SHORT COMMUNICATIONS

compound 1

glucose and one molecule of rhamnose in their saccharide chain. This paper deals with the isolation and structural elucidation of a new steroidal saponin (1) from the ethanolic extract of the bulbs of *Lilium candidum* L. The new compound was separated chromatographically and characterized by 1 H, 13 C NMR, and MS and identified as (25R, 26R)-3 β - $\{\beta$ -D-glucopyranosyl- $(1\rightarrow 4)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosyloxy $\{-26$ -ethoxy-spirost-5-ene.

Experimental

The m.p. was measured on a Kofler micro hot-stage.

1. Equipment

MS were recorded on ZAB-EQ instrument (Micromass, Manchester, U.K.) using fast atom bombardment (FAB) with a glycerol matrix and Xe at 8 kV as a bombarding gas. Daughter ion linked scans at B/E = const. and parent ion linked scans at $B^2/E = \text{const.}$, were used to determine the sequence of saccharides and the molecular weight of the aglycon. NMR spectra were recorded on a FT-NMR spectrometer Varian UNITY-500 (^1H at 500 MHz and ^{13}C at 125.7 MHz) in CD₃OD. For CC silica gel (Silpearl Kavalier Votice) was used. TLC was carried out on UV 254 or 366 plates and silica gel 60 F₂₅₄ glass plates (Merck).

2. Plant material

Bulbs of Lilium candidum L. were collected near Bratislava, Slovak Republic.

3. Extraction and isolation

Fresh bulbs of *Lilium candidum* L. (1.7 kg) were extracted with EtOH at room temperature. The ethanolic extract was concentrated *in vacuo* (89 g) and partitioned between n-BuOH and H₂O (1:1). The butanolic layer was concentrated *in vacuo* and chromatographed over silica gel (Silpearl Kavalier Votice) with a mixture of CHCl₃ and MeOH (9:1), with increasing MeOH contents. A total of 82 fractions (100 ml) were collected.

Fractions 35–37 were combined and evaporated *in vacuo* and the residue was chromatographed over silica gel with the same solvent system as for the previous fraction to give compound 1 (30 mg), m.p.: 206–208 C. Standard FAB MS: m/z (% rel.int.): 951 (81) [M+Na]⁺, 929 (5) [M+H]⁺, 883 (22) [M+H-C₂H₅OH]⁺, 825 (9), 737 (5) [M+H-C₂H₅OH-Rha]⁺, 721 (4) [M+H-C₂H₅OH-Glc]⁺, 441 (10) [Aglycon+H-H₂O]⁺, 413 (35) [M+H-C₂H₅OH-Rha-Glc-Glc]⁺, 395 (72) [M+H-H₂O-C₂H₅OH-Rha-Glc-Glc]⁺, 253 (100). For 1 H and 13 C NMR data see Table.

Acknowledgement: This work was supported by Scientific Grant Agency of Ministry of Education of Slovak Republic. Project No. 1/5212/98.

References

- 1 Haladová, M.; Eisenreichová, E.; Mučaji, P.; Buděšínský, M.; Ubik, K.: Collect. Czech. Chem. Commun. 63, 205 (1998)
- 2 Haladová, M.; Eisenreichová, E.; Mučaji, P.; Buděšínský, M.; Ubik, K.: Pharmazie 54, 159 (1999)

Received December 30, 1999 Accepted March 1, 2000 RNDr. Eva Eisenreichová, CSc. Department of Pharmacognosy and Botany Pharmaceutical Faculty Comenius University 832 32 Bratislava Slovak Republic Institut für Pharmazie¹ and Institut für Organische Chemie² der Universität Innsbruck², Austria

Sesquiterpenoids from Scorzonera hispanica L.

C. ZIDORN, 1 E. P. ELLMERER-MÜLLER2 and H. STUPPNER1

Scorzonera hispanica L. is a perennial herb, which is native to Southern Russia, the Ukraine, Kazakhstan, Eastern Central, South Eastern and South Western Europe [1]. In Central Europe it is widely cultivated as a vegetable and in former times it was also used in folk-medicine as a mucolytic [2]. In our continuing study of the phytochemistry of the Lactuceae tribe of the Asteraceae family we reinvestigated the constituents of *S. hispanica*. Prior studies led to the isolation and identification of 3,4-dimethoxy-cinnamic acid methyl ester, β -sitosterol, the lignan (3aR)-1c,4c-bis-4 β -D-glucopyranosyloxy-3,5-dimethoxy-phenyl-(3ar,6ac)-tetrahydro-furo-3,4-c-furan as well as the sesquiterpenoid scorzoneroside [3—5].

Repeated CC and subsequent semi-preparative HPLC of methanol extracts of subaerial parts of *S. hispanica* yielded compounds **1–3**. The bisabolane derivative puliglutone (**1**) was identified on the basis of its ¹H NMR, ¹³C NMR and HMBC spectra and in comparison with ¹H NMR data given in the literature [6]. This substance has been reported from the Asteraceae genera *Senecio*, *Oldenburgia* and *Pulicaria*, but up to now neither from the genus *Scorzonera* nor from any other genus of the Lactuceae [6–8]. As ¹³C NMR data for compound **1** have not been published yet, they are given in the experimental section. Compound **2**, could be identified by ¹H NMR, ¹³C NMR and HMBC experiments as ixerisoside D, which represents the 11,13-dehydro-derivative of scorzoneroside [9]. This substance has been isolated from *Ixeris repens*, an Asian species of the Lactuceae tribe, subtribe Crepidinae [9].

The ESIMS of compound 3 showed quasimolecular ion peaks at m/z 526 [M + NH₄]⁺ and 509 [M + H]⁺. HRFABMS established the molecular formula of $C_{26}H_{36}O_{10}$ showing a signal at m/z 509.2381 [M + H]⁺

550 Pharmazie **55** (2000) 7

SHORT COMMUNICATIONS

(calculated for $C_{26}H_{37}O_{10}$, 509.2387). The ¹H NMR and ¹³C NMR data revealed the presence of a sesquiterpene lactone glycoside esterified with angelic acid. ¹H NMR signals of two exocyclic methylene groups (δ_H 5.36, br s, 5.24 br s and 5.08 br s, 5.01 br s), three oxygene bearing methine groups [δ_H 5.63 (dd, $J_{3,2b} = 8.5$ Hz, $J_{3,2a} = 6.5$ Hz), δ_H 4.12 (dd, $J_{6,5} = J_{6,7} = 9.5$ Hz) and δ_H 3.79 (m)], three tertiary protons (δ_H 3.04, 2.90 and 2.74), two pairs of methylene protons (δ_H 2.47, δ_H 1.85 and δ_H 2.93, δ_H 2.43) as well as a methyl group (δ_H 1.41) were assignable to the aglycon moiety (Table 1). The glycoside nature of the compound was supported by a doublet at δ_H 4.45 $(J_{1',2'} = 7.5 \text{ Hz})$ assignable to the anomeric proton of β glucose. The angelic acid moiety was indicated by signals of a vinylic proton [δ_H 6.15 (qq, $J_{3'',4''}=7.5$ Hz, $J_{3'',2''-Me}=1.5$ Hz) and two methyl groups (δ_H 1.98, δ_H 1.90). ^{13}C NMR experiments revealed 26 signals, three assignable to methyl groups, five to methylene groups, 13 to methine groups and five to quarternary carbons. The sesquiterpenoid moiety was identified by comparison of its 1H and ¹³C NMR data (Table) with those reported in the literature for 11β,13-dihydrodesacylcynaropicrin [10–12]. Signal assignments were verified by HSQC and HMBC experiments and the relative configurations were established by a NOE experiment, which showed crosspeaks between protons H-1 and H-3, H-3 and H-5, H-6 and H-8 as well as H-8 and H-11. The location of the sugar residue in position O-8 of the aglycon was deduced from the HMBC experiment which showed crosspeaks between H-8 and C-1' as well as between H-1' and C-8. There were no crosspeaks between the sesquiterpenoid moiety and the butenoate moiety. However, acylation of O-3 was established by the appearance of the deshielded H-3 signal [$\delta_H = 5.63$, 1 H dd $(J_{3,2b} = 8.5, J_{3,2a} = 6.5)]$ which was downfield shifted by about 1 ppm in comparison to the respective signal of

Table: NMR data of compound 3

Position	H NMR	¹³ C NMR
1	3.04 1 H, dd (8.0, 8.0)	45.7
2	2.47 1 H, dt (14.0, 6.5)	37.5
	1.85 1 H, m	
3	5.63 1 H, dd (8.5, 6.5)	76.0
4		150.9
5	2.90 1 H, dd (8.5, 6.5)	52.3
6	4.12 1 H, dd (9.5, 9.5)	81.1
7	2.27 1 H, ddd (9.5, 9.5, 9.5)	55.4
8	3.79 1 H, m	85.3
9	2.93 1 H, dd (14.0, 5.5)	44.3
	2.43 1 H, dd (14.0, 7.5)	
10		145.6
11	2.74 1 H, m	42.4
12		181.7
13	1.41 3 H, d (7.0)	16.8
14	5.08 1 H, br s	116.7
	5.01 1 H, br s	
15	5.36 1 H, br s	113.4
	5.24 1 H, br s	
1'	4.45 1 H, d (7.5)	105.3
2'	3.21 1 H, dd (7.5, 7.5)	75.5
3'	3.30 1 H, m*	78.7
4'	3.30 1 H, m*	71.6
5'	3.30 1 H, m*	78.0
6'	3.88 1 H, dd (11.5, 1.5)	62.8
	3.67 1 H, dd (11.5, 5.0)	
1"		168.0
2"		129.0
3"	6.15 1 H, qq (7.5, 1.5)	139.1
4"	1.98 3 H, dq (7.5, 1.5)	15.9
2"-Me	1.90 3 H, dq (1.5, 1.5)	20.7

^{*} Overlapping signals

11β,13-dihydrodesacylcynaropicrin [10]. The structure of the acyl moiety was identified as angelic acid by ¹H NMR and ¹³C NMR data (Table 1) [13]. Thus, compound **3** is 3-Oangeloyl-11β,13-dihydrodesacylcynaropicrin-8β-D-glucoside, which represents a new natural compound. The closely related 11β,13-dihydrodesacylcynaropicrin-8β-D-glucoside was previously found in the Asteraceae species Saussurea affinis Spreng. and Cynara cardunculus L. [11–12].

Experimental

1. Apparatus

NMR spectra were recorded on a Varian 500 spectrometer at 500 MHz (1H NMR) and 125 MHz (¹³C NMR) in MeOH-d₄.

2. Plant material

Scorzonera hispanica L. (black salsify) of Belgian origin (De Maeyer, Reg. Nr. 32134) was purchased at the local market in Innsbruck. A specimen was deposited at the Institute of Pharmacy.

3. Extraction and isolation

The subaerial parts of S. hispanica (584 g) were freeze-dried, ground and exhaustively extracted with methanol. The methanolic extract was concentrated in vacuo to give 195 g of extract. The extract was partitioned between water and ethylacetate. The EtOAc phase was brought to dryness in vacuo to give 34.8 g of residue. The residue was repeatedly chromatographed on silica gel [Merck Kieselgel 60 (40-63 m)], applying gradients of CH₂Cl₂-MeOH and CH₂Cl₂-(CH₃)₂CO.

Fractions containing predominantly 1 or 2 were finally purified by isocratic semi-preparative HPLC using a Merck $250 \times 10 \, \text{mm}$ LiChrospher RP-18 (10 μm material) column as stationary phase and CH₃CN/H₂O mixtures (25/75; 50/50) as mobile phases. The flow rate was set to 3.5 ml/min and the detection wavelength to 205 nm. For each run 100 μl aliquots of solutions containing 10 mg/ml of the respective substances were injected to yield 14.5 mg of pure compound 1 and 4.1 mg of pure compound 2.

Fractions containing predominantly compound 3 were purified by isocratic MPLC at a flow rate of 1.5 ml/min, using a column (20 × 1 cm) packed with Merck LiChroprep RP-18 material and a mixture of CH₃CN/H₂O (25/75) as mobile phase to yield 8.2 mg of 3.

4. 13C NMR data of puliglutone (1)

 $203.6 \ (C-1),\ 197.1 \ (C-12),\ 165.5 \ (C-3),\ 156.7 \ (C-10),\ 140.6 \ (C-11),\ 127.2 \\ (C-2),\ 50.9 \ (C-6),\ 34.1 \ (C-8),\ 31.7 \ (C-7),\ 31.6 \ (C-4),\ 27.9 \ (C-9),\ 24.2 \\ (C-15),\ 23.7 \ (C-5),\ 16.0 \ (C-14),\ 9.1 \ (C-13).$

Acknowledgements: The authors wish to thank Mr. C. Drach (Inst. f. Pharmazie, Innsbruck) for technical assistance and Prof. Dr. K.-H. Ongania (Inst. f. Organische Chemie, Innsbruck) as well as Dr. S. Sturm (Inst. f. Pharmazie, Innsbruck) for the measurement of mass spectra.

- 1 Meusel, H.; Jäger, E. J.: Vergleichende Chorologie der Zentraleuropäischen Flora, Vol. 3, p. 534, G. Fischer Verlag, Jena, 1992
- Siegmund, F.: Kräuterkunde, p. 529, Karafiat, Brünn, 1874 Tolstikhina, V. V.; Bryanskii, O. V.; Syrchina, A. I.; Semenov, A. A.: Khim.Prir.Soedin. 24, 763 (1988)
- 4 Bryanskii, O. V.: Tolstikhina, V. V.: Semenov, A. A.: Khim, Prir, Soedin. 28, 591 (1992)
- 5 Bryanskii, O. V.; Tolstikhina, V. V.; Zinchenko, S. V.; Semenov, A. A.: Khim. Prir. Soedin. 28, 640 (1992)
- 6 Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H.: Phytochemistry 20, 2389 (1981)
- Zdero, C.; Bohlmann, F.: Phytochemistry 28, 3345 (1989)
- 8 Mossa, J. S.; Muhammad, I.; El-Feraly, F. S.; Hufford, C. D.; McPhail, D. R.; McPhail, A. T.: Phytochemistry 31, 575 (1992)
- Warashina, T.; Ishino, M., Miyase, T.; Ueno, A.: Phytochemistry 29, 3217 (1990)

- Singhal, A. K.; Chowdhury, P. K.; Sharma, R. P.; Baruah, J. N.; Herz, W.: Phytochemistry 21, 462 (1982)
 Das, S.; Baruah, R. N.; Sharma, R. P.; Baruah, J. N.; Kulanthaivel, P.; Herz, W.: Phytochemistry 22, 1989 (1983)
 Shimizu, S.; Ishihara, N.; Umehara, K.; Miyase, T.; Ueno, A.: Chem. Pharm. Bull. 36, 2466 (1988)
 Eliz, L. Willer, S. H., Storge harristry of Organic Companyed at the control of the control
- 13 Eliel, E. L.; Wilen, S. H.: Stereochemistry of Organic Compounds, p. 570, Wiley, New York 1994

Received December 3, 1999 Prof. Dr. H. Stuppner Accepted January 5, 2000 Institut für Pharmazie Innrain 52 6020 Innsbruck Austria hermann.stuppner@ùibk.ac.at