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Curcumin (Cur), a promising anticancer drug, kills tumor cells through either diminishing or promoting
reactive oxygen species (ROS) generation. In this study, it was investigated whether trichostatin A
(TSA), a specific histone deacetylase (HDAC) inhibitor and a new anticancer drug, could improve the
anticancer activity of low concentrations of Cur in human leukemia cells (HL-60). HL-60 cells were treat-
ed with Cur, TSA or their combinations; cell proliferation arrest, lactate dehydrogenase (LDH) release
and cell viability were measured as indicators of cell damage. Reactive oxygen species (ROS) accumula-
tion and the acetylation of histones were also measured. The cytotoxicity of Cur and TSA increased in a
time and dose-dependent manner. Low Cur (no more than 20 uM) diminished the ROS generation in HL-
60 cells, while high Cur (50 and 100 uM) promoted that. In contrast, TSA showed no influence on ROS
generation. When their effects on histone acetylation were determined, low Cur showed no effect, while
TSA significantly increased that. As expected, combinations of low Cur and TSA could not only diminish
ROS generation, but also increase histone acetylation, and hence showed a more significant cytotoxicity
in HL-60 cells. Since the extra ROS generation may also harm normal cells, instead of using high Cur,

combining low Cur with TSA is obviously a better strategy to improve the anticancer activity of Cur.

1. Introduction

Curcumin (diferuloylmethane, Cur), a polyphenol derived
from the plant Curcuma longa, is recognized as a promis-
ing anticancer drug due to its efficient induction of prolif-
eration arrest and cell death (including apoptosis and ne-
crosis) in a variety of tumor cells (Aggarwal et al. 2003;
Anto et al. 2002; Roy et al. 2002; Kim et al. 2001; Hadi
et al. 2000; Bhaumik et al. 1999). Like most polyphenols,
although Cur is a naturally occurring antioxidant, it exhi-
bits prooxidant properties under certain conditions (Kim
etal. 2001; Bhaumik et al. 1999; Sakano and Kawanishi
2002; Galati et al. 2002; Nogaki et al. 1998; Wang et al.
1996). Interestingly, both antioxidant and prooxidant prop-
erties are found to be involved in the anticancer activity of
Cur (Aggarwal etal. 2003; Hadi etal. 2000; Bhaumik
etal. 1999; Khar et al. 2001; Chen et al. 2005). Generally,
high concentrations of Cur (such as at no less than
50 uM) promoted ROS generation (Kim et al. 2001; Bhau-
mik et al. 1999; Sakano and Kawanishi 2002; Galati et al.
2002; Chen etal. 2005), while low Cur (such as at no
more than 25 puM) diminished that (Chen etal. 2005;
Chan et al. 2003; Joe and Lokesh 1994). Considering the
possible damage of extra ROS generation to normal cells,
instead of using high Cur, trying to improve the anticancer
activity of low Cur is useful.

Histone acetylation plays important roles in gene tran-
scription regulation, cell differentiation and carcinogenesis.
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Specifically, histone deacetylation contributes to a ‘closed’
chromatin state and transcriptional repression (Archer and
Hodin 1999; Klochendler-Yeivin and Yaniv 2001; Lehr-
mann et al. 2002), while histone acetylation contributes to
the formation of an ‘opening’ chromatin and permits ac-
cess of transcription factors to DNA (Fry and Peterson
2002; Grunstein 1997). The histone acetylation-deacety-
lation balance, accurately maintained in normal cells
through a balance of histone acetyltransferase (HAT) and
histone deacetylase (HDAC) enzyme activities (Archer and
Hodin 1999; Klochendler-Yeivin and Yaniv 2001), favors
hypoacetylation in tumor cells (Archer and Hodin 1999),
and this histone hypoacetylation in tumor cells generally
disrupt the transcriptional initiation of genes for differentia-
tion and apoptosis, such as p53, APC, p14*RF, and K-ras
(Fry and Peterson 2002; Baylin et al. 2001). Thus increas-
ing the histone acetylation in tumor cells has been recog-
nized as an efficient strategy to combat cancer, and HDAC
inhibitors are believed to be useful in cancer chemother-
apy (Marks et al. 2000; Hendersona and Brancolini 2003;
Yamashita et al. 2003; Donadelli et al. 2003; Rosato and
Grant 2003; Marks et al. 2001; Kim et al. 2003). Among
the HDAC inhibitors, trichostatin A has been well studied
and found to be toxic in different tumor cells (Yamashita
et al. 2003; Donadelli et al. 2003; Rosato and Grant 2003;
Marks et al. 2001).

Since Cur and TSA exert their anticancer activity through
different mechanisms, we speculate that combining with

Pharmazie 61 (2006) 8



ORIGINAL ARTICLES

TSA may significantly improve the anticancer activity of
Cur. To address this hypothesis, the cytotoxicity of Cur,
TSA and the combinations of Cur and TSA was studied in
human leukemia HL-60 cells, and their effects on ROS
generation and histone acetylation were also evaluated.
Both Cur and TSA showed cytotoxicity to HL-60 cells,
and combining with TSA significantly improved the cyto-
toxicity of Cur under its antioxidant conditions. These re-
sults thus suggested a new approach, combining with TSA
or other HDAC inhibitors, to improve the chemotherapy
effect of Cur.

2. Investigations and results
2.1. Cytotoxicity of antioxidants and TSA in HL-60 cells

Treating cells with Cur or TSA resulted in a concentra-
tion- and time-dependent arrest in the proliferation of HL-
60 cells (Fig. 1). Under the same conditions, LDH leak-
age, the indicator of plasmatic membrane damage (Del
Raso 1992), increased (Fig. 2), while the viability of cells
significantly decreased (Fig. 3), proving the cytotoxicity of
Cur and TSA in HL-60 cells.

2.2. Effect of Cur and TSA on the ROS generation and
histone acetylation

To evaluate the ROS generation in our system, HL-60
cells preloaded with DCFH-DA, commonly used to detect
the generation of ROS in cells (LeBel etal. 1992), were
exposed to Cur and TSA for 8 h. Low concentrations of
Cur (at no more than 20 uM) diminished the ROS genera-
tion, while high Cur (40, 80 uM) significantly increased
that (Fig. 4A and 4B). In contrast, TSA showed no influ-
ence on the ROS generation in HL-60 cells (Fig. 4A). At
the same time, the state of histone acetylation was also
evaluated in differently treated cells. Cur had no obvious
influence on the histone acetylation, while TSA signifi-

cantly increased that in HL-60 cells via a dose-dependent
manner (Fig. 4C and 4D). These results suggest that Cur
and TSA kill HL-60 cells via different mechanisms, i.e.,
Cur via its antioxidant or prooxidant activity, while TSA
via its HDAC inhibition activity.

2.3. Effects of TSA on the cytotoxicity of low Cur in
HL-60 cells

To test whether TSA could improve the anticancer activity
of low Cur, effects of low Cur and TSA combinations on
the generation of ROS and the status of histone acetyla-
tion in HL-60 cells were first detected. Low Cur and TSA
combinations showed similar activities with Cur or TSA
in diminishing the ROS generation (Fig. 5A) or increasing
the histone acetylation (Fig. 5B), respectively, indicating
that neither the ROS scavenging activity of Cur nor the
HDAC inhibition activity of TSA was affected by the
combinations. In other words, the combinations possessed
both the antioxidative characteristic of low Cur and the
activity of TSA. Considering the important roles of
scavenging ROS and increasing histone acetylation in can-
cer therapy, these results suggest that combinations with
TSA may be able to improve the anticancer activity of
low Cur. To test this hypothesis, the cytotoxicity of the
low Cur and TSA combination in HL-60 cells was stu-
died. As we expected, combining with TSA significantly
improved the effect of low Cur on the proliferation arrest
(Fig. 5C), and the LDH release (Fig. SD) and cell death
induction (Fig. 5E), indicating the cooperative anticancer
activity of low Cur and TSA.

3. Discussion

Both antioxidants and TSA are promising anticancer
drugs, and capable of improving the efficiency of che-
motherapy when combined with other anticancer drugs
(Rosato and Grant 2003; Marks etal. 2001; Kim et al.
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2003; Park et al. 1980; Park and Kimler 1991; Prasad et al.
1994; Conklin 2000; Chinery etal. 1997). Our recent
study found that combinations with TSA could signifi-
cantly improve the anticancer activity of antioxidants
(Kang et al. 2004). Cur is a well-known antioxidant and
anticancer drug (Aggarwal etal. 2003; Anto etal. 2002;
Roy et al. 2002; Kim et al. 2001; Hadi et al. 2000; Bhau-
mik et al. 1999), but high concentrations of Cur (such as at
no less than 50 uM) were found to promote ROS genera-
tion in different studies (Kim et al. 2001; Bhaumik et al.
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1999; Sakano and Kawanishi 2002; Galati etal. 2002;
Chen et al. 2005). Our present study found that TSA could
significantly improve the cytotoxicity of Cur at the concen-
trations where Cur diminished ROS generation in HL-60
cells. Thus instead of using high Cur, these results provide
new approaches for us to improve the anticancer activity
of Cur, especially under its antioxidant concentrations.

Because both Cur and TSA have been found to be cyto-
toxic in human leukemia cells (Chen et al. 2005; Marks
etal. 2001; Kang et al. 2004; He et al. 2001), human leu-
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kemia cells (HL-60) were used as model cells. Treating
HL-60 cells with Cur or TSA resulted in a dose- and
time-dependent increase of cell proliferation arrest, LDH
release and cell death, proving the cytotoxicity of Cur and
TSA in human leukemia cells.

Previous studies indicate that ROS are not only involved in
carcinogenesis, but also in the prevention and cure of can-
cer (Wedgwood and Black 2003; Deshpande and Irani
2002; Kang et al. 2000; Kang et al. 1999). On one hand,
ROS act at different stages of carcinogenesis (Deshpande
and Irani 2002); on the other hand, either diminishing
(Wedgwood and Black 2003; Kang et al. 2000; Kang et al.
1999; Chen et al. 2004) or enhancing (Bhaumik et al. 1999;
Khar etal. 2001; Kang etal. 2001) ROS generation can
lead to the proliferation arrest, re-differentiation, apoptosis
or necrosis of tumor cells, thus both antioxidant and proox-
idant therapy are potential anticancer strategies. In fact, the
balance between ROS generation and scavenging in vivo is
critical for the proliferation and viability of cells in all-aero-
bic animals (Martindale and Holbrook 2002; McCord
1998; Burdon 1995). Different studies showed that both
antioxidant and prooxidant activity are involved in the an-
ticancer activity of Cur (Aggarwal et al. 2003; Hadi et al.
2000; Bhaumik et al. 1999; Khar et al. 2001). Interestingly,
in this study, Cur exerts its anticancer activity in the same
system through diminishing ROS at low concentrations or
increasing ROS at high concentrations. Although the anti-
cancer activity of high Cur is obviously higher than the low
Cur, considering the possible damage to normal cells
caused by extra ROS accumulation in vivo, to improve the
anticancer activity of low Cur is obviously helpful.

The anticancer activity of TSA obviously could not be
explained by the ROS scavenging activity, since TSA did
not scavenge ROS at all. Consistent with the previous re-
ports (Hendersona and Brancolini 2003; Yamashita et al.
2003; Donadelli etal. 2003; Rosato and Grant 2003;
Marks etal. 2001), TSA maybe induce leukemia cell
death by increasing the histone acetylation of HL-60 cells.
Recent studies including ours found that Cur specifically
inhibited the activity of p300, one HAT protein, and hence
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led to histone hypoacetylation in cultured cells (Balasu-
bramanyam et al. 2004; Kang et al. 2005), but Cur showed
no obvious influence on the histone acetylation in this
study. This may be because different cells were used in
our study. Although additional work is still needed to clar-
ify whether p300 was inhibited in HL-60 cells and why
Cur did not induce histone hypoacetylation in these cells,
the anticancer activity of Cur is obviously not related to
the modulation on histone acetylation in HL-60 cells. As
we have noticed, the dose-dependent effect of Cur and
TSA on the histone acetylation and cell viability was
measured after cells were treated for 48 h, while the ROS
generation was detected after the treatment of 8 h, this is
mainly because the significant cell death caused by treat-
ing cells for 48 h may inevitably result in the decrease of
ROS generation, and hence influence the evaluation on the
effect of Cur and TSA. Treating cells for 8 h did not lead
to the obvious cell death.

TSA has been found to be able to improve the anticancer
activity of the antioxidants ascorbic acid and N-acetyl-cy-
steine. Combining with TSA should improve the antican-
cer activity of Cur in its antioxidant concentrations. As we
expected, the combination of low Cur with TSA possessed
both the ROS scavenging activity of low Cur and the his-
tone acetylation increasing activity of TSA, and hence sig-
nificantly improved the anticancer activity of either of
them. Although further studies are needed to clarify the
mechanisms involved in the cytotoxicity of antioxidants,
TSA and their combinations in human leukemia cells, or
the nature of antioxidants and TSA-induced cell death, we
proved that both scavenging ROS and increasing histone
acetylation played important roles in the induction of HL-
60 cell death, and TSA could markedly improve the anti-
cancer activity of Cur under its antioxidant concentrations
in these cells.

In summary, we conclude that in HL-60 cells, low Cur
exerts its anticancer activity through diminishing ROS,
while high Cur through increasing that. Different from
that, TSA induces HL-60 cell death through increasing his-
tone acetylation. Combined with TSA, perhaps other
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bility. Cells were treated with different concentra-
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tone acetylation (B), cell proliferation (C), LDH
release (D) and cell viability (E) was examined.
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HDAC inhibitors can significantly improve the anticancer
activity of low Cur. Considering that the extra accumula-
tion of ROS is harmful to normal cells, for example, high
Cur (at 50 uM) has been found to cause cell death in both
tumor and normal cells (Bielak-Zmijewska et al. 2000;
Gautam et al. 1998), instead of using high Cur, combining
low Cur with TSA is a better strategy for us to improve
the anticancer activity of Cur. In addition, since polyphe-
nols with similar structures possess similar antioxidant and
pro-oxidant property, our present data may also suggest a
good strategy to improve the antioxidant and anticancer
activity of other polyphenols with similar structures to Cur.

4. Experimental

4.1. Reagents

Curcumin (Cur), trichostatin A (TSA), trypsin and trypan blue were pur-
chased from Sigma (Sigma, St. Louis, MO), RPMI-1640 was purchased
from Gibco (Santa Clara, CA). All other reagents are of analytical grade.

4.2. Cell culture and treatment

Human leukemia cells (HL-60) were maintained in RPMI-1640 medium
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin
(equivalent to 100 units/ml and 100 mg/ml, respectively) at 37 °C in a
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humidified atmosphere containing 5% CO,. After culturing the cells
(1 x 107 cells/ml) for 24 h, the culture medium was replaced with new
medium containing Cur, TSA and their combinations where indicated,
after that, the different cultures were replaced with fresh medium contain-
ing the corresponding reagents every 24 h.

4.3. Determination of cell proliferation and viability

Cells at 1 x 10°/ml were cultured for 24 h, then treated with Cur and/or
TSA at the indicated concentrations, three dishes for each of differently
treated cells were collected every 8 h in the first 2 days, the total and dead
cells were counted using the trypan blue stain exclusion method under a
phase-contrast microscope.

4.4. Measurement of lactate dehydrogenase (LDH)

LDH release was measured in 100 ul aliquot of cellular suspension using
an assay, which monitors the decrease in absorbance at 340 nm during the
reduction of pyruvate (Wroblewski and La Due 1995). LDH release was
expressed as percentage of the total LDH released from cells treated with
10% Triton X-100.

4.5. Measurement of intracellular ROS generation

The level of intracellular ROS was measured by the alteration of fluores-
cence resulting from oxidation of 29,79-dichlorofluorescein diacetate
(DCFH-DA, Molecular Probes, Eugene, OR) (LeBel et al. 1992). DCFH-
DA was dissolved in DMSO to a final concentration of 20 mM before use.
For the measurement of ROS, cells were incubated with 10 uM DCFH-DA
at 37 °C for 30 min, then the excess DCFH-DA was washed with RPMI-
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1640 media prior to the treatment with Cur and/or TSA for a time period
as indicated. The intensity of fluorescence was recorded using a flow cyto-
metry (Becton Dickenson), with an excitation filter of 485 nm and an emis-
sion filter 535 nm. The ROS level was calculated as a ratio: ROS = mean
intensity of exposed cells: mean intensity of unexposed cells.

4.6. Histone purification and histone acetylation assay

Cells were plated at a density of 2 x 10° cells/ml, exposed to Cur and/or
TSA as indicated in the presence of 10 uCi/ml [3 H] acetate (5.0 Ci/mmol)
for the indicated times. Preparation of histones from HL-60 cells was done
as previously reported (Cousens et al. 1979) with the following modifica-
tions: the washed cells were suspended in lysis buffer (Cousens et al.
1979) containing TSA (100 ng/ml) and PMSF (1 mM). After pipetting up
and down for 20 times, the nuclei were washed three times in the lysis
buffer and once in 10 mM Tris and 13 mM EDTA (pH 7.4). The histones
were extracted from the pellet in 0.4N H,SO,. After centrifugation, the
histones in the supernatant were collected by cold-acetone precipitation,
air-dried, then suspended in 4 M urea and stored at —20 °C before use. 3H-
labelled histones were determined by liquid scintillation counting.

4.7. Statistical analysis

Statistical analysis was performed by analysis of variance (ANOVA post-
hoc Bonferroni), and p values less than 0.05, 0.01, or 0.001 were denoted
as *, ** or *** respectively.
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