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Cyclometalated Tantalum Diphenolate Pincer Complexes:
Intramolecular C —H/M —CH3 o-Bond Metathesis May Be Faster
than O—H/M —CH3 Protonolysis
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Summary: A diphenol linked at the ortho positions to a benzene Scheme 1

ring was metalated with TaglICHs)s. Deuterium labeling of By CH,

the phenol hydrogens and of the linking 1,3-benzenediyl ring © 2KEn, THE tBu O_%ngs tBu

reveals an unexpected mechanismadhiing protonolysis of a O O —_— cH

methyl group, followed by €H/Ta—CHs o-bond metathesis,  tBu Bu 2 Tac'z CHals, O O O

leading to cyclometalation of the linking ring and finally HO Bu Bu
TaCly(CHa); l CH4

aO:
O

protonation of the cyclometalated group by the pendant phenol.
benzene

The activation of G-H bonds is a topic of broad current
interest! The development of a useful synthetic methodology
for selectively functionalizing €H bonds with metal catalysts o’
could be expedited through the fundamental reactivity 6HC ® O 0 O Bu O O O U
bonds with metal speciésln this context, it is important to 4
establish the factors that control the tolerance of the metal center
to functionality while preserving the -€€H activation ability.

The activation of G-H bonds is well established to occur via
five basic transformations: oxidative additiossbond meta-
thesis, 1,2-addition, electrophilic displacement of, kind four- metathesis route using TaQTHs); indeed provided the cyclo-
center cleavage by two metalloradic&€ While some of the metalated produ@ within hours at room temperature (Scheme
late-metal systems show tolerance to heteroatoms and proticl). Formation of3 presumably occurs via intermediate genera-
groups (in fact, selectivity is commonly derived from precoor- tion of a simple salt metathesis product, com@ewhich then
dination of the transition metal to a heteroatom), early-transi- undergoess-bond metathesis, with loss of methane. Whereas
tion-metal organometallic species capable efHCbond acti- the C—H (or C—C) activation route for accessing cyclometalated
vation are generally irreversibly deactivated. Herein we report pincer frameworks is common for late-transition-metal systems,
a tantalum system capable of-El/Ta—CHs o-bond meta- cyclometalation with early metals normally relies on using
thesis under mild conditions. Importantly, this process domi- starting materials for which the phenyl carbon has been
nates, even when a more direct route to the same final productpreviously functionalized with [MgX] or LP. The strategy used
by protonolysis of the TaCHz bond by a pendant phenolis an  in preparing3 is reminiscent of cyclometalations viabond
alternative. metathesis observed for tantalum systems with phenolate ligands

As part of our continuing interest in developing systems for ortho-substituted witkert-butyl, isopropyl, or phenyl grougs.’
olefin polymerization and other organometallic transformations, On the other hand, the previously characterized Taj&H
we have recently investigated a series of a pincer bisphenolate(OCsHs-2,6-Ph)2 and Ta(CHPh)(OCeHz-2,6-Ph). lose CH,
frameworks® The 1,3-benzenebis(phendl)provides an inter- only above 200°C and toluene above 17%&, respectively?

In contrast, the related proposed tantalum trialkyl intermediate

* To whom correspondence should be addressed. E-mail: bercaw@ 2 proceeds readily to cyclometalated prod8ett room temper-
caltech.edu.
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esting precursor, given the possibility of cyclometalation to
generate currently unexplored trianionic pincer systémsalt
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Figure 1. Structural drawings oft (left) and 5-OEt; (right) with thermal ellipsoids at the 50% probability level.

ature. This suggests that the pincer nature of the ligand, with tBu tBu i

initial chelation of the two phenolates, facilitates the cyclo- TaCly(CHs)s @
metalation, possibly by locking the aryl group close to the orien- benzene

tation for o-bond metathesis of [FaCHjz] with [C(ipso)—H]. :g:;D {Bu

An alkane elimination route was explored for the metalation
of 1 with TaCL(CHs)s, leading at room temperature to a species
that still displays signals for a TtHs group and the C(ipse)H

in thell—_| and%3C NMR spectra4; Scheme 1). A single-crystal TaCh(CHa)s leads to the formation of both GHand CHD
X-ray diffraction study supported the spectroscopic assignment (0.9(1):1) (eq 2). Spectroscopic data indicate that position 2 is

as 4 as that shown (Figure 1). The tantalum center is six- j,qeeq deuterateddss).4 Formation of both Ckiand CHD
coordinated, taking into account the weak interaction with the ;, eqs 1 and 2 indicates that part of the methyls leave with a

arene ipso carbon (FeC bond length of 2.791(5) A). The proton (deuterium) from the phenol-®(D) and part with a
methyl group is located trans to the arene system, the pos't'onproton (deuterium) from the bridging 1,3-benzenediyl ring. A
with the smallest trans influence. Isolation 4fends support mechanism that accounts for the observed labeling patterns
to the proposed route for the formation ®{vide supra), and i\ o|ves first protonation of a methyl group to form GH and
indeed compound is also found to underge-bond metathesis 5 (2ntalum dimethy! dichloride phenolate compléx nd its

to genergte cyclom.eta}lated prodtﬁ:’upo'n heating 'to 90C. conformerB; Scheme 2). Subsequent cyclometalation could
Conve_rsmn oftto 5is first orc_ier. An Eyrlng_analy3|s afforded  ,.cur at the two distinct ortho positions {&ind H,). Sterically,
activation parameters for this transformatiokH® = 27.1+ conformationA should be favored oveB, but cyclometalation
0.9 keal/mol; AS" = —2 + 2 call(mol K)) consistent with 3¢ sition H is not observed. Moreover, because activation of
intramolecularo-bond metathesis. The isotope effect of £6  -_p resembles previously reported cyclometalation of tanta-
0.2 at 125°C suggests a sequence involving fast preequilibrium 1, o phenyiphenolates that require much higher temperat@res,
to generate a species with theJ@Hs group from trans to Cis e guggest that-bond metathesis probably does not occur from
followed by rate-determining-bond metathesis. , A or B but rather througl€. In C, coordination of the phenol
Investigation of the outcomes with specifically deuterium- oxygen brings the Cklbond into close proximity to Ta in a
labeled isotopologues dfrevealed some quite surprising results. oo okion that may facilitater-bond metathesis to lose

The reaction ofl-ds with TaCh(CHg)s (eq 1) I(()aads to the  cpuH, and give cyclometalated speciBs Finally, the coor-
formation of4-dz 2sin which theipsoC-D is (ca 75%) replaced ginated phenol protonates the phenyl group to generate the
with protium. When the formation of methanes was monitored

4-dp g4

Scheme 2
tBu tBu
TaCly(CHa)s TH3c| B
i o TaCl(CHy)s Wi
-CH;D tBu - CHaHe ?
tBu
Ha
4-dy 25 HO
by IH NMR spectroscopyhoth CHs and CHsD (2.6(1):1) were 1 B Y B
observed, suggesting that. &% of the methyl groups leave “
with a hydrogen from the connecting 1,3-benzenediyl fing. CHa cH
Following the hypothesis that the proton at the ipso carbon g, + |& tBu eI

originates from the phenol ©H, a derivative labeled at these
positions was prepared (eq 2). The reaction3afl, with
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