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The purpose of this study was to develop a simple model for prediction of corneal permeability of
structurally different drugs as a function of calculated molecular descriptors using artificial neural net-
works. A set of 45 compounds with experimentally derived values of corneal permeability (log C) was
used to develop, test and validate a predictive model. Each compound was encoded with 1194 calcu-
lated molecular structure descriptors. A genetic algorithm was used to select a subset of descriptors
that best describe corneal permeability coefficient log C and a supervised network with radial basis
transfer function (RBF) was used to correlate calculated molecular descriptors with experimentally
derived measures of corneal permeability. The best model, with 4 input descriptors and 12 hidden
neurones was chosen, and the significance of the selected descriptors to corneal permeability was
examined. Strong correlation of predicted with experimentally derived log C values (correlation coeffi-
cient greater than 0.87 and 0.83 respectively) was obtained for the training and testing data sets. The
developed model could be useful for the rapid prediction of the corneal permeability of candidate

drugs based on molecular structure alone as it does not require experimentally derived data.

1. Introduction

The cornea is one of the major pathways for penetration
into the eye of topically applied drugs [1]. It acts as a
protective barrier to invasion of foreign substances and
also as a barrier to drug transport. On the other hand, the
conjunctiva and sclera are more permeable than the cornea
[2—4], but then the blood circulation tends to remove the
drug before it can enter the inner ocular tissues. For this
reason, a large number of experimental work was per-
formed to characterise corneal permeability and different
models have been developed [5-7].

Lipophilicity of the drug seems to be the most important
property. The cornea is composed of five layers (Fig. 1),
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Fig. 1: Schematic illustration of the cornea, showing the comprising five
layers [47].
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the epithelium and stroma being the most significant for
drug delivery [8]. The rate-limiting barrier for hydrophilic
drugs is the lipophilic corneal epithelium, while for lipo-
philic drugs the aqueous stroma is the major barrier. Few
models have been developed to predict corneal permeabil-
ity as a function of the partition coefficient or the distribu-
tion coefficient of the drug [9, 10] and both a parabolic
[11] and a sigmoidal [12] relationship have been shown to
describe the influence of drug lipophilicity on corneal
drug penetration. However, these models are applicable
only to structurally related compounds. In addition to the
lipophilicity of a drug, its aqueous solubility [13], molecu-
lar size [14], charge [15] and degree of ionisation [16, 17]
also affect corneal absorption. Tear fluid has limited buf-
fering capacity [18].

Thus, the pH and buffering capacity of the instilled solu-
tion affect the pH of tear fluid [19, 20] and drug ionisa-
tion in the pre-corneal area, hence drug absorption. The
un-ionised form of the drug penetrates the cornea more
easily than the ionised form [21] and, thus, the pH and
buffering capacity of the instilled solution can have a sig-
nificant effect on ophthalmic drug absorption. Yoshida and
Topliss [22] developed a model based on octanol-water
partition coefficient (log P), the alkane-water partition
coefficient (AlogP) and the distribution coefficient
(log D) as predictors. However, A log P values are usually
difficult to obtain. For example triamcinolone acetonide,
prednisolone acetate, dexamethasone acetate, and timolol
could not be included in their QSAR (quantitative struc-
ture-activity relationship) studies because of a lack of
A log P values. Therefore, it would be useful to predict
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corneal permeabilities of miscellaneous compounds from
calculated parameters derived only from a molecular struc-
ture if experimental data are not available. This is of parti-
cular interest in cases, where the relevant property is diffi-
cult to measure, or where the compound itself is not
available.

Among the novel in silico prediction models that are find-
ing increased application in pharmaceutical research are
artificial neural networks (ANN). An ANN is a biologically
inspired computer program designed to simulate the way in
which the human brain processes information. It gathers its
knowledge by detecting the patterns and relationships in
data and learns (or is trained) through experience with
appropriate learning exemples, not from programming. The
potential applications of ANN methodo-logy in the phar-
maceutical sciences are broad. They range from inter-
pretation of analytical data (modelling the pharmaceutical
analysis in quality control), drug design (molecular model-
ling) and dosage form design (optimization of manufactur-
ing processes) to clinical pharmacy through biopharmacy
(pharmacokinetic and pharmacodynamic modelling) (Aga-
tonovic-Kustrin and Beresford 2000) [23]. The use of
ANNS in a biological activity prediction is a new but ex-
panding area in the field of pharmaceutical research.

In this paper, we report on a simple four parametric Quan-
titative Structure Permeability Relationship QSPR model
that was developed and applied to structurally non-related
compounds. An ANN was used to correlate molecular
descriptors with corneal permeability and optimize the
model.

2. Investigations, results and discussion

The first step in developing the QSPR model was to cal-
culate numerical descriptors. A total of 1194 descriptors
divided in 16 classes were calculated (Table 1). Log C
values were used as the ANN’s output and calculated
molecular descriptors as the inputs. Initially ANN models
consisting of 1194 inputs (molecular descriptors), one
hidden layer and one output neuron (target, log C) with
different topology and transfer function were trained and
tested. The number of inputs and hidden neurons were
optimised during this early phase of training. The next
step was to determine which of the available input
variables [24] should be used to build the ANN model

Table 1: Calculated molecular descriptors

Topological descriptors 226
Molecular walk counts 19
BCUT descriptors 64
2D autocorrelations 96
Aromaticity indices 4
Randic molecular profiles 41
Geometrical descriptors 31
RDF descriptors 150
3D-MoRSE descriptors 160
WHIM? descriptors 99
GETAWAY" descriptors 197
Functional groups 25
ACF® descriptors 39
Empirical descriptors 3
Properties 3
Constitutional descriptors 37
total 1194

* WHIM (Weighted Holistic Invariant Molecular descriptors)
® GETAWAY (GEometry, Topology and Atoms-Weighted Assembly)
¢ Atom centre fragments descriptor (ACF)
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(variable selection). Selection of the important molecular
descriptors and examination of the variable contribution to
the model through output sensitivity is an important
aspect of a QSPR study, not only for ranking the relative
importance of each variable and calculating its statistical
significance, but also as a mean of refining the model by
variable selection.

Neural networks are much more complex models than the
linear techniques used in conventional modelling. They
are more difficult to optimize, and there are difficult
design decisions to make, such as the right type and com-
plexity of network for the problem, and the right input
variables to use. Large numbers of input variables cause
overtraining of data resulting in models with a poor ability
to generalize. Some neural network architectures (e.g.,
MLP) can actually learn to ignore useless variables.
However, other architectures (e.g., RBF) are adversely
affected with useless variables. In all cases a larger num-
ber of inputs implies that a larger number of training cases
is required to prevent over-learning. As a rule of thumb,
the number of training cases should be at least few times
bigger than the number of weights in the network. As a
consequence, the performance of a network could be im-
proved by reducing the number of inputs, even sometimes
at the cost of losing some input information. For that rea-
son, the sensitivity analysis on the inputs to a neural net-
work was performed. Input variables are not, in general,
independent, that is there are interdependencies between
variables.

Sensitivity analysis rates variables according to the dete-
rioration in modelling performance that occurs if that vari-
able is no longer available to the model. It assigns a sin-
gle rating value to each variable. Sensitivity was used to
identify key inputs that are always of high sensitivity and
others that are always of low sensitivity, and “ambiguous”
inputs that change ratings and probably carry mutually re-
dundant information. Best models were selected to per-
form sensitivity and to examine the activation level (out-
puts) of the input neurons.

Inputs whose average activation was equal to zero with
low sensitivity and with variable sensitivity were elimi-
nated from the network. Following this procedure the
number of inputs was reduced to 4 inputs only. As
expected this reduced the size and complexity of the
network and thus training time, and improved the network
performance.

The RBF model with 4 input descriptors (polar surface
area, global shape index unweighted (Ku), global shape
index weighted by atomic Sanderson electro negativities
(Ke), oxygen atom of the carbonyl group was found to
have the best predictive performance. The model had one
hidden layer with 12 neurons, thus producing a 4-12-1
architecture. Drug penetration through the biological
membranes depends upon a number of molecular proper-
ties, such as lipophilicity, polarity, degree of ionization
and molecular size. Physicochemical factors that affect
corneal permeability include the intrinsic solubility of the
drug molecule and its membrane permeability. The mod-
el confirms that, for a given drug, these properties are in
turn determined by its molecular size, shape and polar-
ity.

The octanol-water partition coefficient (log P) is frequently
used in quantitative structure-activity relationships [25] as
a measure of the lipophilic character of the molecules.
Lipophilicity is approximately correlated to passive trans-
port across cell membranes and the ability of a compound
to partition through a membrane [26]. Correlations of lipo-

Pharmazie 58 (2003) 10



ORIGINAL ARTICLES

philicity and membrane penetration have been extensively
reviewed by Seydel and Schaper [27], and the role of lipo-
philicity has also been the subject of some recent work
[28].

The octanol-water partition coefficient (log P) is well
established as a key parameter to describe lipophilicity,
uptake and distribution in biological systems. It is fre-
quently used in quantitative structure-activity/property
relationships [29-31]. However, log P is a ratio [32] and a
compound with low solubility in both octanol and water
could have the same log P as a compound with 100 times
higher solubility in both solvents. It follows that calcu-
lated log P could only be roughly correlated with corneal
permeability for a homologous series of compounds [33],
as it does not account for intramolecular interactions.

For example, intramolecular hydrogen bonding [34] can
dramatically influence absorption properties. It follows
that other descriptors must also be taken into account.
This study has shown that polar surface area (PSA) and
hydrogen bonding capacity plays a significant role in the
description of drug membrane penetration [35-37]. The
utility of polar surface area as a predictor of absorption
has even been previously identified [38]. Molecular sur-
face area and molar volume are highly correlated geome-
trical descriptors that can provide information about con-
tact surface, surface diffusion, absorption and information
of the size of the molecules. The contact surface area can
be viewed as an indicator of the extent to which the solute
is exposed to intermolecular interaction with the solvent
[39] and is shown to be a remarkably accurate predictor
of water solubility [40]. Drugs need to be in solution to
penetrate biological membranes. Therefore, as a general
rule, a drug that is very poorly soluble or insoluble in
water would have variable or unreliable corneal permeabil-
ity. The increase in PSA will increase corneal permeability
perhaps due to increase in aqueous solubility.

In addition, hydrogen bonds are major forces of molecular
recognition and an essential component of intermolecular
interactions. The polar surface area is also an indication of
a compound’s capacity to form hydrogen bonds. Higher
log C values are observed for compounds with higher
PSA. Calculated surface characteristics correlate with a
number of physical-chemical properties of drug molecules
including lipophilicity, the energy of hydration and the
hydrogen bond formation capacity [41,42]. The surface
properties of a molecule that forms an intramolecular hy-
drogen bond may be less polar resulting in enhanced
membrane permeability in comparison to a homologous
molecule that exposes the (polar) hydrogen-bonding group
on its surface. In that sense, we can assume that the polar
molecular surface area reflects intramolecular hydrogen
bonding.

WHIM (Weighted Holistic Invariant Molecular descrip-
tors) and GETAWAY (GEometry, Topology and Atoms-
Weighted AssemblY) are 3-dimensional molecular descrip-
tors recently developed [43]. WHIM descriptors contain
chemical information concerning size, geometry, shape
and contribution of the molecule atoms. They are based
upon atomic contributions to van der Waals surface area,
log P, molar refractivity and partial charge. WHIM de-
scriptors are 3-dimensional descriptors based on the calcu-
lation of key component axes calculated from a weighted
covariance matrix obtained by the molecule geometrical
coordinates. Six different weighted methods are used for
the weighted covariance matrix: u (unweighted), m (atom-
ic mases), p (atomic polarizability), v (van der Waals
volume), e (atomic electronegativity) and s (atomic elec-
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trotopological state). The developed model included
unweighted global shape index and global shape index
weighted by with atomic electronegativity as a measure of
molecular size and polarity.

The last descriptor that was included in the model is the
oxygen of the carbonyl group, an atom center fragments
descriptor (ACF) [44]. Every non-hydrogen atom forms
the basis of an ACF descriptor. ACF classification system
was developed by declaring different types for atoms with
different nearest neighbors. For instance, the first carbon
of CH;C is treated as different from that of CH3N. More
precisely, every ACF is characterized by the atom type of
its central atom, by the types of all directly connected
(neighbour) atoms, by the types of the respective chemical
bonds, and by the number of directly attached hydrogen
atoms.

Characterization of the atom type includes aromaticity and
may also include formal atomic charge and number of
unpaired electrons. To account for molecular size effects,
molar mass is added as a formal ACF. The final atom
classification system in this study generated 39 basic atom
type descriptors. The developed model has identified the
oxygen atom of the aromatic carbonyl group as common
biophore.

The resulting model could be explained with reference to
the corneal anatomy (Fig. 1). The cornea contains three
primary layers: epithelium, stroma, and endothelium. Both
the epithelium and the endothelium are lipophilic and pro-
vide main barriers to hydrophilic compounds. The stroma
is an aqueous layer and limits the movement of lipophilic
compounds across the cornea. Therefore, a compound
usually has greater corneal permeability when it has ade-
quate hydrophilic groups and adequate size. In general,
the penetration of a compound through biological mem-
branes decreases as its molecular size increases [45].

The interpretation of effects of individual descriptors is
difficult as the model is multivariate and non-linear. How-
ever, some insight into the degree of non-linear behaviour
of selected descriptors could be obtained with a functional
dependence plot. The value of input variables is varied
through its range, while all other inputs are held constant.
The network output is plotted against variable descriptors
to generate a functional dependence plot. This gives an
idea of how the network output alters in response to the
selected input. Fig. 2 displays functional dependence sur-
faces of selected descriptors. The observed non-linearity
of the un-weighted shape indices and ACF for the carbo-
nyl oxygen inputs is clear evidence on the complex rela-
tionship between these descriptors and log C values. As
expected, the molecular size (PSA and shape indices) dis-
plays a negative dependence on the corneal permeability.
It is very interesting that methanol fits well to the model.
Methanol is a very small hydrophilic compound. It was
considered that methanol penetrates across the cornea by
an aqueous ‘pore’ pathway and was usually underesti-
mated by other model [46].

As part of evaluating the quality of the developed model
strong correlation of predicted vs. experimentally derived
log C values (correlation coefficient greater than 0.87 and
0.83 respectively) was obtained for the training and testing
data sets (Table 2). The fact that the slope value was not
significantly different from the unity indicated minimal or
almost no proportional error and as the intercept was not
different from zero reflected no method bias. To further
assess and validate the predictive ability of the model we
predicted the log C values of eight compounds outside the
training set (Table 3).
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Fig. 2: Functional dependence plots of the four most significant descriptors from the final model. The descriptors are a) Polar Surface Area (PSA); b)
Carbonyl group oxygen (O=); c) Un-weighted global shape index (Ku); d) Global shape index weighted by atomic Sanderson electronegativity

(Ke).

The results in Table 3 show that calculated log C values
agreed reasonably well with their experimentally deter-
mined counterparts. However, it should be pointed out
that this model was focused on predicting the corneal per-
meability of candidate drugs based solely on their molecu-
lar structure without taking into account processes that
normally precedes corneal absorption such as dilution by
resident tears, tear turnover, interaction with the pre-cor-
neal tear film, nasolacrimal drainage, drug protein binding,
drug metabolism and non-productive absorption, a limita-
tion that will hopefully be addressed in future work.

In condusion, it can be stated that a simple model for
corneal permeability prediction was developed. The model
components were derived from the molecular structure of
diverse compounds and contained descriptors, which could
be easily calculated as independent variables. It is a sim-
ple model that could serve as a useful screening tool for
newly developed molecules that are intended for topical
application to the surface of the eye and are expected to
traverse the corneal barrier.

Table 2: Regression statistics of the 4-12-1 RBF model

Training Testing Validation
Data Mean -4.84 -5.05 -4.89
Data S. D. 0.60 0.77 0.82
Error mean -0.19 -0.11 0.06
Error S. D. 0.30 0.45 0.78
Abs E. mean 0.30 0.40 0.61
S. D. ratio 0.50 0.58 0.95
Correlation 0.87 0.83 0.85

S. D. = Standard deviation
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3. Experimental

3.1. Software

Statistica Neural Network 4.0 F (StatSoft Inc., Tulsa, USA) was used for
building the QSAR and Dragon 2.1 (Milano Chemometric and QSAR
Research Group, Milano, Italy) was used to calculate molecular descriptors
from the molecular structure.

3.2. Data collection and manipulation

A set of 45 structurally different compounds and their experimentally
derived corneal permeability coefficient values (log C) were collected from
the literature. For each of the 45 drug molecules, 1194 descriptors were
calculated (Table 1). Log C values were used as the ANN’s output and
calculated molecular descriptors as the inputs. The collected data set was
split into three subsets: training (30 data sets), testing (8 data sets) and
validation (7 data sets). The results of five runs were averaged. During
training, the performance of the ANN was evaluated with testing data. The
training set was used to train the network and the testing set was used to
monitor performance and overtraining. Training was stopped when the
training root mean squared error (RMS) failed to improve over a given
number of training cycles and when the testing RMS error started to in-
crease. Validation set was used later to evaluate the trained model.

3.3. ANN Models for corneal permeability prediction

ANNSs are constituted from hundreds of single processing elements (PE),
or so called artificial neurons. Each PE has weighted inputs, transfer func-
tion and one output. PEs are connected with coefficients (weights) which
constitute the neural structure and are organised in layers, the input layer,
the output layer, and the hidden layers between them. The input layer neu-
rons receive data from a data file. The output neurons provide the ANN’s
response to the input data. The weighted sum of the inputs composes the
activation of the neuron. The activation signal is passed through an activa-
tion function (also known as a transfer function) to produce a single output
of the neuron. Thus, the hidden layer is where the network learns interde-
pendencies in the model and transfer functions for the hidden units intro-
duces nonlinearity into the network.

Multilayer perceptrons (MLPs) and radial basis function (RBF) networks
are the two most commonly used types of feed-forward network. The main

Pharmazie 58 (2003) 10
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Table 3: Model performance in the prediction of log C values;
predicted and measured [48—51] corneal permeabil-
ity coefficients

Compound Log C* Residual RMS
Predicted Measured error error
4-Chlorobenzen- —4.75 —4.26 —0.50 1.37
sulfonamide
4-Chloro-methyl- —4.61 —4.19 —0.42 1.16
benzensulfonamide®
Acebutolol —6.18 —6.06 —0.12 0.34
Acetazolamide —6.37 —6.24 —0.13 0.37
Alprenolol —479 —454 —-0.25 0.70
Atenolol? —5.68 —6.17 0.49 1.35
Betaxolol® —4.98 —4.57 —-0.42 1.15
Bevantalol —4.85 —4.24 —0.61 1.69
Bufuralol® —4.83 —4.14 —0.70 1.92
Butanol —4.59 —4.12 —0.48 1.32
Chloramphenicol =531 =517 —0.14 0.40
Clonidine —4.45 —4.36 —0.10 0.27
Cortexolone —5.10 —4.52 —-0.59 1.61
Cromolyn® =579 =597 0.18 0.49
Cyclophosphamide® —443 —-495 0.51 1.41
Desoxycorticosterone —498 —4.40 —0.59 1.61
Dexamethasone —4.97 —5.30 0.33 0.90
Dexamethasone acetate —4.74 —4.43 —0.31 0.87
Fluorometholone —4.81 —4.78 —0.04 0.10
Hydrocortisone -5.06 —-5.07 0.01 0.02
Ibuprofen —4.77  —4.65 —0.12 0.33
Indomethacin —4.64 —4.16 —0.48 1.33
Levobunolol —4.60 —4.78 0.18 0.49
Methanol —4.47 —4.04 —0.43 1.18
Methazolamide?® —5.67 —5.43 —-0.25 0.69
Metoprolol* —5.00 —4.63 —-0.37 1.02
Nadolol® —496 —6.00 1.04 2.86
Oxprenolol —4.89 —4.60 —-0.29 0.79
Penbutolol —4.74  —4.35 —-0.39 1.06
Phenylephrine® —4.81 —-6.03 1.22 3.37
Pilocarpine —4.68 —4.77 0.09 0.25
Pindolol® —-490 —-5.00 0.10 0.27
Prednisolone —5.46 —5.43 —0.03 0.09
Prednisolone acetate? —5.07 —4.48 —0.59 1.62
Progesterone =521 —4.71 —0.50 1.38
Propranolol —4.78 —4.32 —0.46 1.27
Rauwolfine —4.98 —5.04 0.06 0.17
Sotalol -526 —5.80 0.54 1.48
Sulfacetamide —-5.39 —5.72 0.33 0.92
Testosterone® —4.59 —4.37 —0.22 0.61
Timolol? -522 —491 —-0.31 0.86
Triamcinolone —5.31 —4.80 —0.51 1.40
Vidarabine —-6.02 =577 —0.25 0.70
Water? —4.54  -3.82 —-0.72 1.98
Yohimbine —4.85 —4.75 —0.11 0.29

“ testing data set
Y validation data set
¢ C: (cm/s)

difference between the two is the way in which hidden units combine
values coming from preceding layers in the network. An MLP models the
response function using the composition of sigmoid and linear functions
whereas a radial basis function network (RBF) has a hidden layer of radial
units, each modelling a Gaussian response surface, peaked at the centre,
and descending outwards. Just as an MLP neurone responds (non-linearly)
to the distance of points from the line of the sigmoid projection, in a radial
basis function network neurones respond (non-linearly) to the distance of
points from the centre. MLP units are defined by their weights and thresh-
old, which together give the equation of the defining line. In contrast a
radial unit is defined by its centre point and a radius. Therefore the num-
ber of centres, the positioning of the centres and the transfer function are
the key factors affecting its performance and these factors were varied in
the training process.
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On a practical level RBF trains much faster and would be the best choice
for predicting small sample data. In contrast, MLP has more potential in
predicting more complex data as it has more than one layer of hidden
neurons.
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