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Summary: Organosilane reagents are introduced into organo-
titanium-mediated styrene polymerizations to produce atactic
polystyrene with high actities (up to 16 g polymer/(mol
Ti-h)) and narrow polydispersities. Pswusly recognized
CGCTiMe systems heing marginal styrene homopolymeriza-
tion activity are shown to be up to 3 orders of magnitude more
active for styrene homopolymerization upon addition of organo-
silane.

Polystyrenes have a multitude of useful applications such as

anticorrosion coatings, thermoplastics, and foa@ser the past

decade, methods to produce, control, and understand single
site styrene polymerization processes have been widely ex-
plored? Although many advances have been made in under-

standing the polymerization mechanism(s), only a relatively
restricted class of catalysts is known to efficiently mediate
styrene polymerizatiodWhile CgTiXYZ-derived catalysts (Cp
= substituted or unsubstituted cyclopentadienyl; X, Y=ZlI,
alkyl, alkoxy, etc., ligand) are among the most effectiae

active species are not well-defined and there is debate concern-

ing how many and what the active species may lecontrast,
ansaamido monocyclopentadienyl Ti constrained geometry
catalysts (CGCs) are known to be virtually inactive for styrene
homopolymerizatiof?® It is thought that this inertness is a
consequence of catalyst inactivation/binding by the phenyl ring
m-system of a 2,1-inserted monomer unit (e4).2%6 Previous
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work from this laboratory showed that increasing the CGC

catalyst nuclearity can significantly overcome these constraints
by a process that is thought to involve preferential binding of
the last inserted (inactivating) styrene to the adjacent Ti-center
(e.g.,B).” These observations raise the intriguing question of
whether a similar polymerization rate effect could be achieved
via addition of a weakly basic reagent instead of altering the
catalyst nuclearity, to weaken the competimgomplexation.

We report here that alkenyl-, aryl-, and alkysilane addition to

mononuclear CGCTiMemediated polymerization processes

results in very large activity increases for styrene homopolym-

erization.
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All polymerizations were carried out under rigorously anhy-
drous/anaerobic conditions using procedures minimizing mass
transport effect8 with pseudo-zero-order [styrene] and [organo-
silane]. A typical styrenet+ organosilane copolymerization
proceeds by charging a polymerization reactor, which has been
dried overnight at 160C, with 50 mL of dry toluene. The
reactor is next attached to a high-vacuum line and the toluene
is freeze-thaw—degassed. Styrene (10.0 mL) is vacuum-
transferred into the flask immediately prior to polymerization,
followed by introduction of argon (1.0 atm) with rapid stirring.
Next, organosilane (6.0 mmol) is injected into the reactor with
rapid stirring and positive Ar pressure. In the glovebox, the
active catalyst solution is prepared with 3.5 mg (0.011 mmol)
of Me;Si(MeyCs)('BuN)TiMe,, 9.22 mg (0.010 mmol) of
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Table 1. CGCTiMe,/PhsC*™B(CeFs)s -Mediated Styrene Homopolymerization

entry organosilane/comonomer [organosilane] (mM) actiigy10%) Mpd My/Mpd T(°C) Ty (°C) tacticity?

1 0.10 5500 19 25 104 atactic
2 allylsilane 100 18.0 5200 2.0 25 100 atactic
3 3-butenylsilane 100 1.00 8100 2.3 23 85 atactic
4 5-hexenylsilane 200 120 5600 3.3 30 100 atactic
5 7-octenylsilane 100 100 4400 1.8 32 98 atactic
6 n-hexylsilane 50 5.20 4100 1.8 28 100 atactic
7 n-hexylsilane 100 10.0 4500 1.6 26 95 atactic
8 n-hexylsilane 200 11.0 3700 1.8 24 95 atactic
9 n-hexylsilane 400 11.0 3700 1.7 23 97 atactic

10 di-n-hexylsilane 100 10.0 3900 2.0 23 95 atactic

11 tri-n-hexylsilane 100 13.0 10 500 2.3 23 98 atactic

12 tetramethysilane 100 0.10 3800 2.0 24 102 atactic

13 phenylsilane 100 30.0 9600 2.4 25 95 atactic

14 tetraphenylsilane 100 0 23

15 1-hexene 0.38 3000 2.0 24 110 atactic

aCGC = Me;Si(MesCs)(N'Bu); polymerization conditions: 50 mL of toluene, 60 mP@ocatalyst= 10 umol of PrCB(CsFs)s; catalyst= 10 umol.
cUnits = g/(mol Ti-hr). By GPC in 1,2,4-trichlorobenzene vs polystyrene stand&fdgticity based o3C NMR spectra.

Table 2. EBICGCTi,Me4/PhsC*B(CsFs)s-Mediated Styrene Homopolymerization

entry organosilane/comonomer [organosilane] (mM) actiigy10%) Mpd My/Mpd T(°C) Ty (°C) tacticity?
1 5.87 4800 2.1 27 83 atactic
2 allylsilane 100 28.6 4100 1.9 26 76 atactic
3 3-butenylsilane 100 1.90 6200 1.9 22 105 atactic
4 5-hexenylsilane 200 1.00 3900 1.7 25 97 atactic
5 7-octenylsilane 100 1.00 7000 15 25 98 atactic
6 n-hexylsilane 200 2.00 4600 19 27 101 atactic

aCGC = Me;Si(MesCs)(N'Bu); EBI = ethylene-bridged bis(indenyl); polymerization conditions: 50 mL of toluene, 60 i@iocatalyst= 10 umol of
PhsCB(CsFs)4; catalyst 2Qumol. Units = g/(mol Ti-hr). 9By GPC in 1,2,4-trichlorobenzene vs polystyrene stand&fidscticity based oA3C NMR spectra.

PhC™B(CsFs)4~, and 4 mL of toluene. The catalyst solution is (a) N b

rapidly syringed through a septum-sealed sidearm into the <

rapidly stirring reactor. After 60 min, methanol (5 mL) is d @

injected to quench the reaction. Excess methan&0Q mL) ef

is then used to precipitate the polymer. The polymer is collected -y

by filtration, washed with methanol (200 mL), and dried in

vacuo at 60C for 48 h. Polymeric products were characterized J - a

by H/33C NMR, GPC, and DSC; data are compiled in Tables

land 2. 9 8 7 6 5 4 3 2 1 0 aspem
The results of the CGCTiMeamediated styrene homopolym-

erization experiments (Table 1) reveal a dramatic increase in

polymerization activity upon organosilane addition. Under

identical conditions, CGCTiMemediated styrene homopolym-

erization activities are up to 3 orders of magnitude greater in

the presence of alkenyl-, aryl-, or alkylsilanes than styrene

homopolymerization in the absence of silane. All product

polymers exhibit a single endothermic DSC feature between

80 and 105°C, the characteristic glass transition temperature e e

(Ty) region for atactic polystyrene (Table 1, entries9).° H 150140 130120110100 90 80 70 60 50 40 30 20 sppm

and 13C NMR spectra exhibit characteristic broad resonances Figure 1. (a)*H NMR (400 MHz, GD,Cl,) spectrum and (b}C

at 6 2.2 and 145 ppm, respectively, also indicating atactic NMR (100 MHz, GDCl,) spectrum of the styrene homopolymer

polystyrene (Figure 1). Furthermore, monomodal GPC traces produced by CGCTiMgPhC*B(CeFs)s~ in the presence of an

with polydispersities 0f~2.0 argue that these homopolymers Organosilane.

are produced exclusively via a coordinative/insertive single-

site pathway and that silane addition has little effect on product can also afford narrow polydispersiti€sTo eliminate the

Mn. In aCCOI’d W|th th|S Iatter Observation, there iS inSignificant poss|b|l|ty Of rad|ca”y |n|t|ated po'ymerization’ Contro' po'y_

incorporation of alkenylsilane into the polymer chain as a merizations were performed with AIBN and 5-hexenylsilane

comonomer under these conditions as well as insignificant and are discussed in detail below. In addition, note that radically

polystyrene end-capping via silanolytic chain trandfess  initiated styrene polymerizations typically result in product

judged by NMR spectroscopy (Figure 1). Although radical polymers devoid of vinyl end-grougd.in the present polym-

polymerization processes typically result in very broad product erization systems, the polymer products contain styrenic vinyl
polydispersities, under certain conditions such polymerizations

(10) Silanolytic chain transfer: (a) Amin, S. B.; Marks, TJIJAm. Chem.

(9) Polystyrene physical data: (a) Brandup, J.; Immergut, E. H.; Grulke, Soc.2006 128 4506. (b) Koo, K.; Marks, T. JJ. Am. Chem. S0d.999
E. A., Eds.Polymer Handboakdth ed; Wiley: New York, 1999. (b) Mark, 121, 8791. (c) Koo, K.; Fu, P.-F.; Marks, T. Macromolecule€999 32,
E. J., Ed.Polymer Data HandbogkOxford University Press: New York, 981. (d) Koo, K.; Marks, T. JChemtechl999 29 (10), 13. (e) Fu, P.-F,;
1999. Marks, T. J.J. Am. Chem. S0d.995 117, 10747.
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resonances, as verified Bl NMR spectroscopy (Figure S8).
In addition, known styrené- ethylene copolymerizations were

performed in the presence of organosilanes and these yield

copolymer products in agreement with the literaf#"cUnder

similar conditions, radical copolymerizations inititiated with
AIBN do not yield styrenet ethylene copolymers, whereas
styrene + ethylene copolymerizations mediated by CGC

catalysts in the presence of organosilane evidence up to 50 mol
% styrene incorporation into the polyethylene chain, consistent

with a coordinative/insertive pathwd§00.c
To minimize the possibility of cationic polymerization

Communications

C).1718 This would involve interaction between the weakly
Lewis basic—SiH; group and the electrophilic Ti-cent&r!8

To assess whether any changes in the fundamental catalyst

pathways*?a slight excess of catalyst:cocatalyst is always used strycture are involved in this process (e.g., CGENibond

to ensure complete B&"B(CgFs)4~ consumption’® The ho-

scission?®), control experiments were performed using stoichio-

mopolymers produced in the presence of organosilanes havenetric organosilane additions to CGCTiMand CGCTiMe/

three significant regiochemical signatures, the relative abun-

PhC*+B(CgFs)4~ solutions in GDg.2 Upon organosilane addition

dances of which are consistent with a coordinative/insertive ¢ CGCTiMe at room temperature, no reaction occurs over the

pathway (Figure 1b}314 Thus,3C NMR end-group analysis
reveals three polystyrene microstructures. The resonange at
21.2 ppm indicates 2,1-insertion followed by a second 2,1-
insertion of styrene monomét while the resonance &t 21.8
ppm results from a 2,1-insertion followed by a 1,2-insertion of
styrene monomét Finally, the resonance &t34 ppm indicates
a 1,2-insertion followed by a second 1,2-insertion of mono-
mer/14 The relative intensities indicate that 2,1-insertion
regiochemistry predominaté316

The present low activity of the control CGCTiMenediated

course of 3 h, as judged By NMR spectroscopy. However,
upon addition of stoichiometric alkenylsilane to CGCTiMe
PhC+B(CeFs)4, rapid Ti—C/Si—H transpositio®2*and olefin
coordination are observed at80 °C. Olefin coordinatio?? is
presumably followed by FC/Si—H transposition, indicated
by the gradual disappearance of h8.6 (—SiH3) resonance.
Furthermore, upon addition of excess alkenylsilane to CGCFiMe
PhC™B(CsFs)4~ at room temperature, alkenylsilane homo-
polymerization occurg.Additionally, there are no detectable
changes in thansaamido ligand NMR parameters. Therefore,

styrene homopolymerizations in the absence of organosilane isthere is no evidence that catalyst “CGC” ligation changes upon

in agreement with previous resuifd. As noted above, the
modest activity has been ascribed to inactivation via intra-
molecular coordination of a 2,1-insertion product (e49.8 In

organosilane addition, but rather the expected-TiSi—H
transposition and olefin coordination processes occur.
To eliminate the possibility of silyl radical-initiated styrene

contrast to this scenario, we suggest that weakly Lewis basic polymerizationt! the possible reaction of 5-hexenylsilane with

Si—H groups’ compete with the “back-biting” of the last

a solution of styrene in fDg was investigated, and no reaction

inserted styrene and facilitate incoming monomer coordination was observed over a period ® h by IH NMR spectroscopy.
and enchainment, hence accelerate chain propagation (e.g.However, upon addition of CGCTiMAPhCB(CsFs)s~ to this
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To better evaluate the role of the-Sil functionality, control cantly participate in organosilane chain transfer processes during
polymerizations were also performed with tetramethylsilane and styrene homopolymerization as judged from the consistency of
tetraphenylsilane (Table 1, entries 12 and 14, respectively). polymer M, even in the presence of large organosilane
Importantly, these polymerizations exhibit marginal activity and concentrations (up to 400 mM; Tables 1 and 2; Figure 1).
produce negligible amounts of product polymer. This result This is consistent with the retention of fundamental CGC liga-
further supports the requirement for the weakly basietbio tion structure in these catalysts. Preliminary experiments also
disrupt the styrene “back-biting’A). Tetramethylsilane was reveal that these same organosilanes have little effect on the
used here to ensure that the sterics associated with tetraphenylactivity of Cp*TiMes/PheC™B(CsFs)4~ Styrene polymerization
silane are not the sole reason for the low polymerization activity catalyststob.d

and lack of “back-biting” interference. In addition, the impor- The present results show that organosilanes (alkyl-, alkenyl-,
tance of the StH group was investigated by performing and arylsilanes) have the capability to activate otherwise
polymerizations in the presence of di- and trisubstituted organo- marginally active CGCTiMgderived catalysts for rapid styrene

silanes (Table 1, entries 10, 11). As seen from the high homopolymerization. Organosilanes also exhibit diverse chain
polymerization activities and atactic polymer microstructures, transfer efficiencies, depending on the catalyst architecture.

secondary and tertiary organosilanes have a very similar effectFurther studies of the proposed mechanism are in progress.
on styrene homopolymerization processes.

To further scrutinize the role of the -SH functionality with
respect to polymerization rate enhancement, a series of
EBICGCTiMes-mediated styrene polymerization experi-
ments was also conducted (Table 2). Interestingly, for
EBICGCTiMes-mediated systems, theren®dest to negligible
change in styrene homopolymerization activity in the presence
of organosilane. These results are consistent with the observa
tion that catalyst deactivation by the last inserted styrene is not
known to occur in these systerh Intriguingly, the CGC-
TiMe,- and EBICGCTiMey-derived systems do not signifi-  OM0700260
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