,⁶ allylic substitution,⁷ isomerization,⁸ carbonyla-

tion,⁹ chlorination,¹⁰ and oxidation to form ketones or epoxides.¹¹ The Markovnikov hydration of olefins to secondary alcohols has also been demonstrated.¹² Transition-metal-catalyzed anti-Markovnikov hydration of olefins to primary alcohols remains a challenge,^{13,14} although it has been shown to occur via hydroboration.¹⁵

The hydrations of nitriles to amides¹⁶ and of alkynes to ketones or aldehydes have also been reported. Alkyne hydrations to ketones can be catalyzed by a variety of

[†] Current address: Department of Chemistry, D'Youville College, Buffalo, NY 14201.

(1) (a) Breslow, R. Water as a Solvent for Chemical Reactions. *Green Chemistry*; Oxford Press: London, 1998; pp 225–233. (b) Li, C.-J. Water as a Benign Solvent for Chemical Syntheses. *Green Chemistry*; Oxford Press: London, 1998; pp 234–249.

(2) (a) Lippert, B. *Coord. Chem. Rev.* **1999**, *182*, 263–295. (b) Trovó, G.; Longato, B.; Corain, B.; Tapparo, A.; Furlani, A.; Scarcia, V.; Baccichetti, F.; Bordin, F.; Palumbo, M. *J. Chem. Soc., Dalton Trans.* **1993**, 1547–1550.

(3) (a) Hanson, B. E. *Coord. Chem. Rev.* **1999**, *185/186*, 795–807. (b) Herrmann, W. A.; Kohlpainter, C. W. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1524–1544. (c) Cornils, B.; Kuntz, E. G. *J. Organomet. Chem.* **1995**, *502*, 177–186. (d) Kalck, P.; Montel, F. *Adv. Organomet. Chem.* **1992**, *34*, 219–283. (e) Katti, K. V.; Gali, H.; Smith, C. J.; Berning, D. E. *Acc. Chem. Res.* **1999**, *32*, 9–17. (f) Papadagianakis, G.; Sheldon, R. A. *New J. Chem.* **1996**, *20*, 175. (g) Roundhill, D. M. *Adv. Organomet. Chem.* **1995**, *38*, 172. (h) Daresbourg, D. J.; Joó, F.; Kannisto, M.; Reibenspies, J. H.; Dagle, D. J. *Inorg. Chem.* **1994**, *33*, 200.

(4) Deshpande, R. M.; Purwanto; Delmas, H.; Chaudhari, R. V. *Ind. Eng. Chem. Res.* **1996**, *35*, 3927–3933.

(5) (a) Borowski, A. F.; Cole-Hamilton, D. J.; Wilkinson, G. *Nouv. J. Chim.* **1978**, *2*, 137–144. (b) Bakos, J.; Orosz, A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. *J. Chem. Soc., Chem. Commun.* **1991**, 1684–1685. (c) Amrani, Y.; Lecomte, L.; Sinou, D.; Bakos, J.; Toth, I.; Heil, B. *Organometallics* **1989**, *8*, 542–547.

(6) (a) Amatore, C.; Blart, E.; Genêt, J. P.; Jutand, A.; Lemaire-Audoire, S.; Savignac, M. *J. Org. Chem.* **1995**, *60*, 6829–6839. (b) Casalnuovo, A. L.; Calabrese, J. C. *J. Am. Chem. Soc.* **1990**, *112*, 4324–4330.

(7) (a) dos Santos, S.; Tong, Y.; Quignard, F.; Choplin, A.; Sinou, D.; Dutasta, J. P. *Organometallics* **1998**, *17*, 78–89. (b) Safi, M.; Sinou, D. *Tetrahedron Lett.* **1991**, *32*, 2025–2028.

(8) (a) Henry, P. M. *Acc. Chem. Res.* **1973**, *6*, 16–24. (b) Francis, J. W.; Henry, P. M. *Organometallics* **1991**, *10*, 3498–3503. (c) McGrath, D. V.; Grubbs, R. H. *Organometallics* **1994**, *13*, 224–235. (d) Francis, J. W.; Henry, P. M. *Organometallics* **1992**, *11*, 2832–2836.

(9) (a) Kiji, J.; Okano, T.; Nishiumi, W.; Konishi, H. *Chem. Lett.* **1988**, 957–960. (b) Monteil, F.; Kalck, P. *J. Organomet. Chem.* **1994**, *482*, 45–51. (c) Stille, J. K.; James, D. E.; Hines, L. F. *J. Am. Chem. Soc.* **1973**, *95*, 5062–5064.

(10) (a) El-Qisairi, A.; Hamed, O.; Henry, P. M. *J. Org. Chem.* **1998**, *63*, 2790–2791. (b) Hamed, O.; Henry, P. M. *Organometallics* **1998**, *17*, 5184–5189. (c) Zaw, K.; Lautens, M.; Henry, P. M. *Organometallics* **1985**, *4*, 1286–1291.

(11) (a) Stunnenberg, F.; Niele, F. G. M.; Drent, E. *Inorg. Chim. Acta* **1994**, *222*, 225–233. (b) ten Brink, G. J.; Arends, I.; Papadogiannakis, G.; Sheldon, R. A. *Appl. Catal. A: Gen.* **2000**, *194/195*, 435–442. (c) Stille, J. K.; James, D. E. *J. Am. Chem. Soc.* **1975**, *97*, 674–676. (d) Bäckvall, J. E.; Åkerman, B.; Ljunggren, S. O. *J. Am. Chem. Soc.* **1979**, *101*, 2411–2416. (e) Hamed, O.; Thompson, C.; Henry, P. M. *J. Org. Chem.* **1997**, *62*, 7082–7083. (f) Hamed, O.; Henry, P. M. *Organometallics* **1997**, *16*, 4903–4909. (g) Strukul, G.; Michelin, R. A. *J. Chem. Soc., Chem. Commun.* **1984**, 1538–1539. (h) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. *J. Org. Chem.* **1996**, *61*, 8310–8311. (i) ten Brink, G. J.; Arends, I.; Sheldon, R. A. *Science* **2000**, *287*, 1636–1639.

(12) (a) Ganguly, S.; Roundhill, D. M. *J. Chem. Soc., Chem. Commun.* **1991**, 639–640. (b) Ganguly, S.; Roundhill, D. M. *Organometallics* **1993**, *12*, 4825–4832. (c) Atkins, K. E.; Walker, W. E.; Manyik, R. M. *J. Chem. Soc., Chem. Commun.* **1971**, 330. (d) Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. *J. Am. Chem. Soc.* **1979**, *101*, 2027–2038. (e) Inoue, Y.; Ohtsuka, Y.; Hashimoto, H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 3345–3346. (f) Bennett, M. A.; Jin, H.; Li, S.; Rendina, L. M.; Willis, A. C. *J. Am. Chem. Soc.* **1995**, *117*, 8335–8340. (g) Inoue, Y.; Sato, M.; Satake, M.; Hashimoto, H. *Bull. Chem. Soc. Jpn.* **1983**, *56*, 637–638. (h) Döbler, C.; Mehltretter, G.; Beller, M. *Angew. Chem., Int. Ed.* **1999**, *38*, 3026–3028.

Table 1. ^{31}P and ^{195}Pt NMR Data for Complexes **1–6**, PtCl_2 , and K_2PtCl_4

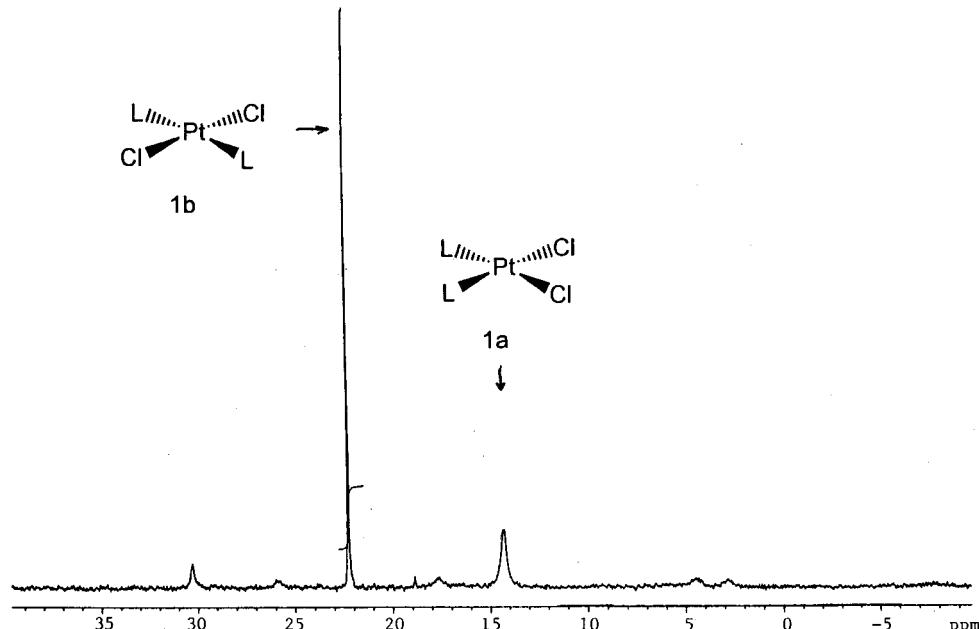
complex	^{31}P NMR ^{a,b}			^{195}Pt NMR ^{a,b}	
	δ (TPPTS)	$J(\text{P–P})$	$J(\text{P–Pt})^c$	$\delta(\text{Pt})^d$	$J(\text{P–Pt})$
<i>cis</i> - $\text{PtCl}_2(\text{TPPTS})_2$ (1a)	14.3 br s		3720	-4437 t	3720
<i>cis</i> - $\text{PtCl}_2(\text{TPPTS})_2$ (1a) ^e	15.5 s		3720	-4390 t	3720
<i>trans</i> - $\text{PtCl}_2(\text{TPPTS})_2$ (1b)	22.3 s		2600	-4072 t	2600
$\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2$ (2)	10.7 s		3530	-4083 t	3530
<i>cis</i> - $[\text{Pt}(\text{OH}_2)_2(\text{TPPTS})_2][\text{O}_3\text{SCF}_3]_2$ (3)	9.2 br s		3680	-3839 t	3680
<i>cis</i> - $[\text{Pt}(\text{OH}_2)(\text{Cl})(\text{TPPTS})_2][\text{O}_3\text{SCF}_3]$ (4)	17.6 br d 4.6 br d	20 20	3740 3920	-4280 dd	3740, 3920
$[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (5)	23.8 d 12.6 t	18 18	2500 3680	-4731 dt	3680, 2500
$[\text{PtCl}_3\text{TPPTS}]$ (6)	18.9 s		3850	-3916 d -1627 -3096	3810
$\text{K}_2\text{PtCl}_4^{37}$					
PtCl_2					

^a ^{31}P and ^{195}Pt NMR spectra were recorded in water at room temperature with a capillary insert of D_2O for the lock signal unless otherwise noted. ^b Chemical shifts (δ) are recorded in ppm, and coupling constants (J) are recorded in Hz. ^c Coupling constants refer to Pt satellites. ^d Referenced to 0.2 M K_2PtCl_6 in H_2O . ^e Recorded in DMSO .

metal complexes,¹⁷ frequently halide complexes of Ru,^{18a} Rh,¹⁹ Pd,²⁰ and Pt.²¹ Platinum catalysts are often based on Zeise's dimer, $[(\text{C}_2\text{H}_4)\text{PtCl}_2]_2$,²² Hartman et al.^{22b} showed enhanced regioselectivity for hydration of internal alkynes to the ketone moiety on the most substituted carbon (Markovnikov). This selectivity was augmented when chelating atoms such as oxygen were present on the alkyne. Tokunaga and Wakatsuki reported the first example of an anti-Markovnikov hydration of terminal alkynes to aldehydes using a water-soluble ruthenium catalyst.^{18b}

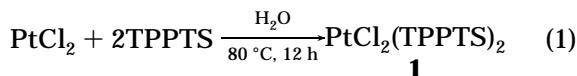
Although it is well-known that water-soluble phosphine complexes of transition metals are excellent catalysts for a variety of organic transformations, the exact nature of these complexes is less well understood. TPPTS and PPh_3 are similar spectroscopically and have nearly coincident $^{31}\text{P}\{^1\text{H}\}$ NMR signals (-5.6 ppm for TPPTS and -6.0 ppm for PPh_3). Therefore, spectroscopic properties of complexes containing TPPTS are often similar to those of their organic-soluble analogues.

Bis-phosphine complexes of Pt(II) exist as either *cis* or *trans* isomers. The literature is not definitive on the thermodynamic preference for *cis* or *trans* in PtCl_2L_2 complexes; for $\text{PtCl}_2(\text{PPr}_3)_2$ ($\text{Pr} = n\text{-propyl}$) the preference is for 97% *trans*,²³ while for $\text{PtCl}_2(\text{PPh}_3)_2$ the preference is for 90% *cis*.²⁴ Similar results were noted for *cis*- $\text{PtCl}_2(\text{P}(\text{OEt})_3)_2$ (100%) and $\text{PtCl}_2(\text{PBu}_3)_2$, which was 95% *trans*.⁵ *cis*- $\text{PtCl}_2(\text{PPh}_3)_2$ can be prepared in several ways,²⁶ including by addition of PPh_3 to K_2PtCl_4 in aqueous $\text{EtOH}/\text{H}_2\text{O}$ ²⁷ and in refluxing xylene²⁸ or by addition of PtCl_2 to molten PPh_3 .²⁹ *trans*- $\text{PtCl}_2(\text{PPh}_3)_2$ is prepared by a combination of Zeise's salt, $\text{K}[\text{PtCl}_3(\text{C}_2\text{H}_4)]$, with 2 equiv of PPh_3 . *trans*- $\text{PtCl}_2(\text{PPh}_3)_2$ can be isomerized to *cis*- $\text{PtCl}_2(\text{PPh}_3)_2$ in the presence of excess PPh_3 with heat.³⁰


Literature procedures³¹ for the preparation of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ consist of the dissolution of K_2PtCl_4 with 2 equiv of TPPTS in water at room temperature. Pure *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ was claimed to be isolated in high yields after drying. Our efforts to reproduce this synthesis were unsuccessful. In this paper we report the synthesis of $\text{PtCl}_2(\text{TPPTS})_2$ from PtCl_2 in water, yielding pure complex with no ancillary KCl. This complex has been characterized by ^{31}P NMR, ^{195}Pt NMR, and elemental analysis. Its solution behavior in water vs DMSO has been examined via ^{31}P NMR. This complex is an efficient catalyst for the room-temperature Mar-

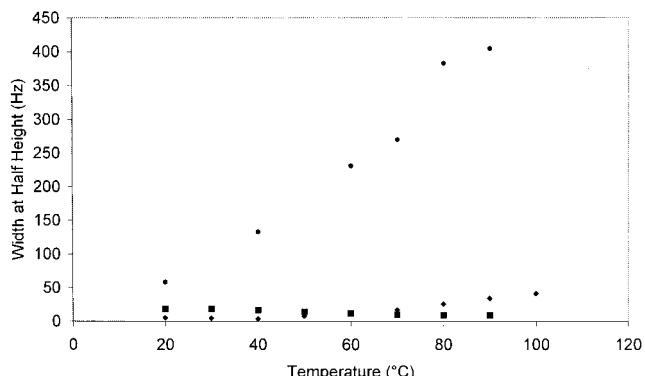
kovnikov hydration of 4-pentyn-1-ol to 5-hydroxy-2-pentanone. Hydration is also regiospecific for the hydration of 3-pentyn-1-ol to 5-hydroxy-2-pentanone under the same reaction conditions.

Results and Discussion


Synthesis of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (1**).** Complex **1** (the compound numbering scheme is shown in Table 1) can be prepared from the addition of 2.05 equiv of TPPTS in water to an 80 °C brown suspension of PtCl_2 ³⁶ in

- (13) Jensen, C. M.; Troglar, W. C. *Science* **1986**, *233*, 1069–1070.
- (14) (a) Ramprasad, D.; Yue, H. J.; Marsella, J. A. *Inorg. Chem.* **1988**, *27*, 3151–3155. (b) Grushin, V. V.; Akhrem, I. S.; Vol'pin, M. E. *J. Organomet. Chem.* **1989**, *371*, 403–419.
- (15) (a) Maruoka, K.; Sano, H.; Shinoda, K.; Yamamoto, H. *Chem. Lett.* **1987**, *73*–76. (b) Zweifel, G.; Brown, H. C. *Org. React.* **1963**, *13*, 2–19.
- (16) (a) Jensen, C. M.; Troglar, W. C. *J. Am. Chem. Soc.* **1986**, *108*, 723–729. (b) Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. *J. Am. Chem. Soc.* **1979**, *101*, 2027. (c) Shibata, A.; Yamaguchi, T.; Ito, T. *Inorg. Chim. Acta* **1997**, *265*, 197–204. (d) Gracia-Mora, J.; Díaz, D. *Transition Met. Chem.* **1998**, *23*, 57–61. (e) Kaminskaia, N. V.; Guzei, I. A.; Kostic, N. M. *J. Chem. Soc., Dalton Trans.* **1998**, 3879–3885. (f) Kaminskaia, N. V.; Kostic, N. M. *J. Chem. Soc., Dalton Trans.* **1996**, 3677–3686. (g) Kim, J. H.; Britten, J.; Chin, J. *J. Am. Chem. Soc.* **1993**, *115*, 3618–3622.
- (17) Meier, I. K.; Marsella, J. A. *J. Mol. Catal.* **1993**, *78*, 31–42.
- (18) (a) Khan, M. M. T.; Halligudi, S. B.; Shukla, S. *J. Mol. Catal.* **1990**, *58*, 299–305. (b) Tokunaga, M.; Wakatsuki, Y. *Angew. Chem., Int. Ed.* **1998**, *37*, 2867–2869.
- (19) Blum, J.; Huminer, H.; Alper, H. *J. Mol. Catal.* **1992**, *75*, 152–160.
- (20) Imi, K.; Imai, K.; Utimoto, K. *Tetrahedron Lett.* **1987**, *28*, 3127–3130.
- (21) Strukul, G.; Varagnolo, A.; Pinna, F. *J. Mol. Catal. A* **1997**, *117*, 413–423.
- (22) (a) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C. *Inorg. Chim. Acta* **1994**, *222*, 317–322. (b) Hartman, J. W.; Hiscox, W. C.; Jennings, P. W. *J. Org. Chem.* **1993**, *58*, 7613–7614. (c) Hiscox, W.; Jennings, P. W. *Organometallics* **1990**, *9*, 1997–1999. (d) Baidossi, W.; Lahav, M.; Blum, J. *J. Org. Chem.* **1997**, *62*, 669–672.
- (23) Chatt, J.; Wilkins, R. G. *J. Chem. Soc.* **1951**, 2532.
- (24) Gillard, R. D.; Pilbrow, M. F. *J. Chem. Soc., Dalton Trans.* **1974**, 2320.
- (25) Pidcock, A.; Richards, R. E.; Venanzi, L. M. *Proc. Chem. Soc. London* **1962**, 184.
- (26) Gillard, R. D.; Pilbrow, M. F. *J. Chem. Soc., Dalton Trans.* **1974**, 2320–2325.
- (27) Jensen, K. A. *Z. Anorg. Chem.* **1936**, *229*, 236.
- (28) Malatesta, L.; Cariello, C. *J. Chem. Soc.* **1958**, 2323.
- (29) (a) Tayim, H. A.; Bouldoukian, A.; Awad, F. *J. Inorg. Nucl. Chem.* **1970**, *32*, 3799. (b) Winzer, A.; Born, E. *Z. Chem.* **1970**, *10*, 438.
- (30) Hsu, C. Y.; Leshner, B. T.; Orchin, M. *Inorg. Synth.* **1979**, *15*, 114–115.
- (31) (a) Larpent, C.; Patin, H. *Appl. Organomet. Chem.* **1987**, *1*, 529–534. (b) Herrmann, W. A.; Kellner, J.; Riepl, H. *J. Organomet. Chem.* **1990**, *389*, 103–128.

Figure 1. ^{31}P NMR spectrum for 1:1 *cis*-PtCl₂(TPPTS)₂ (**1a**) and *trans*-PtCl₂(TPPTS)₂ (**1b**).


water (eq 1). After 12 h at 80 °C, all of the PtCl₂ is

consumed and the resulting pale yellow solution is filtered and dried in vacuo to afford a pale yellow solid (yield 88%). PtCl₂(TPPTS)₂ (**1**) can also be prepared by adding 2.05 equiv of TPPTS in DMSO to an 80 °C DMSO solution of PtCl₂ (soluble at this temperature). After 12 h at 80 °C, a pale solution forms. The product can be precipitated with CH₂Cl₂ and isolated via filtration with a yield of 98%.

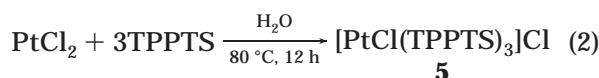
PtCl₂(TPPTS)₂ (**1**) exists as *cis* and *trans* isomers (Figure 1) in the room-temperature ^{31}P NMR spectrum. The syntheses described above form both isomers of **1** in a 3:1 *cis:trans* ratio. The *trans* isomer is converted into the *cis* isomer at temperatures over 80 °C. Performing the synthesis at temperatures over 80 °C produces TPPTS-oxide (OTPPTS, δ 34.5 ppm). Higher concentrations of the *trans* isomer are favored when the reaction is done in DMSO at lower temperatures. When TPPTS is added to a room-temperature DMSO solution of PtCl₂, up to 50% *trans*-PtCl₂(TPPTS)₂ (**1b**) is formed.

The ^{31}P NMR spectrum of **1** in water (all NMR spectra were taken in H₂O with a capillary insert of D₂O for the lock) shows a broad peak at 14.3 ppm ($J_{\text{Pt-P}} = 3720$ Hz) corresponding to *cis*-PtCl₂(TPPTS)₂ (**1a**; 60%), and a sharp peak at 22.3 ppm ($J_{\text{Pt-P}} = 2600$ Hz) corresponding to *trans*-PtCl₂(TPPTS)₂ (**1b**; 20%) (see Table 1 for ^{31}P and ^{195}Pt data for all complexes). Also in the ^{31}P NMR spectrum in water are two broad doublets appearing at 17.6 ppm ($J_{\text{P-P}} = 20$ Hz, $J_{\text{Pt-P}} = 3740$ Hz) and 4.6 ppm ($J_{\text{P-P}} = 20$ Hz, $J_{\text{Pt-P}} = 3920$ Hz) accounting for 20% of the products, assigned to *cis*-[PtCl(H₂O)-(TPPTS)₂]⁺. This complex can be made independently by the addition of 1 equiv of AgOTf (OTf = O₃SCF₃⁻) to **1a**, giving 55% *cis*-[PtCl(H₂O)(TPPTS)₂][OTf] (**4**) by ^{31}P NMR (discussed in detail later in the paper). Trace amounts of [PtCl₃TPPTS]⁻ (**6**) are often observed in the preparation of **1**. Complex **6** exists in higher concentra-

Figure 2. Line width vs temperature for *cis*-PtCl₂TPPTS₂ (**1a**): (◆) PtCl₂(TPPTS)₂ in DMSO; (■) PtCl₂(TPPTS)₂ in DMSO; (●) PtCl₂(TPPTS)₂·2KCl in D₂O.

tions during the reaction, accounting for 30% of the products when 30% of the PtCl₂ remains unreacted (as determined by ^{195}Pt NMR). [PtCl₃TPPTS]⁻ (**6**) is characterized by a singlet at 18.9 ppm ($J_{\text{Pt-P}} = 3850$ Hz) in the ^{31}P NMR and a doublet at 3916 ppm in the ^{195}Pt NMR.

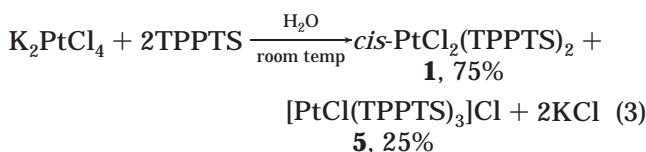
The broadness of the ^{31}P NMR resonance for *cis*-PtCl₂(TPPTS)₂ in H₂O is striking (line width 50 Hz) in comparison to *trans*-PtCl₂(TPPTS)₂ in H₂O (line width 5 Hz) or to *cis*-PtCl₂(TPPTS)₂ in DMSO (line width 2 Hz).³³ When the compound is heated in H₂O the resonance continues to broaden (line width 405 Hz at 90 °C) (as shown in Figure 2). The line broadening probably arises from chemical exchange of H₂O for Cl⁻. The broad resonances for *cis*-PtCl(H₂O)(TPPTS)₂⁺ further broaden and disappear upon heating. Studies on *cis*- and *trans*-PtCl₂(PEt₃)₂ show that the rate constant for associative substitution of Cl⁻ by pyridine is more


(32) Kerr, G. T.; Schweizer, A. E. *Inorg. Synth.* **1980**, *20*, 48–49.

(33) In all of the spectra recorded at high field, the ^{31}P resonances arising from ^{195}Pt coupling are broader than the center, uncoupled peak. This is a well-established consequence of chemical shift anisotropy.³⁴

than 10^3 greater for the *cis* complex than for the *trans*.³⁵ If the rapid substitution for a *cis* complex continues to $\text{PtCl}_2(\text{TPPTS})_2$ in H_2O , the *cis* complex could be broadened by chemical exchange of Cl^- for H_2O while the *trans* complex is less affected. After a sample that had been heated to 95 °C is cooled, the peak for **4** reappears and again accounts for 20% of the sample, while the remaining 80% is now all *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**).

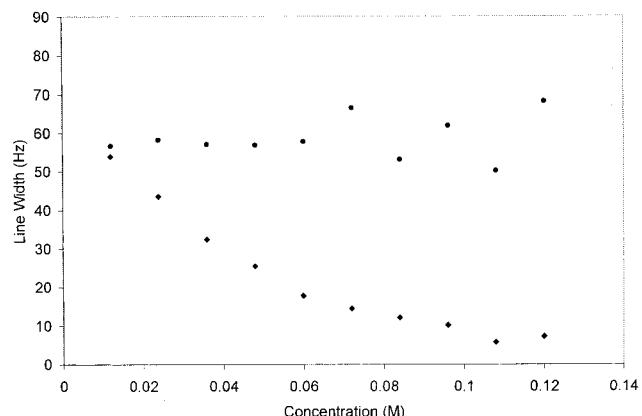
In DMSO, the room-temperature ^{31}P spectrum shows only $\text{PtCl}_2(\text{TPPTS})_2$ in a 80/20 *cis/trans* ratio. *trans*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1b**) is seen as a sharp singlet at 25.3 ppm ($J_{\text{Pt-P}} = 2580$ Hz), and *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) is a sharp singlet at 15.5 ppm ($J_{\text{Pt-P}} = 3720$ Hz). No other peaks are observed, and sharp lines in the spectrum indicate no Cl^- exchange with DMSO is occurring on the NMR time scale. When the temperature is raised to 100 °C, broadening of the peaks occurs, perhaps indicating some exchange of the chloride ligand for DMSO at higher temperatures (Figure 2). Heating also causes a slight increase in the concentration of the *trans* isomer (20–30%).


In the synthesis of $\text{PtCl}_2(\text{TPPTS})_2$ (**1**), addition of more than 2.05 equiv of TPPTS leads to formation of the tris-phosphine complex $[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (**5**) in addition to complex **1**. Complex **5** can be synthesized quantitatively by the reaction of 3 equiv of TPPTS with PtCl_2 in water at 80 °C (eq 2). All the PtCl_2 is consumed after 12 h,

5

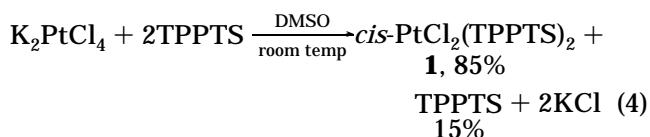
resulting in a yellow solution. Water is removed in vacuo to produce yellow crystals of **5** in 88% yield. $[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (**5**) is characterized by a doublet in the ^{31}P NMR spectrum at 23.8 ppm corresponding to the two phosphines *trans* to each other ($J_{\text{P-P}} = 18$ Hz, $J_{\text{Pt-P}} = 2500$ Hz), and a triplet at 12.6 ppm ($J_{\text{P-P}} = 18$ Hz, $J_{\text{Pt-P}} = 3680$ Hz) corresponding to the unique phosphine *trans* to chloride.³⁶

Also, in contrast to previously published results,³¹ addition of 2 equiv of TPPTS to K_2PtCl_4 at room temperature in water leads to formation of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) plus $[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (**5**) in a 3/1 ratio (eq 3). In water, the ^{31}P resonance corresponding to **1**



is broad while the peaks for **5** are sharp and well-resolved. This indicates that the process causing the broadening of the peaks for **1** and **4** does not involve phosphine exchange for chloride. The product mixture was evacuated to dryness and redissolved in DMSO. The ^{31}P NMR in DMSO shows *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) plus

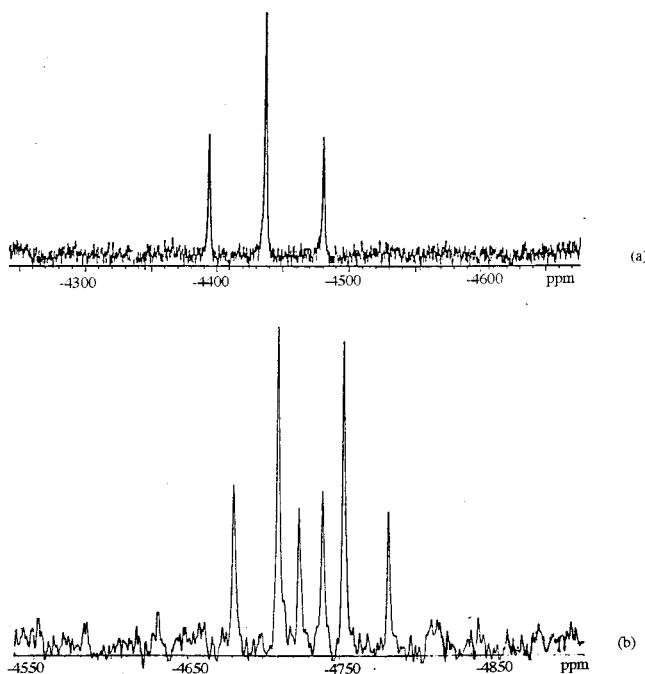
(34) Sanders, J. K. M.; Hunter, B. K. *Modern NMR Spectroscopy*; Oxford University Press: London, 1987; pp 217–218.


(35) Basolo, F.; Chatt, J.; Gray, H. B.; Pearson, R. G.; Shaw, B. L. *J. Chem. Soc.* **1961**, 2207.

(36) (a) Papadogiannakis, G.; Peters, J. A.; Maat, L.; Sheldon, R. A. *J. Chem. Soc., Chem. Commun.* **1995**, 21, 1105–1106. (b) Favez, R.; Roulet, R.; Pinkerton, A. A.; Schwarzenbach, D. *Inorg. Chem.* **1980**, 19, 1356–1365.

Figure 3. Concentration vs line width for *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) in D_2O : (◆) $\text{PtCl}_2(\text{TPPTS})_2 \cdot 2\text{KCl}$ in D_2O ; (●) $\text{PtCl}_2(\text{TPPTS})_2$ in D_2O .

free TPPTS ($\delta = 5.6$ ppm) in an 85/15 ratio. Performing the reaction in DMSO gives the same results (eq 4).



Addition of only 1.5 equiv of TPPTS to K_2PtCl_4 in water produces a crystalline product that is light coral, compared to the expected pale yellow. The ^{31}P NMR spectrum shows only *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**; a broad singlet at 14.3 ppm, $J_{\text{Pt-P}} = 3730$ Hz), but the ^{195}Pt NMR spectrum shows the presence of unreacted K_2PtCl_4 ($\delta(\text{Pt}) = -1627$ ppm), accounting for about 30% total platinum. Addition of more than 1.5 equiv of TPPTS produced some of the tris-phosphine product $[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (**5**), even if all the K_2PtCl_4 was not consumed. This reaction was attempted at various temperatures up to 100 °C with the same results.

As with *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**), *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ with 2KCl (prepared from K_2PtCl_4 and 1.5 equiv of TPPTS) in water exhibits a broad peak in the ^{31}P NMR spectrum. However, unlike **1a**, no peaks corresponding to *cis*- $[\text{PtCl}(\text{H}_2\text{O})(\text{TPPTS})_2]^+$ (cation of **4**) are observed. Increasing the concentration of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ with 2KCl causes the phosphine resonance to narrow, while increasing the concentration of **1a** (without excess KCl) has virtually no effect on its line width (Figure 3) or the ratio of **1a** to **4** present. The extra Cl^- in *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) with 2KCl inhibits formation of **4**. Accordingly, addition of 10 equiv of KCl to a solution of *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) causes a decrease in line width for **1a** from 54 to 3 Hz and a disappearance of the peaks corresponding to **4**.

All complexes have been characterized by ^{195}Pt NMR spectroscopy (Table 1); peaks are referenced to an internal standard of 0.2 M K_2PtCl_4 in 0.4 M $\text{KCl}/\text{D}_2\text{O}$ set to -1627 ppm (vs 0.2 M K_2PtCl_6 in D_2O).³⁷ *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) is characterized by a triplet at -4437 ppm with a phosphorus coupling constant of 3720 Hz, in the

(37) Hollis, L. S.; Lippard, S. J. *J. Am. Chem. Soc.* **1983**, 105, 3494–3503.

Figure 4. ^{195}Pt NMR spectra in D_2O : (a) cis - $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**); (b) $[\text{PtCl}(\text{TPPTS})_3]\text{Cl}$ (**5**).

range for complexes of this type (Figure 4a).^{37,38} trans - $\text{PtCl}_2(\text{TPPTS})_2$ (**1b**) resonates as a triplet at -4072 ppm ($J_{\text{Pt-P}} = 2600$ Hz). $[\text{PtCl}_3\text{TPPTS}]^-$ (**6**) appears as a doublet at -3916 ppm ($J_{\text{Pt-P}} = 3850$ Hz). $[\text{PtCl}(\text{TPPTS})_3]^+$ (cation of **5**) is seen as a doublet of triplets at -4371 ppm with phosphorus coupling of 3680 Hz for the unique phosphine *trans* to a chloride and 2500 Hz for the two phosphines *trans* to each other (Figure 4b).

Reactions of cis - $\text{PtCl}_2(\text{TPPTS})_2$ in Water. Dissolving **1a** in water in the absence of Cl^- produces about 20% of cis - $\text{Pt}(\text{Cl})(\text{H}_2\text{O})(\text{TPPTS})_2^+$ (cation of **4**), which has two broad doublets in the ^{31}P NMR (17.6 and 4.6 ppm) with typical coupling (20 Hz) for *cis* phosphine ligands. The same complex can be made in 55% yield by reaction of 1 equiv of AgOTf with **1a**. This reaction mixture also contains 10% of **1a** and 30% of cis - $[\text{Pt}(\text{H}_2\text{O})_2(\text{TPPTS})_2]^{2+}$ (cation of **3**; a broad singlet at 9.2 ppm in the ^{31}P spectrum and a ^{195}Pt resonance at $-3839(\text{t})$ with $J_{\text{P-Pt}} = 3680$ Hz); the reaction mixture is light yellow. Reaction of cis - $\text{PtCl}_2(\text{TPPTS})_2$ with 2 equiv of AgOTf produces complex **3** (55%) with several unidentified species (a singlet at 5.6 ppm (10% , $J_{\text{Pt-P}} = 3990$ Hz), two doublets at 12.6 and 4.6 ppm (20% , $J_{\text{P-Pt}} = 21$ Hz, $J_{\text{Pt-P}} = 3830$ Hz, 3630 Hz respectively), and a singlet at 12.6 ppm (10% , $J_{\text{Pt-P}} = 3790$ Hz)).

Direct base hydrolysis of cis - $\text{PtCl}_2(\text{TPPTS})_2$ with 2 equiv of NaOH (pH 12) produces **2**, $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2$ (^{31}P , $\delta 10.7(\text{s})$ ppm; ^{195}Pt , $\delta -4083(\text{t})$ ppm, $J_{\text{P-Pt}} = 3530$ Hz²¹), in 80% yield and 20% of OTPPTS. Basic conditions are known to promote OTPPTS formation.³⁹ Base hydrolysis with 1 equiv of NaOH (pH 9) produces **2** and **3** in a $1/1$ ratio. The ^{31}P resonance for **2** is sharp, while

3 has a broad ^{31}P resonance. Acidification of **2** with HCl (2 equiv, pH drops from 12 to 3) produces **3** as the major product. Over the course of a few hours **3** is converted to **1a**, cis - $\text{PtCl}_2(\text{TPPTS})_2$.

Aqua, hydroxo, and oxo complexes of platinum have been reported,^{40–46} although the reaction chemistry in water is limited by the low solubility of the platinum complexes. Sharp and colleagues have reacted PtL_2Cl_2 (L = phosphine ligands) with Ag^+ salts in methanol or ethanol with small amounts of water to produce binuclear complexes with bridging hydroxy ligands, $\text{Pt}_2\text{L}_4(\mu\text{-OH})_2^{2+}$.⁴² Deprotonation with base gives the bridging oxo complexes, $\text{Pt}_2\text{L}_4(\mu\text{-O})_2$. These reactions are accomplished in nonaqueous solvents. For $\text{L} = \text{PPh}_3$ the oxo complex reacts with H_2O to regenerate the bridging hydroxy complex.⁴² Thus, it is unlikely that our reactions in aqueous solution produce an oxo complex. Miyamoto et al.⁴³ prepared $\text{Pt}(\text{OH})_2\text{L}_2$ ($\text{L} = \text{PMe}_3$) under basic conditions; reaction with 1 equiv of HNO_3 gave $\text{Pt}_2\text{L}_4(\mu\text{-OH})_2^{2+}$, and reaction of $\text{Pt}(\text{OH})_2\text{L}_2$ with 2 equiv of HNO_3 gave $\text{Pt}(\text{H}_2\text{O})_2\text{L}_2^{2+}$. No evidence of a bridging oxo ligand was found in these studies in water.⁴³ Reactions of PtL_2Cl_2 ($\text{L}_2 = 1,10\text{-phenanthroline (phen), 2,2'-bipyridine (bipy)}$) have also been examined.^{41,46} Reaction with 2 equiv of Ag^+ produces $[\text{PtL}_2(\mu\text{-OH})]_2^{2+}$ with hydroxo bridges.⁴¹ Further addition of NaOH to pH 8 produces a deep red color indicative of the binuclear complex triply bridged by hydroxide, $\text{Pt}_2(\text{L}_2)_2(\mu\text{-OH})_3^{+}$.⁴¹ Base hydrolysis of PtL_2Cl_2 ($\text{L}_2 = \text{bipy}$) rapidly produces $\text{PtL}_2(\text{OH})_2$.⁴¹ Acidification of the dihydroxo complex produces the binuclear complex $\text{Pt}_2(\text{L}_2)_2(\mu\text{-OH})_2$ at intermediate pH (pH 4); at pH 1 acidification with HNO_3 produces the nitrate complex $\text{PtL}_2(\text{ONO}_2)_2$ upon evaporation of the water.⁴¹ A number of studies have focused on cis - PtL_2Cl_2 ($\text{L} = \text{NH}_3$ (cisplatin), other amine ligand) to understand the interactions with biomolecules in vivo.^{44–46} Most pertinent to our observations is the ^{195}Pt and ^{15}N NMR study of the hydrolysis of cis - $\text{Pt}(\text{NH}_3)_2\text{Cl}_2$.⁴⁴ Reaction with Ag^+ in weak HNO_3 produced the aqua complex $\text{Pt}(\text{NH}_3)_2(\text{OH}_2)_2^{2+}$, which formed the hydroxide-bridged dimer and trimer when the pH was adjusted above 6.65 .⁴⁴ The $\text{Pt}_2(\text{NH}_3)_4(\mu\text{-OH})_2^{2+}$ and $\text{Pt}_3(\text{NH}_3)_6(\mu\text{-OH})_3^{3+}$ dissociate rapidly to cis - $\text{Pt}(\text{NH}_3)_2(\text{OH}_2)_2$ upon treatment with acid (10 min). The formation of dimer and trimer is considered to occur through the monohydroxo intermediate $\text{PtL}_2(\text{OH})(\text{OH}_2)^{+}$.⁴⁵

The previous observations on Pt(II) aqua and hydroxo complexes can be summarized by the pH-dependent

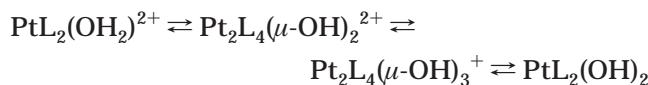
(38) (a) Pregosin, P. S. *Transition Metal Nuclear Magnetic Resonance*; New York: 1991; pp 216–263. (b) Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Taylor, B. F.; Marshall, R. H. *J. Chem. Soc., Dalton Trans.* **1976**, 459–467. (c) Georgii, I.; Mann, B. E.; Taylor, B. F.; Musco, A. *Inorg. Chim. Acta* **1984**, *86*, L81–L82. (d) Caseri, W.; Pregosin, P. S. *Organometallics* **1988**, *7*, 1373–1380.

(39) (a) Kuntz, E. G.; Vittori, O. M. *J. Mol. Catal. A: Chem.* **1998**, *129*, 159–171. (b) Grushin, V. V.; Alper, H. *Organometallics* **1993**, *12*, 1890–1901. (c) McLaughlin, P. A.; Verkade, J. G. *Organometallics* **1998**, *17*, 5937–5940. (d) dos Santos, S.; Tong, Y.; Quignard, F.; Choplin, A.; Sinou, D.; Dutasta, J. P. *Organometallics* **1998**, *17*, 78–89.

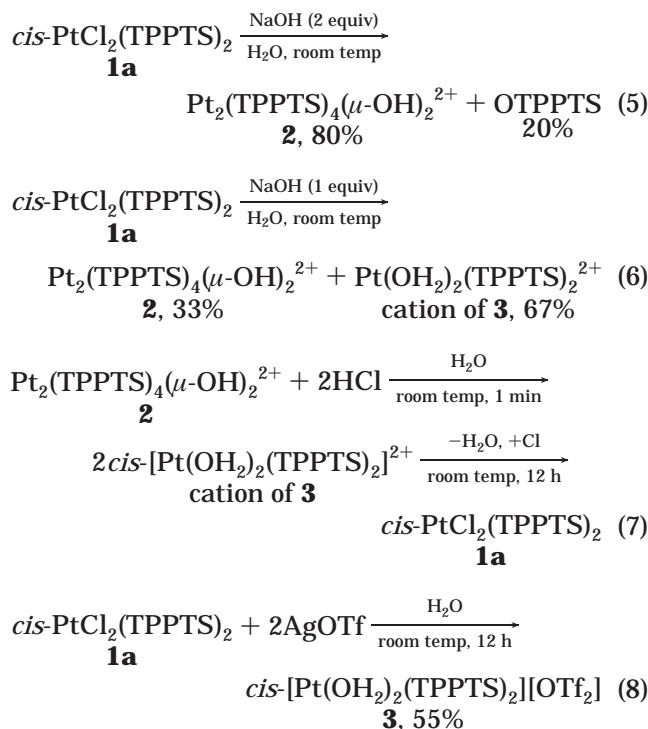
(40) Bushnell, G. W.; Dixon, K. R.; Hunter, R. G.; McFarland, J. J. *Can. J. Chem.* **1972**, *50*, 3694.

(41) Wimmer, S.; Castan, P.; Wimmer, F. L.; Johnson, N. P. *J. Chem. Soc., Dalton Trans.* **1989**, 403.

(42) (a) Li, J. J.; Li, W.; Sharp, P. R. *Inorg. Chem.* **1996**, *35*, 604. (b) Li, J. J.; Li, W.; James, A. J.; Holbert, T.; Sharp, T. P.; Sharp, P. R. *Inorg. Chem.* **1999**, *38*, 1563.

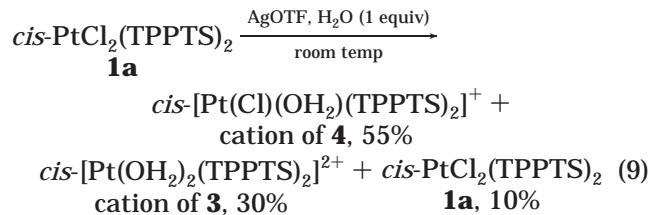

(43) Miyamoto, T.; Suzuki, Y.; Ichida, H. *Bull. Chem. Soc. Jpn.* **1992**, *65*, 3386.

(44) Boreham, C. J.; Broomhead, J. A.; Fairlie, D. P. *Aust. J. Chem.* **1981**, *34*, 659.


(45) Gill, D. S.; Rosenbert, B. *J. Am. Chem. Soc.* **1982**, *104*, 4598.

(46) Bielli, E.; Gidney, P. M.; Gillard, R. D.; Heaton, B. T. *J. Chem. Soc., Dalton Trans.* **1974**, 2133.

equilibria (shown in order of increasing pH)



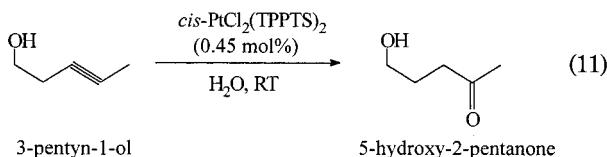
This scheme does not include $\text{PtL}_2(\text{OH})(\text{H}_2\text{O})^+$, the presumed intermediate to the dimer,⁴⁵ and does not include the trimer or higher oligomers. For $\text{L} = \text{NH}_3$ the pH for conversion of the diaquo complex to the dimer is $\text{pH} \approx 7$, while for $\text{L}_2 = \text{bipy}$ the $\text{pH} \approx 1$. For the most reasonable assignment of **2** and **3** the formation of the binuclear complex for $\text{L} = \text{TPPTS}$ occurs at $\text{pH} \approx 9$. For TPPTS, even at pH 12 the distinctive red of $\text{Pt}_2\text{L}_4(\mu\text{-OH})_3^+$ is not observed. The broadness of the ^{31}P resonance for the cation of **3**, $\text{cis}\text{-Pt}(\text{H}_2\text{O})_2(\text{TPPTS})_2^{2+}$, is most consistent with an aqua ligand that is exchangeable as observed for **1** and **4**. The sharpness of the ^{31}P resonance for **2** is consistent with the unusually stable binuclear complex $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2^{2+}$. Acidification of **2**, which quickly produces **3**, is consistent with the observation for $\text{L} = \text{NH}_3$ of a rapid dissociation of $\text{Pt}_2\text{L}_4(\mu\text{-OH})_2^{2+}$ and $\text{Pt}_3\text{L}_6(\mu\text{-OH})_3^{3+}$ upon treatment with acid. The subsequent rearrangement of **3** to **1** is a ligand substitution of Cl^- for H_2O , where the H_2O is more than 10^4 in excess. Cl^- substitution was quite slow for $\text{L} = \text{NH}_3$ complexes also.⁴⁴ Thus, our assignments are **2** as $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2^{2+}$ and **3** as $\text{Pt}(\text{OH}_2)_2(\text{TPPTS})_2^{2+}$. The assignments and spectroscopic characteristics are given in Table 1. Equations 5–8 summarize the aqueous chemistry of $\text{PtCl}_2(\text{TPPTS})_2$.

Synthesis of $\text{cis}\text{-}[\text{PtCl}(\text{H}_2\text{O})(\text{TPPTS})_2]^+$ (Cation of **4).** Complex **4** is observed in the ^{31}P NMR spectrum along with $\text{cis}\text{-PtCl}_2(\text{TPPTS})_2$ (**1a**) when **1a** is dissolved in water. $\text{cis}\text{-}[\text{PtCl}(\text{H}_2\text{O})(\text{TPPTS})_2]^+$ (cation of **4**) can be synthesized independently by the addition of 1 equiv of AgOTf to a water solution of $\text{cis}\text{-PtCl}_2(\text{TPPTS})_2$ (**1a**). The resulting white precipitate (AgCl) can be removed via filtration through Celite. Removing the solvent from the

pale yellow solution yields a pale yellow crystalline solid in 74% yield. ^{31}P NMR indicates that, upon dissolution in water, this solid exists as a mixture of 55% $[\text{PtCl}(\text{H}_2\text{O})(\text{TPPTS})_2]^+$ (cation of **4**), 30% *cis*- $[\text{Pt}(\text{OH}_2)_2(\text{TPPTS})_2]^{2+}$ (cation of **3**), and 10% *cis*- $\text{PtCl}_2(\text{TPPTS})_2$ (**1a**) (eq 9). The other 5% are various unidentified byproducts.

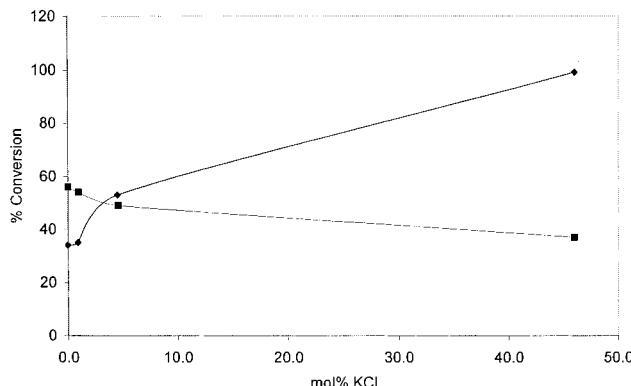
$[\text{PtCl}(\text{H}_2\text{O})(\text{TPPTS})_2]^+$ (**4**) is characterized by a doublet of doublets in the ^{31}P NMR spectrum resonating at 17.6 ppm ($J_{\text{P-P}} = 20$ Hz, $P_{\text{Pt-P}} = 3740$ Hz) and 4.6 ppm ($J_{\text{P-P}} = 20$ Hz, $P_{\text{Pt-P}} = 3920$ Hz). The peak at 17.6 ppm is assigned to the phosphorus *trans* to the Cl ligand, while the peak at 4.6 ppm with larger Pt coupling corresponds to the phosphorus *trans* to the weaker H_2O ligand. The platinum nucleus resonates as two overlapping doublets at -4280 ppm with phosphorus coupling of 3740 and 3920 Hz.

Hydration of Water-Soluble Alkynes. $\text{cis}\text{-PtCl}_2(\text{TPPTS})_2$ (**1a**) in water is an effective catalyst for the room-temperature hydration of the water-soluble alkynes 3-pentyn-1-ol and 4-pentyn-1-ol. Standard reaction conditions consist of 6 mg (0.45 mol %) of $\text{cis}\text{-PtCl}_2(\text{TPPTS})_2$ (**1a**) in 1 mL of water. The solution is nearly colorless and has a pH of 5. Upon addition of ~ 200 equiv of substrate, the solution turns pale yellow and the pH drops to 3 due to the acidity of the substrate. The reaction is monitored by ^1H NMR spectroscopy.


Hydration of the terminal alkyne 4-pentyn-1-ol using $\text{cis}\text{-PtCl}_2(\text{TPPTS})_2$ (**1a**) yields 5-hydroxy-2-pentanone (eq 10). Over the course of several hours at room temper-

ature, the ^1H resonances for 4-pentyn-1-ol disappear and the resonances for 5-hydroxy-2-pentanone grow. The pH remains at 3 during the course of the reaction. However, the ketones themselves only have a pH of 5, very similar to that of the complex in water. The low pH of the final reaction mixture must result from the loss of protons from the platinum center in the first step. The reaction is clean, and no other products are observed. Complete conversion of 4-pentyn-1-ol occurs within 24 h under these conditions, with a turnover frequency (TOF) of 175 h^{-1} at 20% conversion. When the reaction is performed at 80 °C, complete conversion of the substrate occurs within 1 h. The ^{31}P NMR spectrum at the end of the reaction exhibits an AB pattern with platinum satellites, denoting a complex with inequivalent groups *trans* to the phosphine ligands. Using a modeling program, peaks were found to resonate at 16.3 ppm ($J_{\text{Pt-P}} = 3735$ Hz) and 15.6 ppm ($J_{\text{Pt-P}} = 3915$ Hz) with $J_{\text{P-P}} = 16$ Hz. This complex is stable for several weeks in the

reaction mixture; however, in the presence of a large excess of chloride the major species in solution becomes *cis*-PtCl₂(TPPTS)₂ (**1a**). While we were unable to isolate the product, its characteristics are consistent with the alkyne complex Pt(H₂O)(alkyne)(TPPTS)₂²⁺.


Hydration of the internal alkyne 3-pentyn-1-ol is expected to be less selective and should form a mixture of 5-hydroxy-2-pentanone and 5-hydroxy-3-pentanone. Surprisingly, hydration of 3-pentyn-1-ol with catalytic amounts of *cis*-PtCl₂(TPPTS)₂ (**1a**) yields 5-hydroxy-2-pentanone as the only product (eq 11). Conversion of

the alkyne to 5-hydroxy-2-pentanone can be observed using ¹H NMR spectroscopy. The reaction is clean and no other products are observed. The conversion of 3-pentyn-1-ol to 5-hydroxy-2-pentanone is complete after 48 h at room temperature. This corresponds to a TOF of 115 h⁻¹ at 20% conversion. The process is somewhat slower than the conversion of 4-pentyn-1-ol under the same reaction conditions. As with the hydration of 4-pentyn-1-ol, the pH of the solution drops from 5 to 3 upon substrate addition, and the pH remains at 3 throughout the course of the reaction.

Unlike the clean formation of one phosphorus-containing species during the hydration of 4-pentyn-1-ol, many phosphorus-containing species are present during the hydration of 3-pentyn-1-ol. The predominant complex exhibits a singlet in the ³¹P NMR at δ 26.6 ppm with a platinum–phosphorus coupling constant of 3035 Hz. This value is intermediate between *cis* ($J_{\text{Pt–P}} \approx 3200$ –3600 Hz) and *trans* ($P_{\text{Pt–P}} \approx 2200$ –2400 Hz) coupling constants for weak ligands but typical of *trans*-Pt(R)XL₂ (R = alkyl, aryl).⁴⁷ If a large excess of chloride ion is present (~ 100 equiv), the predominant complex in solution after all the alkyne is converted is the starting catalyst *cis*-PtCl₂(TPPTS)₂ (**1a**) along with the unknown species in a 2:1 ratio. Some of the aqua complex *cis*-[PtCl(H₂O)(TPPTS)₂]⁺ (**4**) is also present in the reaction mixture.

The rate of hydration for both 3-pentyn-1-ol and 4-pentyn-1-ol varies with KCl concentration (Figure 5) but, unexpectedly, in opposite directions. Reactions were carried out using 0.45 mol % *cis*-PtCl₂(TPPTS)₂ (**1a**) with 0, 1, 4.5, and 45 mol % KCl (0, 2, 10, and 100 equiv with respect to **1a**) added to monitor the effect of KCl on the rate of hydration. For 4-pentyn-1-ol a decrease in hydration rate is observed. Without KCl added to the catalyst solution, 62% of 4-pentyn-1-ol converted to 5-hydroxy-2-pentanone after 2 h at room temperature. With 100 equiv (45 mol %) of KCl added to the catalyst mixture before alkyne addition, the amount converted drops to 35% after 2 h. The rate of hydration of 3-pentyn-1-ol to 5-hydroxy-2-pentanone shows an increase in conversion rate with increased concentration of KCl added. With no KCl added to the catalyst

Figure 5. Hydration of functionalized alkynes (*cis*-PtCl₂(TPPTS)₂ (**1a**, 0.45 mol %) with 200 equiv of alkyne, 2 h reaction time): (◆) 3-pentyn-1-ol; (■) 4-pentyn-1-ol.

solution, 30% of the 3-pentyn-1-ol is converted to 5-hydroxy-2-pentanone after 2 h of reaction time. With 100 equiv (45 mol %) of KCl added to the catalyst solution, 3-pentyn-1-ol is completely converted to 5-hydroxy-2-pentanone (by ¹H NMR) after 2 h (initial TOF over 550 h⁻¹).

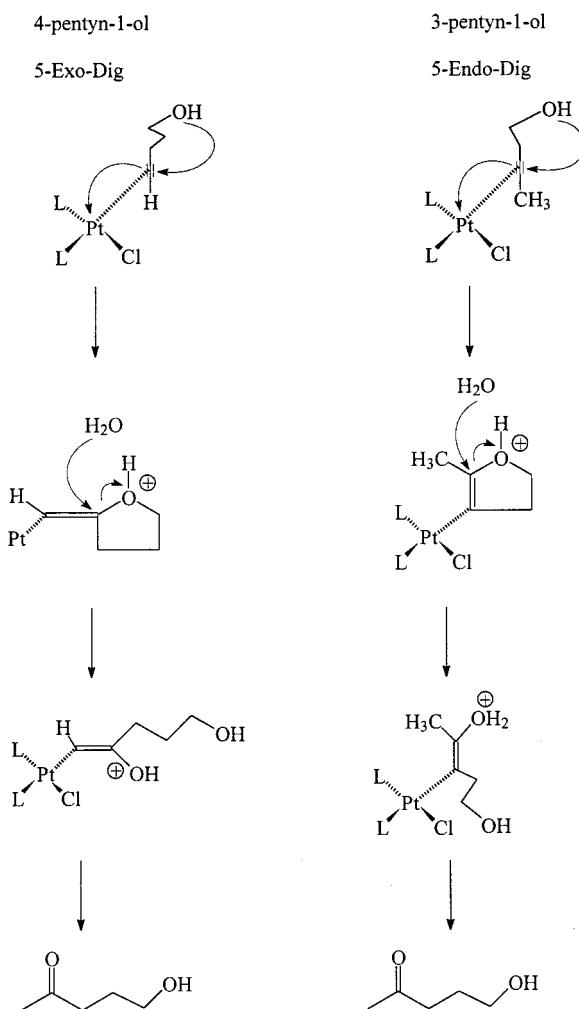
The product of both catalytic hydrations arises through cyclization of the alkynes followed by hydrolysis of the heterocycle (Scheme 1). 5-Hydroxy-2-pentanone is formed from 4-pentyn-1-ol by a 5-exo-dig mechanism followed by hydrolysis, while 5-hydroxy-2-pentanone is formed from 3-pentyn-1-ol by a 5-endo-dig mechanism.⁴⁸ Similar cyclizations have been reported using PdCl₂ in aqueous CH₃CN. Under anhydrous conditions, the heterocycles are the observed products.⁴⁹

The Pt(II) complex serves to activate the alkyne toward intramolecular nucleophilic attack by the pendant OH upon coordination. Alkynes bind to Pt(II) perpendicular to the square plane and offset such that the midpoint of the carbon–carbon bond of the alkyne is above the square plane.^{50–52} For 4-pentyn-1-ol, this binding mode accentuates the inherent charge separation of the alkyne carbons (evidenced by the acidic nature of the terminal hydrogen). This makes the carbon leading to exo attack more positive. In 3-pentyn-1-ol, the carbon leading to endo attack is less positive than the exo carbon of 4-pentyn-1-ol. Accordingly, the hydration of 3-pentyn-1-ol is slower than 4-pentyn-1-ol under standard reaction conditions.

With excess Cl⁻ added, the hydration of 4-pentyn-1-ol is inhibited. The chloride could coordinate along the *z* axis, probably on the side with the least steric inhibition from alkyne. This coordination mode would place the chloride in close proximity to the exo carbon of the alkyne and would inductively reduce the charge distribution that facilitates nucleophilic attack.

For 3-pentyn-1-ol, a similar coordination mode would be expected for added chloride. The chloride would then be in close proximity to the endo carbon, thereby increasing the positive charge on that carbon. The endo carbon would then be more reactive toward nucleophilic

(48) Baldwin, J. E. *J. Chem. Soc., Chem. Commun.* **1976**, 734.


(49) Utimoto, K. *Pure Appl. Chem.* **1983**, 55, 1845.

(50) Davies, G. R.; Hewerton, W.; Mais, R. H. B.; Owston, P. G.; Patel, C. G. *J. Chem. Soc., A* **1970**, 1873.

(51) Davies, B. W.; Payne, N. C. *Can. J. Chem.* **1973**, 51, 3477.

(52) Gerisch, M.; Heinemann, F. W.; Bögel, H.; Steinborn, D. *J. Organomet. Chem.* **1997**, 548, 247.

Scheme 1. Proposed Mechanism for the Catalytic Hydration of 4-Pentyn-1-ol and 3-Pentyn-1-ol with **1a**

attack by OH. Accordingly, there is a dramatic acceleration in rate when 3-pentyn-1-ol is hydrated in the presence of excess Cl^- .

As noted previously, standard reaction conditions result in an acidic reaction mixture. In fact, no hydration of 3-pentyn-1-ol or 4-pentyn-1-ol occurs at a pH over 7. Under basic conditions, $\text{PtCl}_2(\text{TPPTS})_2$ forms $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2^{2+}$, which was shown to be inactive toward alkyne hydration. The catalytic intermediates in the proposed mechanism have not been observed spectroscopically.

As a check on our mechanistic interpretation, we have also examined hydration of 5-hexyn-1-ol, which would be expected to produce 6-hydroxy-2-hexanone by a 6-exo-dig mechanism. Under the same reaction conditions as for hydration of 3- and 4-pentyn-1-ol, 5-hexyn-1-ol gave 6-hydroxy-2-hexanone in 100% yield. This reaction was identical in all aspects to the hydration of 4-pentyn-1-ol. Excess Cl^- inhibited the reaction. The hydration of 5-hexyn-1-ol provides further evidence that excess Cl^- inhibits exo attack of the OH on the coordinated alkyne.

Note that reactions 10 and 11 are hydration reactions. No evidence for the cyclic products from the mechanism is found, but the specificity of the products and the differing Cl^- dependences are consistent with an intramolecular attack by the OH.

Experimental Section

Materials and Methods. Reactions were performed under a dry nitrogen atmosphere using standard Schlenk techniques. Water was triply distilled and deionized and was purged with nitrogen prior to use. All other solvents were purged with nitrogen and used without further purification. Deuterium oxide was purchased from Isotec, Inc. $\text{DMSO}-d_6$ and methanol- d_4 were obtained from Aldrich. K_2PtCl_4 and $\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$ were purchased from Strem Chemicals and used as received. TPPTS⁵³ and PtCl_2 ³² were prepared using literature procedures. All other reagents were obtained from commercial sources and used without further purification.

^1H NMR (400 MHz), ^{31}P NMR, and ^{195}Pt NMR were recorded on a Varian XL 400 spectrometer. ^{31}P NMR spectra were measured at 161.9 MHz, proton-decoupled and referenced to an external sample of 85% H_3PO_4 in D_2O set at 0.00 ppm. ^{195}Pt NMR spectra were measured at 85.97 MHz and referenced using an internal standard of 0.2 M K_2PtCl_4 in 0.4 M $\text{KCl}/\text{D}_2\text{O}$ set to -1627.0 ppm (vs 0.2 M K_2PtCl_4 in H_2O).^{37,54} Analyses were conducted by E and R Microanalytical Laboratory in Parsippany, NJ. pH measurements were performed using a Fisher Scientific Accumet pH meter with a glass pH electrode with a silver/silver chloride reference electrode, referenced to three buffers (pH 4, 7, 10).

PtCl₂(TPPTS)₂ (1). **Method A.** Into a Schlenk flask was weighed 102 mg (0.383 mmol) of PtCl_2 followed by 10.0 mL of H_2O . The brown suspension was heated in an 80 °C oil bath. To this was added 499 mg (0.774 mmol, 2.02 equiv) of TPPTS in 10.0 mL of H_2O . Over 12 h, a yellow solution formed. Filtration from any insoluble material followed by solvent removal in vacuo gave a pale yellow, oily solid of **1** in 88% yield.

Method B. Into a Schlenk flask was weighed 113 mg (0.425 mmol) of PtCl_2 followed by 10.0 mL of DMSO. The brown suspension was heated in an 80 °C oil bath until all the PtCl_2 went into solution, about 5 min. To the resulting brown solution was added 533 mg (0.853 mmol, 2.01 equiv) of TPPTS in 10.0 mL of DMSO. Over 12 h, a light yellow solution formed. Precipitation with CH_2Cl_2 followed by filtration and drying in vacuo produced a cream-colored solid in 98% yield. $^{31}\text{P}\{^1\text{H}\}$ NMR (D_2O ; δ (ppm)): 22.3 s ($^1\text{J}_{\text{P}-\text{Pt}} = 2600$ Hz), **1b** (20%); 14.3 broad s ($^1\text{J}_{\text{P}-\text{Pt}} = 3720$ Hz), **1a** (60%); 17.6 d ($^2\text{J}_{\text{P}-\text{P}} = 20$ Hz, $^1\text{J}_{\text{P}-\text{pt}} = 3740$ Hz), 4.6 d ($^2\text{J}_{\text{P}-\text{P}} = 20$ Hz, $^1\text{J}_{\text{P}-\text{Pt}} = 3920$ Hz), *cis*-[$\text{Pt}(\text{Cl})(\text{H}_2\text{O})(\text{P}(\text{C}_6\text{H}_4\text{-SO}_3\text{Na}_3)_2)]^+$ (cation of **4**, 20%). $^{31}\text{P}\{^1\text{H}\}$ NMR (DMSO; δ (ppm)): 25.3 s ($^1\text{J}_{\text{P}-\text{Pt}} = 2580$ Hz), **1b** (20%); 15.5 s ($^1\text{J}_{\text{P}-\text{pt}} = 3720$ Hz), **1a** (80%). ^{195}Pt NMR (D_2O ; δ (ppm)): -4072.4 t ($^1\text{J}_{\text{P}-\text{Pt}} = 2600$ Hz), **1b**; -4437.2 t ($^1\text{J}_{\text{P}-\text{Pt}} = 3720$ Hz), **1a**. *Calcd* for $\text{PtCl}_2\text{P}_2\text{C}_{36}\text{H}_{24}\text{S}_6\text{O}_{18}\text{Na}_6$: C, 30.82; H, 1.80; S, 13.71; Cl, 5.05. *Found* (method A): C, 30.10; H, 1.91; S, 13.60; Cl, 4.37. *Found* (method B): C, 29.99; H, 2.43; S, 14.29; Cl, 5.05. The product from A carries two water molecules, while the product from B has some DMSO and CH_2Cl_2 in the crystalline material.

Pt₂(TPPTS)₄($\mu\text{-OH}$)₂²⁺ (2). To a solution of 75 mg (0.049 mmol) of $\text{PtCl}_2(\text{TPPTS})_2$ (**1**) in 1.0 mL of H_2O was added 0.180 mL of a 0.55 M aqueous NaOH solution (0.10 mmol, 2 equiv). A color change from pale yellow to dark yellow was observed, along with an increase in pH from 4 to 12. Formation of $\text{Pt}_2(\text{TPPTS})_4(\mu\text{-OH})_2^{2+}$ was confirmed by ^{31}P NMR in 80% yield, along with 20% OTPPTS. $^{31}\text{P}\{^1\text{H}\}$ NMR (D_2O ; δ (ppm)): 10.7 s ($^1\text{J}_{\text{P}-\text{Pt}} = 3530$ Hz), 34.5 s (OTPPTS). ^{195}Pt NMR (D_2O ; δ (ppm)): -4082.7 t ($^1\text{J}_{\text{P}-\text{Pt}} = 3530$ Hz).

cis-[$\text{Pt}(\text{H}_2\text{O})_2(\text{TPPTS})_2](\text{OTf})_2 (3). Into a Schlenk flask were weighed 134 mg (0.088 mmol) of $\text{PtCl}_2(\text{TPPTS})_2$ (**1**) and 48 mg (0.19 mmol, 2.1 equiv) of AgOTf. Dissolution in 3.0 mL of H_2O formed a pale yellow solution. The reaction was stirred$

(53) Herrmann, W. A.; Kohlpainter, C. W. *Inorg. Synth.* **1998**, 32, 14.

(54) Hollis, L. S.; Lippard, S. J. *J. Am. Chem. Soc.* **1983**, 105, 3494–3503.

at room temperature overnight in the absence of light, resulting in formation of a white precipitate which was removed via Celite filtration. Following solvent removal in *vacuo*, a pale yellow solid was isolated in 72% yield. ³¹P NMR showed a mixture of products; the major product was identified as *cis*-[Pt(H₂O)₂(TPPTS)₂][OTf]₂ (**3**). ³¹P{¹H} NMR (D₂O; δ (ppm)): 9.2 broad s ($^1J_{P-Pt} = 3680$ Hz). ¹⁹⁵Pt NMR (D₂O; δ (ppm)): -3838.8 t ($^1J_{P-Pt} = 3680$ Hz).

cis-[PtCl(H₂O)(TPPTS)₂][OTf] (**4**). Into a Schlenk flask were weighed 160 mg (0.106 mmol) of PtCl₂(TPPTS)₂ (**1**) and 28 mg (0.109 mmol, 1.03 equiv) of AgOTf. To this was added 4.0 mL of H₂O to form a pale yellow solution. The reaction was stirred at room temperature overnight in the absence of light, resulting in the formation of a white precipitate, which was removed via Celite filtration. Following solvent removal in *vacuo*, a pale yellow solid was isolated in 74% yield. ³¹P NMR showed a mixture of products; the major product was identified as *cis*-[Pt(H₂O)(Cl)(TPPTS)₂][OTf] (**4**). ³¹P{¹H} NMR (D₂O; δ (ppm)): 17.6 broad d ($^2J_{P-P} = 20$ Hz, $^1J_{P-Pt} = 3740$ Hz, P *trans* to Cl), 4.6 broad d ($^2J_{P-P} = 20$ Hz, $^1J_{P-Pt} = 3920$ Hz, P *trans* to H₂O). ¹⁹⁵Pt NMR (D₂O; δ (ppm)): -4279.7 dd ($^1J_{P-Pt} = 3740$, 3920 Hz).

[PtCl(TPPTS)₃]Cl (**5**). Into a Schlenk flask was weighed 71 mg (0.267 mmol) of PtCl₂ and 504 mg (0.806 mmol, 3.02 equiv) of TPPTS followed by the addition of 10.0 mL of H₂O.

The brown suspension was heated in an 80 °C oil bath. Over 12 h, a yellow solution formed. Filtration from any remaining insoluble material followed by solvent removal in *vacuo* gave a pale yellow solid of **5** in 88% yield. ³¹P{¹H} NMR (D₂O; δ (ppm)): 23.8 d ($^2J_{P-P} = 19$ Hz, $^1J_{P-Pt} = 2500$ Hz, P *trans* to P), 12.6 t ($^2J_{P-P} = 19$ Hz, $^1J_{P-Pt} = 3680$ Hz, P *trans* to Cl). ¹⁹⁵Pt NMR (D₂O; δ (ppm)): -4731.2 dt ($^1J_{P-Pt} = 2500$, 3680 Hz).

General Procedure for Hydration Reactions. Into a NMR tube (containing a fused capillary with D₂O for NMR lock) was weighed 6 mg (0.004 mmol) of **1** plus 0, 2, 10, or 100 equiv of KCl. The tube was sealed with a rubber septum and purged with N₂ for 15 min. H₂O (1.0 mL) was added to form a pale yellow solution, to which was added 200 equiv of alkyne. A color change to yellow along with a drop in pH from 5 to 3 was observed. Formation of ketone was monitored by ¹H NMR spectroscopy.

Acknowledgment. We are grateful to the Department of Energy, Basic Energy Sciences, Grant No. ER 13775, for support of this research. Professor George Nancollas's group provided triply distilled water. Some preliminary observations that led to this research were made by Dr. David Phaho.

OM0104870