

Notes

Generation and Reactions of Transient 9-Silaphenanthrene Derivative

Makoto Oba, Minoru Iida, and Kozaburo Nishiyama*

Department of Material Science and Technology, Tokai University,
317, Nishino, Numazu, Shizuoka 410-0395, Japan

Received April 24, 2001

Summary: Generation and reaction of a 9-silaphenanthrene derivative, a novel class of silaaromatic intermediates, by a thermal retro-ene elimination of propene from the corresponding allylsilane is described. The formation of the transient 9-silaphenanthrene was deduced by the isolation of trapping products from the copyrolysis of the 9-allyl-9,10-dihydro-9-silaphenanthrene derivative with MeOD.

Introduction

Much attention has been focused on the chemistry of aromatic rings containing sp^2 -hybridized silicon atoms. In the past few decades, there have been many reports on the generation and reactions of transient silaaromatics¹ such as sila- and disilabenzenes, silanaphthalene, and silaanthracene. Recently, isolation of stable 2-silanaphthalene and silabenzene carrying a bulky substituent was achieved.² We previously reported an observation of the UV-vis absorption and fluorescence spectra of 9-silaanthracene derivatives produced by UV photolysis of the corresponding 9,10-dihydro-9-silaanthracenes.³ In this paper, we would like to describe the first generation of a 9-silaphenanthrene derivative, a novel class of silaaromatic intermediates, by thermal retro-ene elimination of propene from the corresponding allylsilane.

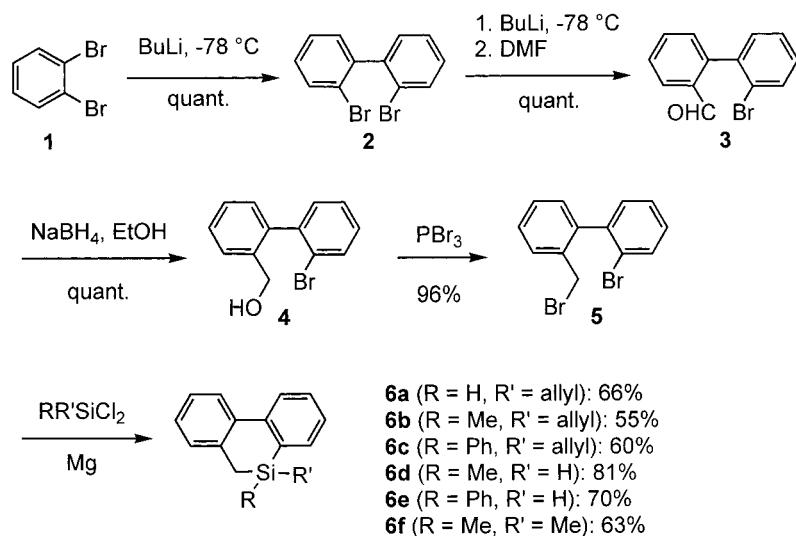
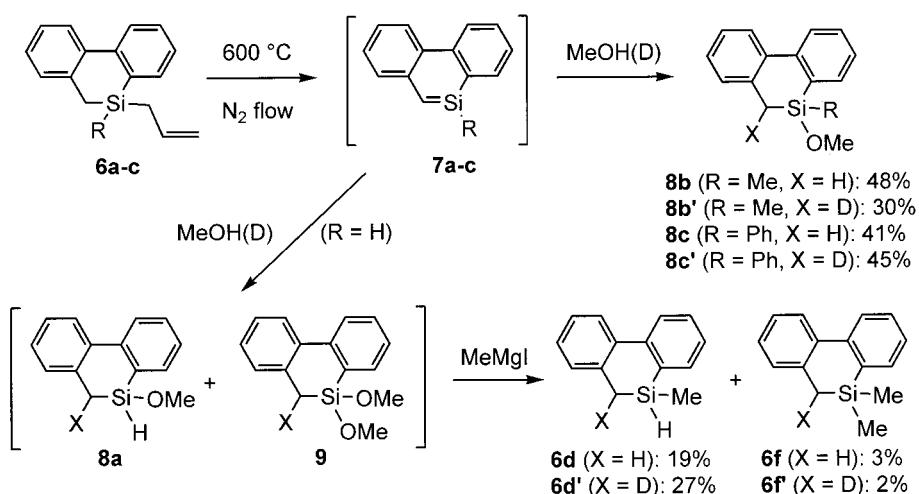
Results and Discussion

9,10-Dihydro-9-silaphenanthrene derivatives **6a–f**, suitable precursors of 9-silaphenanthrene, are new compounds and were prepared according to Scheme 1. 2,2'-Dibromobiphenyl (**2**), prepared by a reported procedure,⁴ was subjected to a formylation reaction followed

by reduction with sodium borohydride to give alcohol **4**, which was subsequently transformed into dibromide **5** using phosphorus tribromide in 96% overall yield. Ring closure of the dibromide **5** with an appropriate dichlorosilane in the presence of magnesium afforded 9,10-dihydro-9-silaphenanthrenes **6a–f** in moderate to good yields (55–81%).

First of all, we attempted to generate the 9-silaphenanthrene **7** via thermal extrusion of a molecular hydrogen from the corresponding 9,10-dihydro-9-silaphenanthrene derivatives **6d** and **6e**. However, we could not detect the products which would indicate the intermediacy of the expected silaaromatics.

The retro-ene fragmentation of the allylsilane was also used to generate silaaromatics such as silabenzene, silatoluene, and silanaphthalene.⁵ We next examined the thermolysis of 9-allyl-9,10-dihydro-9-silaphenanthrene derivatives **6a–c**, and the results are outlined in Scheme 2. When a copyrolysis of **6b** and methanol was carried out in a vertical quartz tube packed with quartz glass wool heated to 600 °C in a tube furnace with a 30 mL/min flow of nitrogen gas, GC analysis of the pyrolysate revealed the formation of adduct **8b** in 48% yield based on the reacted **6b**. This product can be explained as arising from an addition of methanol to the carbon–silicon double bond in the 9-methyl-9-silaphenanthrene (**7b**) generated by thermal retro-ene elimination of propene from the allylsilane **6b**. Further confirmation of the intermediacy of **7b** was obtained through the use of MeOD as a trapping agent. Thus, copyrolysis of **6b** and MeOD afforded the expected deuterated adduct **8b'** in 30% yield. The deuterium content (83%) and the ratio of the diastereoisomers (trans:cis = 50:50) were determined by ¹H NMR spectroscopy. In the ¹H NMR spectrum of the deuterated product **8b'**, the methyl or methoxy group trans to the deuterium atom would suffer larger high-field shift owing to the rigid conformation of the 9,10-dihydro-9-silaphenanthrene framework. Similarly, treatment of **6c** with methanol or MeOD gave the adduct **8c** or its deuterated derivative **8c'** in 41 or 45% (89% D-content, trans:cis = 50:50) yields, respectively.



(1) (a) Raabe, G.; Michl, J. *Chem. Rev.* **1985**, *85*, 419–509. (b) Raabe, G.; Michl, J. In *The Chemistry of Organosilicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; pp 1102–1108. (c) Brook, A. G.; Brook, M. A. *Adv. Organomet. Chem.* **1996**, *39*, 71–158.

(2) (a) Wakita, K.; Tokitoh, N.; Okazaki, R.; Nagase, S. *Angew. Chem., Int. Ed.* **2000**, *39*, 634–636. (b) Wakita, K.; Tokitoh, N.; Okazaki, R.; Takagi, N.; Nagase, S. *J. Am. Chem. Soc.* **2000**, *122*, 5648–5649. (c) Tokitoh, N.; Wakita, K.; Okazaki, R.; Nagase, S.; Schleyer, P. v. R.; Jiao, H. *J. Am. Chem. Soc.* **1997**, *119*, 6951–6952.

(3) (a) Hiratsuka, H.; Tanaka, M.; Okutsu, T.; Oba, M.; Nishiyama, K. *J. Chem. Soc., Chem. Commun.* **1995**, 215–216. (b) Nishiyama, K.; Oba, M.; Takagi, H.; Fujii, I.; Hirayama, N.; Narisu; Horiuchi, H.; Okutsu, T.; Hiratsuka, H. *J. Organomet. Chem.* **2000**, *604*, 20–26. (c) Hiratsuka, H.; Tanaka, M.; Horiuchi, H.; Narisu; Yoshinaga, T.; Oba, M.; Nishiyama, K. *J. Organomet. Chem.* **2000**, *611*, 71–77.

(4) Gilman, H.; Gaj, B. J. *J. Org. Chem.* **1957**, *22*, 447–449.

(5) (a) Barton, T. J.; Burns, G. T. *J. Am. Chem. Soc.* **1978**, *100*, 5246. (b) Maier, G.; Mihm, G.; Baumgärtner, R. O. W.; Reisenauer, H. P. *Chem. Ber.* **1984**, *117*, 2337–2350. (c) Kwak, Y.-W.; Lee, J.-B.; Lee, K.-K.; Kim, S.-S.; Boo, B. H. *Bull. Korean Chem. Soc.* **1994**, *15*, 410–412.

Scheme 1**Scheme 2**

Experimental Section

General Procedures. ^1H , ^{13}C , and ^{29}Si NMR spectra were measured at 400.0, 100.6, and 79.5 MHz, respectively. All chemical shifts are reported as δ values (ppm) relative to tetramethylsilane ($\delta_{\text{H}} 0.00$ and $\delta_{\text{Si}} 0.00$) and the central peak of deuteriochloroform ($\delta_{\text{C}} 77.0$). High-resolution mass spectra (EI) were obtained at an ionization potential of 70 eV.

2,2'-Dibromobiphenyl (**2**) was prepared from 1,2-dibromobenzene (**1**) according to the literature.⁴ All other reagents were of commercial grade and were used as supplied.

2-Bromo-2'-formylbiphenyl (3). To a solution of 2,2'-dibromobiphenyl (**2**, 20.3 g, 65.0 mmol) in THF (70 mL) was added successively 1.6 M BuLi (40.6 mL, 65 mmol) in hexane over a period of 40 min and a solution of DMF (4.75 g, 65.0 mmol) in THF (50 mL) over a period of 25 min at -78°C under an argon atmosphere. After stirring at room temperature overnight, the reaction mixture was quenched with saturated aqueous NH_4Cl solution, and the separated organic layer was dried over MgSO_4 . After removal of the solvent, the residue was chromatographed on silica gel. Elution with a mixture of hexane and ethyl acetate (95:5) afforded the compound **3**⁶ (17.3 g, 65.0 mmol) as a colorless oil in quantitative yield. ^1H NMR (CDCl_3): δ 7.26–7.34 (m, 3 H), 7.41 (m, 1 H), 7.55 (m, 1 H), 7.64–7.70 (m, 2 H), 8.04 (m, 1 H), 9.79 (s, 1 H).

(6) Chen, L. S.; Chen, G. J.; Tamboski, C. *J. Organomet. Chem.* **1980**, 193, 283–292.

2-Bromo-2'-hydroxymethylbiphenyl (4). To a solution of the aldehyde **3** (15.7 g, 60.2 mmol) in ethanol (100 mL) was added NaBH₄ (3.41 g, 90.3 mmol). Completion of the reaction was checked by TLC analysis, and the mixture was extracted with ether. The organic layer was washed with water and dried over MgSO₄. Evaporation of the solvent gave almost pure **4** (15.8 g, 60.1 mmol) as a colorless solid in quantitative yield, mp 83–84 °C (lit.⁷ 83–83.5 °C). ¹H NMR (CDCl₃): δ 4.41 (d, J = 13 Hz, 1 H), 4.50 (d, J = 13 Hz, 1 H), 7.15 (m, 1 H), 7.22–7.27 (m, 2 H), 7.34–7.39 (m, 2 H), 7.45 (m, 1 H), 7.58 (m, 1 H), 7.66 (m, 1 H). MS *m/z* 262 (M⁺), 264 (M⁺ + 2).

2-Bromo-2'-bromomethylbiphenyl (5). To the alcohol **4** (15.8 g, 60.1 mmol) was added PBr₃ (8.05 g, 30.1 mmol) at –10 °C, and the mixture was stirred at room temperature overnight. The reaction mixture was extracted with ether, and the organic layer was dried over MgSO₄. After evaporation of the solvent, the crude product was chromatographed on silica gel. Elution with hexane afforded the compound **5** (18.7 g, 96%) as a pale yellow solid, mp 50–51 °C (lit.⁸ 55–57 °C). ¹H NMR (CDCl₃): δ 4.20 (d, J = 10 Hz, 1 H), 4.42 (d, J = 10 Hz, 1 H), 7.16 (m, 1 H), 7.27 (m, 1 H), 7.35–7.44 (m, 4 H), 7.54 (m, 1 H), 7.68 (m, 1 H). MS: *m/z* 324 (M⁺), 326 (M⁺ + 2), 328 (M⁺ + 4).

9,10-Dihydro-9-silaphenanthrene Derivatives 6a–e. The preparation of 9-allyl-9-methyl-9,10-dihydro-9-silaphenanthrene (**6b**) is representative. To a suspension of Mg (729 mg, 30.0 mmol) in THF (30 mL) was added a solution of the dibromide **5** (3.26 g, 10.0 mmol) and allyldichloromethylsilane (1.86 g, 12.0 mmol) over a period of 40 min. After stirring overnight, the reaction mixture was quenched with saturated aqueous NH₄Cl solution, and the separated organic layer was dried over MgSO₄. After removal of the solvent, the residue was chromatographed on silica gel. Elution with hexane afforded the compound **6b** (875 mg, 55%) as a colorless oil. ¹H NMR (CDCl₃): δ 0.27 (s, 3 H), 1.65 (m, 1 H), 1.67 (m, 1 H), 2.16 (d, J = 15 Hz, 1 H), 2.21 (d, J = 15 Hz, 1 H), 4.81 (m, 1 H), 4.84 (m, 1 H), 5.72 (m, 1 H), 7.16–7.20 (m, 2 H), 7.25 (m, 1 H), 7.30 (m, 1 H), 7.48 (m, 1 H), 7.53 (m, 1 H), 7.60 (m, 1 H), 7.70 (m, 1 H). ¹³C NMR (CDCl₃): δ –6.63, 19.4, 20.0, 113.8, 126.20, 126.24, 126.5, 127.5, 128.0, 130.4, 131.3, 132.9, 133.8, 134.0, 135.7, 137.6, 144.7. ²⁹Si NMR (CDCl₃): δ –11.6. HRMS: *m/z* 250.1209 (M⁺, calcd for C₁₇H₁₈Si 250.1178). Anal. Calcd for C₁₇H₁₈Si: C, 81.54; H, 7.25. Found: C, 81.53; H, 7.31.

Other 9,10-dihydro-9-silaphenanthrene derivatives **6a**, **6c**, **6d**, **6e**, and **6f** were similarly prepared from the dibromide **5** and the appropriate dichlorosilane.

6a: colorless oil. ¹H NMR (CDCl₃): δ 1.73 (m, 1 H), 1.81 (m, 1 H), 2.22 (dd, J = 3, 15 Hz, 1 H), 2.30 (d, J = 15 Hz, 1 H), 4.36 (m, 1 H), 4.85–4.93 (m, 2 H), 5.76 (m, 1 H), 7.13–7.30 (m, 4 H), 7.47 (m, 1 H), 7.56–7.61 (m, 2 H), 7.68 (m, 1 H). ¹³C NMR (CDCl₃): δ 16.7, 17.6, 114.5, 126.3, 126.5, 127.7, 128.1, 130.7, 130.9, 131.4, 133.29, 133.31, 134.2, 134.9, 137.6, 145.0. ²⁹Si NMR (CDCl₃): δ –24.6. IR (neat): ν _{Si–H} 2132 cm^{–1}. HRMS: *m/z* 236.0988 (M⁺, calcd for C₁₆H₁₆Si 236.1021). Anal. Calcd for C₁₆H₁₆Si: C, 81.30; H, 6.82. Found: C, 81.15; H, 6.87.

6c: colorless oil. ¹H NMR (CDCl₃): δ 1.99 (m, 1 H), 2.07 (m, 1 H), 2.39 (d, J = 15 Hz, 1 H), 2.51 (d, J = 15 Hz, 1 H), 4.78–4.90 (m, 2 H), 5.74 (m, 1 H), 7.11–7.35 (m, 7 H), 7.43–7.52 (m, 4 H), 7.59 (m, 1 H), 7.72 (m, 1 H). ¹³C NMR (CDCl₃): δ 18.3, 18.8, 114.6, 126.3, 126.4, 126.6, 127.7, 127.9, 128.0, 129.7, 130.7, 131.6, 132.3, 133.4, 133.7, 134.0, 134.7, 135.1, 137.6, 145.1. ²⁹Si NMR (CDCl₃): δ –17.5. HRMS: *m/z* 312.1339 (M⁺, calcd for C₂₂H₂₀Si 312.1334).

6d: colorless oil. ¹H NMR (CDCl₃): δ 0.33 (d, J = 4 Hz, 3 H), 2.18 (dd, J = 5 and 15 Hz, 1 H), 2.31 (d, J = 15 Hz, 1 H), 4.42 (m, 1 H), 7.17–7.31 (m, 4 H), 7.48 (m, 1 H), 7.59 (m, 2 H), 7.69 (m, 1 H). ¹³C NMR (CDCl₃): δ –7.04, 18.6, 126.2,

126.4, 126.6, 127.6, 128.0, 130.7, 131.2, 132.4, 133.6, 135.4, 137.6, 144.8. ²⁹Si NMR (CDCl₃): δ –25.8. IR (neat): ν _{Si–H} 2120 cm^{–1}. HRMS: *m/z* 210.0897 (M⁺, calcd for C₁₄H₁₄Si 210.0865).

6e: colorless solid, mp 75–76 °C. ¹H NMR (CDCl₃): δ 2.48 (dd, J = 15 and 2 Hz, 1 H), 2.53 (dd, J = 15 and 4 Hz, 1 H), 4.91 (dd, J = 2 and 4 Hz, 1 H), 7.16–7.33 (m, 6 H), 7.38 (m, 1 H), 7.47–7.52 (m, 4 H), 7.64 (m, 1 H), 7.74 (m, 1 H). ¹³C NMR (CDCl₃): δ 18.2, 126.3, 126.7, 127.8, 128.0, 128.1, 130.1, 130.8, 131.0, 131.5, 132.7, 134.6, 134.9, 135.2, 137.8, 145.1, and one carbon is overlapped elsewhere. ²⁹Si NMR (CDCl₃): δ –26.0. IR (neat): ν _{Si–H} 2131 cm^{–1}. HRMS: *m/z* 272.1012 (M⁺, calcd for C₁₉H₁₆Si 272.1021).

6f: colorless oil. ¹H NMR (CDCl₃): δ 0.28 (s, 6 H), 2.23 (s, 2 H), 7.21–7.27 (m, 2 H), 7.30 (m, 1 H), 7.36 (m, 1 H), 7.53 (m, 1 H), 7.60 (m, 1 H), 7.66 (m, 1 H), 7.75 (d, J = 8 Hz, 1 H). ¹³C NMR (CDCl₃): δ –4.37 (2 C), 21.3, 126.11, 126.13, 126.6, 127.5, 127.9, 130.2, 131.2, 132.5, 135.5, 136.2, 137.6, 144.5. ²⁹Si NMR (CDCl₃): δ –10.6. HRMS: *m/z* 224.1010 (M⁺, calcd for C₁₅H₁₆Si 224.1021). Anal. Calcd for C₁₅H₁₆Si: C, 80.30; H, 7.19. Found: C, 80.82; H, 7.28.

9-Methoxy-9,10-dihydro-9-silaphenanthrene Derivatives 8b and 8c. An authentic sample of the methoxysilane **8b** was prepared as follows. A mixture of the compound **6d** (1.05 g, 5.00 mmol) and PdCl₂ (44.3 mg, 0.250 mmol) in CCl₄ (5 mL) was refluxed for 1 h. The insoluble materials were filtered, and to the filtrate was added a solution of Et₃N (758 mg, 7.50 mmol) in methanol (12.5 mL) over a period of 140 min. The reaction mixture was washed with water and dried over MgSO₄. After removal of the solvent, bulb-to-bulb distillation (150 °C/0.4 mmHg) of the residue gave the oily **8b** in 76% yield. ¹H NMR (CDCl₃): δ 0.37 (s, 3 H), 2.11 (d, J = 15 Hz, 1 H), 2.47 (d, J = 15 Hz, 1 H), 3.29 (s, 3 H), 7.19 (m, 1 H), 7.22–7.28 (m, 2 H), 7.34 (m, 1 H), 7.53 (m, 1 H), 7.62 (m, 1 H), 7.64 (m, 1 H), 7.74 (m, 1 H). ¹³C NMR (CDCl₃): δ –5.07, 21.1, 51.5, 126.3, 126.4, 126.7, 127.7, 128.0, 131.1, 131.6, 132.3, 132.7, 135.0, 137.3, 145.2. ²⁹Si NMR (CDCl₃): δ –0.24. HRMS: *m/z* 240.0945 (M⁺, calcd for C₁₅H₁₆OSi 240.0970).

9-Methoxy-9-phenyl-9,10-dihydro-9-silaphenanthrene (8c) was similarly prepared from the compound **6e** in 96% yield as a colorless oil, bp 200 °C/0.2 mmHg. ¹H NMR (CDCl₃): δ 2.46 (d, J = 15 Hz, 1 H), 2.61 (d, J = 15 Hz, 1 H), 3.43 (s, 3 H), 7.19 (m, 1 H), 7.23–7.36 (m, 5 H), 7.40 (m, 1 H), 7.51–7.55 (m, 2 H), 7.56–7.59 (m, 2 H), 7.66 (m, 1 H), 7.77 (m, 1 H). ¹³C NMR (CDCl₃): δ 20.3, 51.9, 126.3, 126.6, 126.7, 127.8, 127.9, 128.0, 130.2, 131.2, 131.3, 131.8, 132.9, 133.8, 134.5, 134.6, 137.4, 145.8. ²⁹Si NMR (CDCl₃): δ –11.2. HRMS: *m/z* 302.1082 (M⁺, calcd for C₂₀H₁₈OSi 302.1127).

Copyrolysis of Allylsilane 6b and MeOH(D). A solution of the allylsilane **6b** (105 mg, 0.420 mmol) in methanol (2.04 g, 63.8 mmol) was pyrolyzed by dropwise addition over a period of 55 min through a nitrogen flow (30 mL/min) vertical quartz tube (30 × 600 mm) packed with quartz glass wool (30 mm) and heated to 600 °C in a tube furnace. The GC analysis of the pyrolysate trapped at 77 K using tetradecane as an internal standard showed the formation of 9-methoxy-9-methyl-9,10-dihydro-9-silaphenanthrene (**8b**) in 48% yield based on the recovered **6b** (12%).

A similar treatment of the allylsilane **6b** (105 mg, 0.420 mmol) in MeOD (2.01 g, 62.8 mmol) gave 9-methoxy-9-methyl-9,10-dihydro-9-silaphenanthrene-10-*d* (**8b**) in 30% yield based on the recovered **6b** (12%). The analytical sample was obtained by bulb-to-bulb distillation (150 °C/0.4 mmHg) followed by repeated chromatography on ODS using methanol as an eluent. ¹H NMR (CDCl₃): δ 0.37 and 0.38 (2 s, 3 H), 2.09 (s, 0.5 H), 2.45 (s, 0.5 H), 3.29 and 3.31 (2 s, 3 H), 7.19 (m, 1 H), 7.23–7.30 (m, 2 H), 7.34 (m, 1 H), 7.53 (m, 1 H), 7.62 (m, 1 H), 7.64 (m, 1 H), 7.74 (m, 1 H). ¹³C NMR (CDCl₃): δ –5.09 and –5.07 (2 s, 1 C), 20.6 and 20.7 (2 t, J = 19 Hz, 1 C), 51.5, 126.3, 126.41 and 126.43 (2 s, 1 C), 126.7, 127.7, 128.0, 131.1, 131.57 and 131.61 (2 s, 1 C), 132.27 and 132.31 (2 s, 1 C), 132.7

and 132.8 (2 s, 1 C), 135.00 and 135.04 (2 s, 1 C), 137.3, 145.3. HRMS: *m/z* 241.1013 (M^+ , calcd for $C_{15}H_{15}DOSi$ 241.1033).

Copyrolysis of Allylsilane 6c and MeOH(D). A solution of the allylsilane **6c** (144 mg, 0.462 mmol) in methanol (2.04 g, 63.8 mmol) and cyclohexane (2 mL) was pyrolyzed at 600 °C. The GC analysis of the pyrolysate showed the formation of 9-methoxy-9-phenyl-9,10-dihydro-9-silaphenanthrene (**8c**) in 41% yield based on the recovered **6c** (12%).

A similar treatment of the allylsilane **6c** (101 mg, 0.324 mmol) in MeOD (2.02 g, 61.2 mmol) gave 9-methoxy-9-phenyl-9,10-dihydro-9-silaphenanthrene-10-*d* (**8c'**) in 45% yield based on the recovered **6c** (6%). The analytical sample was obtained by bulb-to-bulb distillation (200 °C/0.2 mmHg) followed by repeated chromatography on ODS using methanol as an eluent. 1H NMR ($CDCl_3$): δ 2.45 (s, 0.5 H), 2.59 (s, 0.5 H), 3.43 and 3.45 (2 s, 3 H), 7.20 (m, 1 H), 7.24–7.37 (m, 5 H), 7.41 (m, 1 H), 7.51–7.60 (m, 4 H), 7.67 (m, 1 H), 7.78 (m, 1 H). ^{13}C NMR ($CDCl_3$): δ 19.9 and 20.0 (2 t, J = 19 Hz, 1 C), 51.9 and 52.0 (2 s, 1 C), 126.3, 126.6, 126.7, 127.86, 127.92 (2 C), 128.0, 130.2, 131.14 and 131.17 (2 s, 1 C), 131.3, 131.79 and 131.83 (2 s, 1 C), 132.93 and 132.97 (2 s, 1 C), 133.8 and 133.9 (2 s, 1 C), 134.44 and 134.48 (2 s, 1 C), 134.54, 134.59, 137.37 and 137.39 (2 s, 1 C), 145.8. HRMS: *m/z* 303.1171 (M^+ , calcd for $C_{20}H_{17}DOSi$ 303.1190).

Copyrolysis of Allylsilane 6a and MeOH(D). A solution of the allylsilane **6a** (106 mg, 0.449 mmol) in methanol (2.02 g, 63.1 mmol) was pyrolyzed at 600 °C. The pyrolysate was treated with 0.82 M MeMgI in ether (6.10 mL, 5.00 mmol) at room temperature overnight. After usual workup, the GC analysis of the reaction mixture showed the formation of **6d** (19%) and **6f** (3%) based on the recovered **6a** (3%).

A similar treatment of the allylsilane **6a** (103 mg, 0.436 mmol) in MeOD (2.05 g, 62.1 mmol) gave 9-methyl-9,10-dihydro-9-silaphenanthrene-10-*d* (**6d'**) in 27% yield based on the recovered **6a** (6%). The analytical sample was obtained by repeated chromatography on silica gel (hexane) followed by ODS using methanol as an eluent. 1H NMR ($CDCl_3$): δ 0.34 and 0.35 (2 d, J = 4 and 3 Hz, 3 H), 2.18 (d, J = 5 Hz, 0.5 H), 2.31 (s, 0.5 H), 4.42 (m, 1 H), 7.18–7.34 (m, 4 H), 7.50 (m, 1 H), 7.58–7.63 (m, 2 H), 7.70 (m, 1 H). ^{13}C NMR ($CDCl_3$): δ –7.05 and –7.04 (2 s, 1 C), 18.27 and 18.30 (2 t, J = 19 Hz, 1 C), 126.2, 126.5, 126.6, 127.6, 128.0, 130.7, 131.21 and 131.24 (2 s, 1 C), 132.3 and 132.4 (2 s, 1 C), 133.6 and 133.7 (2 s, 1 C), 135.32 and 135.35 (2 s, 1 C), 137.7, 144.8. HRMS: *m/z* 211.0937 (M^+ , calcd for $C_{14}H_{13}DSi$ 211.0928).

OM010337P