Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P.R. China

# Sesquiterpenes from roots of Lingularia veitchiana

YING WANG, CHENG-SHAN YUAN, YI-FENG HAN, ZHONG-JIAN JIA

Received October 21, 2002, accepted November 25, 2002

Prof. Zhong-Jian Jia, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China jiazj@lzu.edu.cn

Pharmazie 58: 349-352 (2003)

Together with seven known sesquiterpenes, a new guaiane, a new furanoeremophilane, and a new eudesmane were isolated from the roots of *Ligularia veitchiana*. Their structures were elucidated by spectroscopic methods. The bioactivities of three known guaiane sesquiterpenes were determined.

### 1. Introduction

The roots of Lingularia veitchiana (Hemsl.) Greenm. (Compositea), has long been used as a Chinese folk medicine for the treatment of influenza, cough, ulcer, and tuberculosis [1], and has therefore been investigated by our group. Several eremophilane derivatives [2-5] have been isolated from the whole plant material collected from northwest China having a dry and cool climate. However, a phytochemical investigation on the roots of this plant collected from Shen-Nong-Jia wilderness area (which has a wet and warm growing condition in south China with both climate and altitude significantly different from those of northwest China), we isolated a series of guaiane components and other sesquiterpenes. This paper reports the isolation and structure elucidation of three new sesquiterpenes  $9\beta$ -methoxyliguloxide (4), 1,10β-epoxy-6β-isobutanoyloxy-9-oxo-furanoeremophilane (6) and  $8\alpha$ -hydroxy-4(15),11-eudesmadiene (7), as well

10

as seven known sesquiterpenes liguloxidol acetate (1), liguloxidol (2), liguloxide (3),  $6\beta$ -angeloyloxy-1,10 $\beta$ -epoxy-9-oxo-furanoeremophilane (5), liguhodgsonal (8), spathulenol (9), and  $\beta$ -oplopenone (10). In addition, the anti-tumor activities of three guaianes were tested against human hepatoma (SMMC-7721) and ovaria carcinoma (HO-8910) cell lines with vincristin sulphate as a standard.

## 2. Investigations, results and discussion

Compound 1 was obtained as colorless prisms, m.p. 78–80 °C (petroleum ether—acetyl acetate). Its EIMS gave a molecular ion peak at m/z 280, combined with the results of HR-ESIMS ([M + H]<sup>+</sup> at m/z 281.21144, calcd. for C<sub>17</sub>H<sub>29</sub>O<sub>3</sub>, 281.2109), the molecular formula of 1 was deduced to be C<sub>17</sub>H<sub>28</sub>O<sub>3</sub>. The structure of compound 1 was established to be a known guaiane liguloxidol acetate [6] by its spectroscopic data ( $^{1}$ H,  $^{13}$ C NMR,  $^{1}$ H- $^{1}$ H COSY, HMQC, HMBC and  $^{1}$ H- $^{1}$ H NOESY) (Tables 1, 2) and single crystal X-ray analysis (Fig.).

Comparisons of the  $^{1}$ H and  $^{13}$ C NMR spectra data with those of 1, compound 2 and 3 were elucidated as ligul-oxidol and liguloxide [6] respectively. Since 1, 2, 3 were reported previously [6] without  $^{13}$ C NMR data, the assignments of their  $^{13}$ C NMR data were reported in this paper. Compound 4 was obtained as a pale yellow oil. The  $^{13}$ H NMR spectrum showed sixteen  $^{13}$ C resonance and DEPT experiments differentiate these signals as  $5 \times \text{CH}_3$ ,  $4 \times \text{CH}_2$ ,  $5 \times \text{CH}$ , and  $2 \times \text{C}$  (Table 2). The molecular formula of 4 was deduced to be  $C_{16}H_{28}O_2$  combined with the result of its EIMS spectrum in which showed a mole-

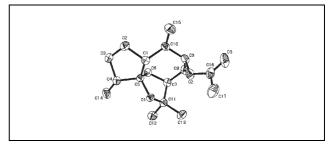



Fig: ORTEP diagram of the crystal structure of 1

Pharmazie **58** (2003) 5

Table 1: <sup>1</sup>H NMR data of compounds 1–7 (400 MHz, CDCl<sub>3</sub>, TMS, δ/ppm)

| Н              | 1**           | 2***              | 3***       | 4***          | 5                | 6                | 7                  |
|----------------|---------------|-------------------|------------|---------------|------------------|------------------|--------------------|
| 1              | 1.93 m*       | 1.92 m*           | 1.93 m*    | 1.93 m*       | 3.38 d 4.6       | 3.31 d 4.8       | 1.3-1.6 m*         |
| 2              | 1.11 m*       | 1.09 m*           | 0.98 m*    | 1.05 m*       | 1.2-2.4 m*       | 1.4-2.1 m*       | 1.3-1.6 m*         |
|                | 1.99 m*       | 1.94 m*           | 1.98 m*    | 1.96 m*       |                  |                  |                    |
| 3              | 1.66 m*       | 1.66 m*           | 1.68 m*    | 1.64 m*       | 1.2-2.4 m*       | 1.4-2.1 m*       | 1.7-1.9 m*         |
|                | 1.07 m*       | 1.04 m*           | 0.95 m*    | 1.03 m*       |                  |                  |                    |
| 4              | 2.12 m*       | 2.06 dd m*        | 2.01 m*    | 2.08 m*       | 1.2-2.4 m*       | 1.4-2.1 m*       | _                  |
| 5              | _             | _                 | _          | _             | _                | _                | 1.82 brd 11.2      |
| 6              | 1.69 m*       | 1.61 dd 15.5, 3.2 | 1.61 m*    | 1.62 m*       | 6.74 s           | 6.60 s           | 1.57 dt 12.0, 5.6  |
|                | 2.17 m*       | 2.07 m*           | 1.96 m*    | 2.06 m*       |                  |                  | 1.23 dt 12.0, 11.2 |
| 7              | 2.10 m*       | 2.08 m*           | 2.00 m*    | 2.08 m*       | _                | _                | 2.67 dt 5.0, 11.2  |
| 8              | 1.67 m*       | 1.78 m*           | 1.58 m*    | 1.89 m*       | _                | _                | 3.89 dt 5.0, 11.2  |
|                | 2.16 m*       | 2.21 m*           | 1.88 m*    | 2.23 ddd      |                  |                  |                    |
| 9              | 5.11 ddd      | 3.56 ddd          | 1.69 m*    | 3.17 ddd      | _                | _                | 1.98 dd 12.0, 11.2 |
|                | 4.2, 2.0, 1.0 | 4.2, 2.0, 1.0     | 1.42 m*    | 4.2, 2.0, 1.0 |                  |                  | 1.63 dd 12.0, 5.0  |
| 10             | 1.73 m*       | 2.03 m*           | 1.76 m*    | 2.04 m*       | _                | _                | _                  |
| 12             | 1.31 s        | 1.44 s            | 1.21 s     | 1.33 s        | 7.47 brs         | 7.44 brs         | 4.71 brs; 4.72 brs |
| 13             | 1.19 s        | 1.15 s            | 1.06 s     | 1.12 s        | 1.92 brs         | 1.91 brs         | 1.75 brs           |
| 14             | 0.96 d 6.8    | 0.94 d 6.7        | 0.84 d 6.7 | 0.97 d 6.7    | 1.26 s           | 1.20 s           | 0.73 s             |
| 15             | 0.90 d 6.6    | 0.90 d 6.7        | 0.78 d 6.7 | 0.88 d 6.7    | 1.03 d 7.2       | 1.00 d 7.3       | 4.54 brs; 4.82 brs |
| 2'<br>3'<br>4' | _             | _                 | _          | _             | _                | 2.69 qq 7.2, 6.8 | _                  |
| 3'             | _             | _                 | _          | _             | 6.29 qq 7.2, 1.0 | 1.25 d 7.2       | _                  |
| 4'             | _             | _                 | _          | _             | 2.08 dq 7.2, 1.0 | 1.23 d 6.8       |                    |
| 5′             | _             | _                 | _          | _             | 1.98 dq 1.0, 1.0 | _                | _                  |
| OMe            | 2.09 s        | _                 | _          | 3.26 s        | _                | _                | _                  |
| OH             | -             | 3.20 brs          | _          | _             | _                | _                | _                  |

cular ion peak at m/z 252. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 4 closely resemble those of 1 (Table 1, 2) except the presence of a methoxyl group instead of the acetyloxyl group in 1. The multiplet due to H-9 appeared at  $\delta$  3.17 (1 H, ddd, J = 4.2, 2.0, 1.0 Hz) that significantly shifted to high field relative to the corresponding resonance of 1 (Table 1). Thus, a 9-methoxyl group was indicated in compound 4. The stereochemistry of 4 was identical with that of 1 because of the same splitting pattern and coupling constants of H-9 (ddd, J = 4.2, 2.0, 1.0 Hz) (Table 1). Compound 4 could then be described as a new guaiane 9β-methoxyliguloxide.

The structure of compound 5 was identified as a known furanoeremophilane 6β-angeloyloxy-1,10β-epoxy-9-oxofuranoeremophilane for its <sup>1</sup>H and <sup>13</sup>C NMR spectral data was completely the same as those reported in the literature

The molecular formula of 6 was deduced to be C<sub>19</sub>H<sub>24</sub>O<sub>5</sub> by its EIMS which gave a molecular ion peak at m/z 332, combined with the <sup>13</sup>C NMR and DEPT spectra which showed the presence of five CH<sub>3</sub>, two CH<sub>2</sub>, five CH, and seven C. The IR absorption bands indicated the presence of an ester carbonyl at 1738 cm<sup>-1</sup> and a conjugated carbonyl at 1690 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum showed the

Table 2: <sup>13</sup>C NMR data of compounds 1–10 (100.16 MHz, CDCl<sub>3</sub>, TMS, δ/ppm)

| C  | 1*      | 2      | 3      | 4      | 5       | 6       | 7       | 8       | 9       | 10      |
|----|---------|--------|--------|--------|---------|---------|---------|---------|---------|---------|
| 1  | 50.6 d  | 50.5 d | 55.8 d | 50.0 d | 62.5 d  | 62.4 d  | 46.4 t  | 121.5 d | 53.4 d  | 27.3 t  |
| 2  | 28.5 t  | 26.9 t | 28.0 t | 28.5 t | 24.9 t  | 24.7 t  | 26.3 t  | 153.4 s | 26.7 t  | 28.4 t  |
| 3  | 29.4 t  | 29.0 t | 29.6 t | 29.3 t | 19.2 t  | 18.8 t  | 40.7 t  | 115.8 d | 41.7 t  | 56.0 d  |
| 4  | 42.7 d  | 42.3 d | 42.3 d | 42.4 d | 31.9 d  | 31.5 d  | 147.7 s | 134.9 s | 80.9 s  | 211.6 s |
| 5  | 92.4 s  | 92.7 s | 92.5 s | 92.1 s | 45.2 s  | 45.2 s  | 49.1 d  | 131.7 s | 54.3 d  | 52.0 d  |
| 6  | 29.2 t  | 28.9 t | 29.0 t | 29.3 t | 68.6 d  | 68.6 d  | 29.0 t  | 29.9 t  | 29.9 d  | 49.2 d  |
| 7  | 46.2 d  | 45.7 d | 45.4 d | 46.6 d | 137.2 s | 136.8 s | 45.6 d  | 41.4 d  | 27.5 d  | 26.5 t  |
| 8  | 33.4 t  | 36.1 t | 33.4 t | 30.9 t | 146.4 s | 146.4 s | 68.0 d  | 27.1 t  | 24.8 t  | 35.2 t  |
| 9  | 76.4 d  | 75.3 d | 30.8 t | 85.6 d | 181.2 s | 181.0 s | 51.0 t  | 30.8 t  | 38.8 t  | 150.8 s |
| 10 | 40.6 d  | 42.0 d | 39.3 d | 41.7 d | 65.5 s  | 65.4 s  | 35.3 s  | 139.9 s | 153.4 s | 51.7 d  |
| 11 | 80.1 s  | 81.1 s | 80.5 s | 79.8 s | 121.6 s | 121.5 s | 150.5 s | 149.0 s | 20.2 s  | 29.5 d  |
| 12 | 24.2 q  | 24.0 q | 22.9 q | 24.1 q | 146.6 d | 146.6 d | 108.0 t | 109.6 t | 16.3 q  | 21.7 q  |
| 13 | 31.5 q  | 30.6 q | 31.4 q | 31.5 q | 8.2 q   | 8.4 q   | 21.0 q  | 20.7 q  | 28.6 q  | 15.6 q  |
| 14 | 13.7 q  | 14.1 q | 13.4 q | 13.8 q | 16.3 q  | 16.1 q  | 17.2 q  | 192.2 d | 26.0 q  | 28.8 q  |
| 15 | 19.4 q  | 19.5 q | 22.8 q | 19.5 q | 15.4 q  | 15.2 q  | 108.3 t | _       | 106.2 t | 103.4 r |
| 1' | 171.2 s |        |        | 57.9 q | 167.1 s | 176.5 s | _       | _       | _       |         |
| 2' | 21.4 q  | _      | _      |        | 126.6 s | 34.1 d  | _       | _       | _       |         |
| 3′ |         | _      | _      | _      | 141.5 d | 19.3 q  | _       | _       | _       |         |
| 4′ | _       | _      | _      | _      | 20.6 q  | 18.5 q  | _       | _       | _       |         |
| 5' | _       | _      | _      | _      | 16.0 q  |         | _       | _       | _       |         |

<sup>\*</sup> Assigned by HMBC and HMQc

350 Pharmazie 58 (2003) 5

Overlapping signals Assigned by HMBC and HMQC

<sup>\*\*\*</sup> Assigned by comparison with compound 1

presence of a  $\beta$ -methyl furan ring at  $\delta$  7.44 (1 H, brs,  $\alpha$ -proton of furan ring) and  $\delta$  1.91 (3 H, brs,  $\beta$ -methyl). Comparison of NMR data with those of compound 5 (Table 1, 2) showed a very close similarity except the presence of an isobutanoyl instead of the angeloyl in 5. The above observations suggested that the 6 $\beta$ -ester group in the case of 6 to be an isobutanoyl. The stereochemistry of 6 was identical with that of 5 by comparing their <sup>1</sup>H NMR data and coupling constants (Table 1). Thus, the structure of compound 6 was identified as 1,10 $\beta$ -epoxy-6 $\beta$ -isobutanoyloxy-9-oxo-furanoeremophilane.

Compound 7 has a molecular formula C<sub>15</sub>H<sub>24</sub>O deduced by its EIMS spectrum ( $[M]^+$  m/z 220) supported by the <sup>13</sup>C NMR and DEPT spectra  $(2 \times CH_3, 7 \times CH_2,$  $3 \times \text{CH}$ , and  $3 \times \text{C}$ ). A hydroxyl group was indicated by the IR absorption band at 3420 cm<sup>-1</sup> and the fragment of m/z 202 [M-H<sub>2</sub>O]<sup>+</sup> in the EIMS spectrum. Its <sup>1</sup>H NMR spectrum showed the presence of two tertiary methyl groups ( $\delta$  0.73 and  $\delta$  1.75 s), of which the latter being attached with olefinic carbon, and two vinylidene groups at  $\delta$  4.71, 4.72 (1 H each, brs), and  $\delta$  4.54, 4.82 (1 H each, brs). Combined with the presence of significant fragment m/z 41  $[C_3H_5]^+$  in EIMS, an isoallyl group could be indicated. The above information and the T3C NMR data of compound 7 (Table 2) suggested a 4(15),11-eudesmadiene framework [9]. The configuration of isoallyl group would be  $7\beta$  (an equatorial position for large group) according to the biogenetic consideration. An oxygen-bearing methine proton was observed at δ 3.89 (1 H, dt, J = 5.0, 11.2 Hz), therefore, the hydroxyl group would be 8α which is the only position to compatible the 7,9-diaxial relationship of H-8\beta with the two large and one small J values:  $J_{8.9\alpha} = J_{8.7\alpha} = 11.2 \text{ Hz}$ ,  $J_{8.9\alpha} = 5.0 \text{ Hz}$ . The hydrogen at C-5 must occupy the axial position by its large coupling constants:  $J_{5,6\beta} = 11.2 \text{ Hz}$ . The 10-Me would also be β-configuration because of its relative high field signal at  $\delta$  0.73 [10]. Thus, the structure of compound 7 was elucidated as 8α-hydroxy-4(15),11-eudesmadiene. Its <sup>13</sup>C NMR spectrum also supported the struc-

Compounds **8**, **9**, **10** were identified as liguhodgsonal [11], spathulenol [12], and  $\beta$ -oplopenone [13] respectively by comparison of their spectral data (EIMS,  $^1H$  NMR and  $^{13}N$  NMR) with those reported in the literature.

Using MTT method, the anti-tumor activities of compounds 1, 2, 3 against human hepatoma (SMMC-7721) and human ovaria carcinoma (HO-8910) cell lines were studied comparison with standard — vincristin sulphate. The half inhibitory concentration (IC $_{50}$ ) against the two cell lines were listed in Table 3. Among the three compounds tested, compound 1 exhibited the most effective anti-tumor activity especially against the human ovaria carcinoma (HO-8910) cell line.

Table 3: Half inhibition concentrations (IC  $_{50}\!)$  of compounds  $1{-}3~(\mu g/ml)$ 

| Tumor cell lines               | Vincristin sulphate | 1      | 2      | 3      |
|--------------------------------|---------------------|--------|--------|--------|
| Hepatoma<br>(SMMC-7721)        | 67.37               | 102.38 | 165.11 | 400.45 |
| Ovarian carcinoma<br>(HO-8910) | 67.44               | 81.29  | 178.09 | 508.80 |

### 3. Experimental

#### 3.1. Equipment

Optical rotations were recorded on a Perkin-Elmer 341 Polarimeter; UV spectra were obtained on a TU-1901 UV-VIS spectrophotometer; IR spectra were taken on a Nicolet Avatar 360 FT-IR spectrometer; The NMR spectra were obtained on a Bruker AM 400 FT-NMR spectrometer with chemical shifts reported in  $\delta$  (ppm) using TMS as an internal standard; MS data were obtained on a VG-ZAB-HS instrument (70 eV); Silica gel (200–300 mesh) used for column chromatography and silica GF254 (10–40  $\mu$ ) for TLC supplied by Qingdao Marine Chemical Factory, Qingdao, P.R. China; Spots were detected on TLC under UV or by heating after spraying with 5%  $H_2SO_4$  in  $C_2H_5OH$ ; Melting points are uncorrected.

#### 3.2. Plant material

The roots of *Ligularia veitchiana* (Hemsl.) Greenm. were collected in Shen-Nong-Jia wilderness area, Hubei Province, P.R. China. And was identified by Prof. Pu-Song Peng, Wuhan Institute of Botany, Chinese Academy of Science, Hubei Province, P.R. China. A voucher specimen has been deposited in the same institute.

### 3.3. Extraction and isolation

Air-dried and powdered roots of L. veitchiana (1.1 kg) were exhaustively extracted with a micture of petroleum ether (60-90 °C)-Et<sub>2</sub>O-MeOH (1:1:1) at RT. The extract was concentrated under reduced pressure, to give a residue (84 g), which was chromatographed on a silica gel column (200-300 mesh, 700 g) with a gradient of petroleum ether-acetone (50:1-1:1, 500 ml each fluent). Combination of the appropriate fractions (monitored by TLC analysis ) led to seven fractions (A-G). The fr.B (petroleum ether-acetone 40:1, 10 g) was chromatographed on a silica gel column (200-300 mesh, 150 g) eluting with a gradient of petroleum ether-EtOAc (50:1-30:1, 100 ml each eluate). Eluates B<sub>9</sub> and B<sub>10</sub> were combined and re-chromatographed on silica gel (10 g) eluting with petroleum ether-acetone (100:1) to afford 9 (12 mg). Eluate B<sub>15</sub> was re-chromatographed on silica gel (10 g) eluting with benzene-acetone (100:1) to afford 10 (15 mg). The fr.C (petroleum ether-acetone 30:1, 10 g) was chromatographed on silica gel (150 g) eluting with petroleum ether–EtoAc (30:1, 100 ml each eluate). Eluate  $C_8$  was purified on a silica gel column (20 g) eluting with petroleum ether-benzene (80:1) to afford 3 (28 mg). Eluates C<sub>12</sub> and C<sub>13</sub> was combined and re-chromatographed on silica gel (20 g) eluting with CHCl<sub>3</sub>-EtOAc (30:1) to afford 2 (22 mg); Compound 1 (60 mg) was obtained as colorless prisms from fr.D and recrystallized from a mixture of petroleum ether-EtOAc at RT. The remaining fr.D was further chromatographed on silica gel (10 g) eluting with CHCl<sub>3</sub>-EtOAc (40:1) to afford 4 (30 mg); The fr.E (2 g) was chromatographed on silica gel (20 g) eluting with petroleum ether-EtOAc  $(20:1,\ 20\ ml\ each\ eluate).$  Eluate  $E_3$  was purified on silica gel  $(5\ g)$  eluting with petroleum ether-acetone (20:1) to afford 7 (11mg). Compound 5 (5 mg) was obtained by preparative TLC of eluate E2 developed with CHCl<sub>3</sub>-EtOAc (40:1); The fr.F (3 g) was separated on silica gel (30 g) with elution of petroleum ether-EtOAc (20:1, 20 ml each eluate). Eluate F<sub>4</sub> and F<sub>5</sub> was separated respectively by silica gel (10 g) with elution of CHCl<sub>3</sub>-acetone (100:1) to afford **6** (26 mg) and **8** (14 mg).

### 3.4. Liguloxidol acetate (1)

Colorless prisms, m.p. 78–80 °C (petroleum ether—acetyl acetate), IR ( $v_{\rm max}^{\rm KBr}$ , cm $^{-1}$ ): 2970, 2927, 1731, 1239, 1013, 969, 875; EIMS m/z (rel int): 280 [M] $^+$  (0.7), 265 (5), 205 (15), 105 (12), 95 (12), 81 (19), 69 (24), 55 (51), 43 (100); HR-ESIMS m/z: 281.21144 [M + H] $^+$ ;  $^1$ H and  $^{13}$ C NMR data see Tables 1, 2.

### 3.5. Liguloxidol (2)

Pale yellow oil; EIMS m/z (rel int): 238 [M]<sup>+</sup> (2), 223 (53), 205 (45), 161 (22), 105 (34), 81 (53), 69 (71), 55 (100);  $^{1}$ H and  $^{13}$ C NMR data see Tables 1, 2.

### 3.6. Liguloxide (3)

Pale yellow oil; EIMS m/z (rel int): 222 [M]<sup>+</sup> (9), 207 (100), 189 (53), 164 (16), 149 (37), 137 (41), 109 (43), 81 (40), 55 (43), 41 (44);  $^{1}$ H and  $^{13}$ C NMR data see Tables 1, 2.

### 3.7. $9\beta$ -Methoxyliguloxide (4)

Pale yellow oil,  $[\alpha]_D^{21}$  -30.0 (c, 0.30, CHCl<sub>3</sub>); EIMS m/z (rel int): 252  $[M]^+$  (0.5), 237 (45), 205 (37), 187 (16), 161 (12), 147 (10), 123 (20), 95 (22), 69 (46), 55 (96), 41 (100);  $^1H$  and  $^{13}C$  NMR data see Tables 1, 2.

### 3.8. $6\beta$ -Angeloyloxy1,10 $\beta$ -epoxy-9-oxo-furanoeremophilane (5)

Colorless needles; UV ( $\lambda_{max}$ , nm, CHCl<sub>3</sub>): 284; EIMS m/z (rel int): 344 [M]<sup>+</sup> (4), 262 [M-COC(CH<sub>3</sub>)CH(CH<sub>3</sub>)]<sup>+</sup> (17), 244 [M-OAng]<sup>+</sup> (3), 189

(7), 151 (18), 137 (11), 83 (100), 55 (29); <sup>1</sup>H and <sup>13</sup>C NMR data see

### 3.9. 1,10\beta-Epoxy-6\beta-isobutanoyloxy-furanoeremophil-9-one (6)

Pale yellow gum,  $[\alpha]_{\rm D}^{20}$  –17.6 (c, 0.50, CHCl<sub>3</sub>), IR ( $v_{\rm max}^{\rm film}$  cm<sup>-1</sup>): 2974, 2938, 1738, 1690, 1534, 1462, 1414, 1385, 1146, 983, 914, 754; UV ( $\lambda_{\rm max}$ , nm, CHCl<sub>3</sub>): 286; EIMS m/z (rel int): 332 [M]<sup>+</sup> (0.5), 262 [M-COCH(CH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> (55), 228 (71), 213 (43), 178 (99), 151 (46), 137 (53), 83 (100), 71 (67), 55 (49), 43 (82); <sup>1</sup>H and <sup>13</sup>C NMR data see Tables 1, 2.

#### 3.10. $8\alpha$ -Hydroxy-4(15),11-eudesmadiene (7)

Colorless oil,  $[\alpha]_D^{20}$  +14.8 (c, 1.19, CHCl<sub>3</sub>); EIMS m/z (rel int): 220 [M]<sup>+</sup> (12), 202 [M-H<sub>2</sub>O]<sup>+</sup> (35), 187 (56), 159 (100), 145 (53), 131 (58), 107 (83), 91 (88), 55 (67), 41 (96); <sup>1</sup>H and <sup>13</sup>C NMR data see Tables 1, 2.

#### 3.11. Liguhodgsonal (8)

Colorless needles; EIMS m/z (rel int): 216 [M]+ (92), 201 [M-CH<sub>3</sub>]+ (100), 173 (40), 145 (24), 120 (21), 91 (17), 77 (6); <sup>1</sup>H NMR δ ppm (CDCl<sub>3</sub>, 400 MHz): 6.85 (1 H, d, 2.6 Hz, H-1), 7.14 (1 H, d, 2.6 Hz, H-3), 3.41 (1 H, dd, 17.5 Hz, 4.6 Hz, H-6α), 2.85 (3 H, m, H-6β, 9), 2.34 (1 H,  $^{11}$  (111, uu, 17.3 Hz, 4.0 Hz, H-0u), 2.63 (3 H, m, H-6p, 9), 2.34 (1 H, m, H-7α), 1.96 (1 H, m, H-8α), 1.65 (1 H, m, H-8β), 4.79 (1 H, brs, H-12), 4.81 (1 H, brs, H-12), 1.82 3 H, s, H-13), 10.26 (1 H, s, CHO), 4.93 (1 H, brs, -OH);  $^{13}$ C NMR data see Table 2.

#### *3.12. Spathulenol* (9)

Colorless oil; EIMS m/z (rel int): 220 [M]<sup>+</sup> (0.3), 205 [M-CH<sub>3</sub>]<sup>+</sup> (11), 159 (10), 119 (18), 91 (37), 79 (33), 43 (100);  $^1H$  NMR  $\delta$  ppm (CDCl<sub>3</sub>, 400 MHz): 1.04 (3 H, s, H-12), 1.06 (3 H, s, H-13), 1.28 (1 H, s, H-15), 4.66 (1 H, brs, H-14), 4.69 (1 H, brs, H-14);  $^{13}C$  NMR data see Table 2.

### 3.13. β-Oplopenone (10)

Colorless needles; IR ( $v_{max}^{KBr}$ , cm<sup>-1</sup>): 2953, 2871, 1709, 1357, 1157, 885; Colorless needles; IK (V<sub>max</sub>, cm · ): 29.33, 26/1, 1709, 1357, 1157, 665, EIMS m/z (rel int): 220 [M]<sup>+</sup> (7), 177 (43), 135 (14), 121 (13), 107 (21), 91 (28), 43 (100); <sup>1</sup>H NMR δ ppm (CDCl<sub>3</sub>, 400 MHz): 0.65 (3 H, d, 6.7 Hz, H-12), 0.90 (3 H, d, 7.0 Hz, H-13), 2.19 (3 H, s, H-14), 4.56 (1 H, d, 1.6 Hz, H-15), 4.67 (1 H, d, 1.6 Hz, H-15); <sup>13</sup>C NMR data see Table 2.

### 3.14. X-ray crystal structure of compound 1

Crystal data:  $C_{17}H_{28}O_3$ , formula wt 280.39, crystal size  $0.56\times0.46$  $\times$  0.42 mm, tetragonal, space group P4<sub>3</sub>, a = 10.1050 (10) Å, b = 10.1050 (10) Å, c = 15.884 (2) Å, V = 1621.9 (3) ų, Z = 4, D<sub>c</sub> = 1.148 g/cm³, F(000) = 616, MoK\_{\alpha}~(\lambda = 0.71073~\text{Å}),  $\mu = 0.077~\text{mm}^{-1}$ . The reflection data were collected on a Siemens P4, using graphite-monochromated radiation. A total of 2259 reflections were collected in the range  $2.02^{\circ} \le \theta \le 26.98^{\circ}$ , of which 1961 unique reflections with  $I > 2\sigma(I)$ were used for refinement. The final R and  $\hat{R_w}$  were 0.0361 and 0.0801, respectively. The structure was solved by the direct method using the program SHELXS-97. Non-hydrogen atoms were refined with anisotropic displacement parameters. H atoms were included at calculated positions and not refined.

Acknowledgement: The authors would like to express their gratitude to National Natural Science Foundation of China (No. 29972017).

#### References

- 1 Hou, K. Z.; A Dictionary of the Families and Genera of Chinese Seed Plants, 2. Ed., p. 276, Science Press, Beijing 1982
- 2 Zao, Y.; Jia, Z. J.; Tan, R. X.; Yang, L.: Phytochemistry 31, 2785 (1992)
- 3 Jia, Z. J.; Zhao, Y.; Tan, R. X.; Yang, L.: Phytochemistry 31, 199 (1992)
- 4 Jia, Z. J.; Zhao, Y.; Tan, R. X.:J. Nat. Prod. 56, 494 (1993)
- 5 Zhao, Y.; Jia, Z. J.; Yang, L.: Planta Med. 60, 91 (1994)
- 6 Ishii, H.; Tozyo, T.; Nakamura, M.; Minato, H.: Tetrahedron 26, 2911
- Cheng, D. L.; Gao, J. J.; Yang, L.: Chem. J. Chin. Univ. 13, 781 (1992)
- 8 Fu, B.; Zhu, Q. X.; Yang, X. P.; Jia, Z. J.: Pharmazie **57**, 275 (2002) 9 Masakazu, I.; Tomoyaki, T.; Minoru, S.; Kenji, U.: Phytochemistry **30**, 563 (1991)
- 10 Zdero, C.; Bohlmann, F.: Phytochemistry **28**, 3105 (1989) 11 Naya, K.; Okayama, T.; Fujiwara, M.; Nakata, M.; Ohtsuka, T.; Kurio, S.: Bull. Chem. Soc. Jpn. 63, 2239 (1990)
- 12 Xu, R. S.: Chemistry of Natural Product, p. 296, Science Press, Beijing 1993
- 13 Wayerstahl, P.; Marschall-Weyerstahl, H.; Manteuffel, E.; Kaul, V. K.: Planta Med. 54, 259 (1988)

352 Pharmazie **58** (2003) 5