ORIGINAL ARTICLES

Institute of Botany¹, and Institute of Organic Chemistry with Centre of Phytochemistry², Bulgarian Academy of Sciences, Sofia, Bulgaria

Galanthamine distribution in Bulgarian Galanthus spp.

B. SIDJIMOVA¹, S. BERKOV¹, S. POPOV², L. EVSTATIEVA¹

Received May 28, 2003, accepted July 2, 2003

Strahil Berkov, PhD, Institute of Botany, Bulgarian Academy of Sciences, 23, Acad. G. Bonchev Str.,

BG-1113-Sofia, Bulgaria berkov@iph.bio.bas.bg

Pharmazie 58: 935-936 (2003)

Sixteen populations of *Galanthus elwesii* Hook.fil and five populations of *Galanthus nivalis* L. growing in Bulgaria were investigated for the presence of galanthamine by TLC and GC-MS. Between 3 and 11 alkaloids were detected by TLC in the total alkaloid fractions. Galanthamine was found in 2 populations of *G. elwesii*.

1. Introduction

Galanthamine, an Amaryllidaceae alkalolid, is a long acting, selective, reversible and competitive acetylcholinesterase (AChE) inhibitor [1–3], which produces beneficial effects even after drug treatment has been terminated [4]. This product is marketed as a hydrobromide salt under the name Reminyl[®] for the treatment of Alzheimer's disease.

Galanthamine

Galanthamine was isolated for the first time from *Galanthus woronowii* Losinsk. by Proskurina and Yakovleva [5, 6] and was later found in many other of Amaryllidaceae species. On a commercial scale, galanthamine had been produced for the first time from *Galanthus nivalis* L. in Bulgaria under the name of Nivalin® [7–8].

Bubeva-Ivanova [9] found this alkaloid in *G. nivalis* L. var. *gracilis* Celak. from populations near the towns of Yambol and Koprivshtitsa (Southeast and Central Bulgaria) in 1957. Later, it was reported that *G. nivalis* plants from this region contain higher amounts of galanthamine than plants from North and Northeast Bulgaria which contain no or trace amounts of galanthamine [10].

The taxonomical status of genus *Galanthus* in Bulgaria has been changed several times since the establishment of galanthamine in *G. nivalis*. Genus *Galanthus* had been presented by a single species – *G. nivalis* s.l. up to 1964 [11, 12]. Stojanov et al. 1966 [13] divided the genus *Galanthus* into two species in the fourth edition of "Flora of Bulgaria", namely *G. elwesii* Hook.fil, and *G. nivalis* L. with several varieties and forms. Delipavlov, 1968 [14] distinguished three species of *Galanthus* in Bulgaria – *G. nivalis* L., *G. elwesii* Hook.fil. and *G. graecus* Orph. ex Boiss. Ac-

cording to this author, *G. nivalis* is distributed mainly in Eastern Bulgaria [15]. Recently, *G. nivalis* L. and *G. elwesii* Hook.fil. have been accepted for Bulgaria [16–18]. In this paper we report a reinvestigation on the galanthamine distribution in Bulgarian *Galanthus* species according to the latest classifications [16–18].

2. Investigations, results and discussion

We examined 21 populations of *Galanthus* (5 of *G. nivalis* and 16 of *G. elwesii*) for their galanthamine content by TLC and GC-MS (Table). The distribution of *G. nivalis*, which we found, coincides with those reported by Delipavlov [14] for the Black Sea Coast region. Between 3 and 11 alkaloids were detected in the total alkaloid fractions by TLC. Galanthamine was found in only 2 populations of *G. elwesii* — No 13 (Levski-021) and No 20 (Karnobat-024). The occurrence of galanthamine was confirmed by parallel GC-MS with an authentic sample. Some alkaloid fractions which do not contain galanthamine according to TLC were also examined by GC-MS. The compound was not found in them even in trace amounts.

Small differences were observed between the MS of galanthamine obtained by direct insertion [19] and the GC-MS conditions, which we used. The molecular peak of galanthamine (at m/z 287), which is reported in the literature [19] as a base peak (100%, relative abundance) was depressed (78%) under the GC-MS conditions. The base ion appeared at m/z 286 (M⁺-H). The other characteristic fragments of galanthamine showed similar relative abundances to those reported for the direct insertion. Previously, GC-MS has been successfully applied for identification of other Amaryllidaceae alkaloids [20, 21].

Our results on the distribution of galanthamine confirms those of Ivanova and Ivanov [10] who investigated 26 populations and found galanthamine in only a few of them. On the basis of our results and the results of Ivanova and Ivanov [10] as well as on the limited distribution of *G. nivalis*, we suppose that the first commercial scale production of Nivalin® (galanthamine hydrobromide) was mainly from *G. elwesii* according to the contemporary classification of the genus *Galanthus* in Bulgaria.

Pharmazie **58** (2003) 12

ORIGINAL ARTICLES

Table: Investigated populations of Galanthus spp. distributed in Bulgaria

No	Floristic region	Part of Bulgaria	Voucher SOM	Species	Galanthamine	Method of analysis
Blace	k Sea Coast					
1	Obrochiste	NE	028	nivalis	_	TLC/GC-MS
2	Obrochiste	NE	028a	elwesii	_	TLC/GC-MS
3	Tsarkva	NE	029	nivalis	_	TLC/GC-MS
4	Tsarkva	NE	029a	elwesii	_	TLC
5	Varna	NE	027	nivalis	_	TLC
6	Burgas	SE	025	nivalis	_	TLC
7	Primorsko	SE	026	nivalis	_	TLC/GC-MS
Nort	heast Bulgaria	NE				
8	Tervel (Stenata)		0216	elwesii	_	TLC/GC-MS
9	Tervel (Dan kula)		0218	elwesii	_	TLC/GC-MS
10	Tervel (Sujunlika)		0220	elwesii	_	TLC/GC-MS
11	Shumen		0210	elwesii	_	TLC/GC-MS
12	Targovoshte		0211	elwesii	_	TLC
Dani	ıbian plain	CN				
13	Levski		021	elwesii	0.1	TLC/GC-MS
Fore	balkan	CN				
14	Sevlievo		0212	elwesii	_	TLC
15	Montana		0213	elwesii	_	TLC
Stard	ı Planina Mts	Central	0224	elwesii	_	TLC
16	Kozja stena		0224	elwesii	_	TLC
17	Sliven		023	elwesii	_	TLC
Sofia region		SW				
18	Kokaljane		0221	elwesii	_	TLC
The	Rhodopes	Central				
19	Bachkovo	- Commun	0222	elwesii	_	TLC
Tundzha Hilly region		SE				
20	Karnobat	OL.	024	elwesii	0.6	TLC/GC-MS
21	Topolovgrad		022	elwesii	-	TLC

3. Experimental

3.1. Plant material

Aerial parts of *Galanthus* species at flowering stage (February–March, 2002) were collected from 21 populations distributed at different floristic regions of Bulgaria. The species were determined according to Webb [16] and Petrova [18]. Voucher specimens were deposited at the herbarium of Institute of Botany – BAS (SOM), Sofia.

3.2. Alkaloid extraction

Plants were dried at 60 °C, powdered and extracted with 3% H₂SO₄ for 2 h by shaking at room temperature. Than, the extracts were centrifuged and supernatants were separated, basified with 25% ammonia and extracted tree times with dichloroethane. The organic solvent was dried over anh. Na₂SO₄ and evaporated to dryness. The dry extracts were dissolved in known amounts of methanol for further analysis.

3.3. Alkaloid determination

Two TLC conditions were used for the development of alkaloid fractions and identification of galanthamine: (1) chloroform/methanol/25% ammonia (11:1:0.6, v/v/v), migration distance - 160 mm, and (2) chloroform/methanol/25% ammonia (12:1:0.5, v/v/v), migration distance - 80 mm. 10 μ l of the alkaloid fractions were spotted and developed on Merck aluminum sheets silica gel 60 $F_{\rm 254}$ (10 \times 20 cm) together with standards. Compounds were visualized after triplicate spraying with Dragendorff's reagent. Galanthamine was quantified by TLC-densitometry. 10 min after the last spraying, the plates were scanned at 600 dpi optical resolution and images were analyzed by QuantiScan 2.1° Biosoft software. The galanthamine content of the samples was calculated from the densitogram peak areas by comparing to three standards (5, 15 and 30 μ g/spot, stock solution: 1 mg/ml galanthamine hydrobromide calculated as a base) placed on the same plate.

3.4. Gas chromatography-mass spectrometry

The GC-MS was recorded on a Hewlett Packard 6890+ MSD 5973 instrument operating in EI mode at 70 eV. A HP-5 MS column (30 m \times 0.25 mm \times 0.25 µm) was used. The temperature program was 80–280 °C at 10 °C min and 10 min hold at 280 °C. Injector temperature was 280 °C. The flow rate of carrier gas (He₂) was 0.8 ml \cdot min $^{-1}$. Split ratio was 1:20.

Acknowledgement: The authors thank Sopharma Ltd. for the kind gift of a reference substance of Nivalin® (galanthamine hydrobromide). This work

was supported by the Ministry of Environment and Waters, Sofia (project #3228/264).

References

- 1 Sweeney, J.; Puttfarcken, P.; Coyle, J.: Pharm. Biochem. Behav. 34, 129 (1989)
- 2 Thomsen, T.; Kewitz, H.: Life Sci. **46**, 1553 (1990)
- 3 Thomsen, T.; Zendeh, H.; Fischer, J.; Kewitz, H.: Biochem. Pharmacol. 41, 139 (1991)
- 4 Maelicke, A.; Samochocki, M.; Jostock, R.; Fehrenbacher, A.; Ludwig, J.; Albuquerque, E.; Zerlin, M.: Biol. Psychiatr. 49, 279 (2001)
- 5 Proskurina, N.; Yakovleva, A.: Zurnal Obshchei Khimii 22,1899 (1952)
- 6 Proskurina, N.; Yakovleva, A.: Zurnal Obshchei Khimii 25,1035 (1955)
- 7 Paskov, D.: Nivalin-pharmacological characteristics, Medicina i fizkultura, p. 66, Sofia, 1959
- 8 Cherkasov, O.; Tolkachev, O.; In: Hanks, G. (ed.): Medicinal and Aromatic Plants Industrial Profiles: The Genus Narcissus, p. 242, Taylor and Francis, London and New York, 2002
- 9 Bubeva-Ivanova, L.: Farmatsija (Sofia) 2, 23 (1957)
- 10 Ivanova, B.; Ivanov, V.: Trudove na NIHFI 3, 70 (1961)
- 11 Stojanov, N.; Stefanov, B.: Flora Bulgarica, p. 267 Darzavna pechatnica, Sofia, 1948
- 12 Jordanov, D.; In: Jordanov, D. (ed.): Flora of the People's Republic of Bulgaria, Vol. 2, p. 317, Acad. Press, Sofia, 1964
- 13 Stojanov, N.; Stefanov, B.; Kitanov. B.: Flora Bulgarica. Vol. 1, p. 236 Nauka i izkustvo. Sofia, 1966
- 14 Delipavlov, D.: Nauchni trudove na Visch Selskostopanski Institut. 17, 161 (1968)
- 15 Delipavlov, D.: Izv. Bot. Inst. 21, 161 (1971)
- 16 Webb, D. A.; In: Tutin, T. G.; Heywood, V. H.; Burges, N. A.; Moore, D. M.; Valentine, D. H.; Walters, S. M.; Webb, D. A. (eds): Flora Europaea, Vol. 5, p. 77, Cambridge University Press, Cambridge, 1980
- 17 Ancev, M.; In: Kozuharov, S. (ed.): Guidebook to the higher plants in Bulgaria, p. 91, Nauka i izkustvo, Sofia, 1992
- 18 Petrova, A.; In: Petrova, A.; Ancev, M.; Palamarev, E. (eds): How to determine the plants in the Nature. Excursion guidebook, p. 631, Prosveta, Sofia, 1999
- 19 Hesse, M.; Benchard H.; In: Budzikiewicz, H. (ed.): Progress in mass spectroscopy Vol. 3, p. 177, Verlag Chemie, 1975
- 20 Kreh, M.; Matusch, R.; Witte, L.: Phytochemistry 38, 773 (1995)
- 21 Tram, N.; Mitova, M.; Bankova, V.; Handjieva, N; Popov S.: Z. Natur-forsch. 57c, 239 (2002)

Pharmazie **58** (2003) 12