PHYSICAL REVIEW D, VOLUME 60, 083502

Renormalization of gravitational self-interaction for wiggly strings
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It is shown that for any elastic string model with energy denisitgnd tensiorT the divergent contribution
from gravitational self-interaction can be allowed for by an action renormalization proportiontll-d}2.
This formula is applied to the important special case of a bare model of the transoniclugpacterized by a
constant value of the produtiT) that represents the macroscopically averaged effect of short-wavelength
wiggles on an underlying microscopic model of the Nambu-Goto fgparacterized by =T).
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I. INTRODUCTION Nambu-Goto description will seldom be feasible in numeri-
cal simulations, due to the enormous amount of information
Although not so important for lightweight cosmic strings, that would be required for following the detailed evolution of
such as may may have been formed latefon example at  small scale wiggles. Some kind of approximation will there-
the time of electroweak symmetry breakingravitational fore be needed in pratice. Following the remark by Shellard
self-interaction is generally supposed to have played an e@nd Allen[7] that in the presence of small scale wiggles the
sential role in the evolution of the cosmic strings that maymacroscopically averaged value of the energy density
have been formed earlier, at the epoch of grand unifiedvould exceed its Nambu-Goto value?, | observed8] that
theory(GUT) symmetry breaking. In the kind of scenafig ~ the tensionl would be correspondingly diminished and pro-
originally proposed by Kibble, an initial period during which posed as an approximation the use of a model in which the
the main damping mechanism was the friction exerted by th@roduct of energy density and tension remained constant:
ambient thermal gas would be followed by a period during 4
which the main damping mechanism would have been gravi- UT=m" @)
tational, at least for the local kind of strings to be considere
here(in contrast with global strings for which axion radiation
damping would have been more important
Nearly all the work that has been dofrig on gravitational
self-interaction in cosmic strings has been based on the u
of a string model of the simplest kind, namely that of
Nambu-Gotq, in whichwith th_e speed of light set to) the ce=\T/U 2
energy densityJ and the tensio are both equal to a con-
stantm?, wheremis a mass scale that will typically be of the of its extrinsic (tranvers perturbations is the same as the
order of the mass associated with the Higgs field responsiblgpeed
for the relevant vacuum symmetry breaking. The use of such
a simple model will be justifiable while gravitational self- c.=+—dT/dU 3)
interaction is important, even in typical cases where the
strings are of the current carrying kind whose likely rel- of its longitudinal (sound-typg modes. This makes it pos-
evance was first pointed out by Witt¢B], since, at least at sible to prove[11] that such a model can match the long-
the outset, the currents would be expected to be very weak germ evolution of the string with any desired acurdcde-
that their effects would be relatively negligible. pending on the resolutignand without any accumulative
At a later stage the currents in small loops would intensifyerror buildup, at least in flat spacetime where the dynamical
as the loops contracted due to radiative energy loss, so thateéfjuations are exactly integrable.
might become necessary to use a description based on an For a practical description of cosmic strings in circum-
elastic string model of an appropriate kifi8], in terms of stances where the main kind of self-interaction is gravita-
which it is possible to describe oscillatiof,5] about sta- tional, it is therefore this transonic model that will commonly
tionary “vorton” states{6] (whose existence would not even be most appropriate. The purpose of this article is to consider
be possible if the Nambu-Goto description remained Valid the way this model will need to be modified to allow for the
However, by this later stag@xcept in the case of an elec- dominant effect of the self-interaction, which will be diver-
tromagnetically neutral currentthe main self-interaction gent.
mechanism would no longer be gravitational, but electro- As in the simpler case of electromagnetic self-interaction,
magnetic. Thus, as long as one has to do with a regime igravitational self-interaction in a four-dimensional spacetime
which gravitation is still the main self-interaction mecha- background will give rise in point particle models to pole-
nism, a Nambu-Goto description will usually be adequate. type singularities and in string models to logarithmic singu-
Although adequate in principle, an absolutely precisdarities, which need to be regularized by the use of an “ul-

d1'his relation was confirmed for a special subclass of wiggle
modes by Vilenkin[9] and more recently for unrestricted
wiggle modes by Martif10]. A particularly attractive fea-
ture of this model is the property of being transonic, in the
Tense that the propagation speed
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traviolet” cutoff. In order to do this in a systematic manner, to base the analysis on linearized gravitational theory, as

| have developed a simple technical formaligh®] whose expressed in terms of a small but perhaps rapidly varying

application to the electromagnetic self-interaction gives reperturbationh,,,=ég,,, of a slowly varying cosmological

sults that agree with the conclusions of earlier approachedackground metrig,,. Moreover, for the purpose of ana-

while providing a more convenient means of dealing withlyzing the short-range self-interaction, it will sufficient to

applications to particular problems such as oscillations of aeglect the background curvature altogether, i.e., to take the

conducting string loop about a stationary vorton sfatg). unperturbed four-dimensional spacetime metig, to be

The more recent application of this formalism to the linear-flat, so that subject to the usydl8] DeDonder gauge condi-

ized gravitational casgl4] has, however, given resulf45] tion V“hw=%vyhﬁ, the linearized Einstein equations for

that deviate from what had previously been obtaifiedin  the Eulerian metric perturbation will reduce to the well-

the only case that had been considered previously, namelnhown form

that of a Nambu-Goto string, for which the divergent part

simply vanishes. A detailed examination of this particular ChUY— _ Fuv_F oquv

case[16] has shown that previous assertions to the contrary VoVI=—8mrG2TH = T,7g™), @

[1] were effectively based on the neglect of terms that would . )

indeed be relatively small when due to high-frequency gravi-WhereTW is the stress momentum energy density tensor of

tational radiation from a distant source, but that in the case o€ source. _ . _ _

local self-gravitation are of the same order as the other terms, The problem of ultraviolet divergences for point particle

which they finally cancel. or string mo_dgls arises because in t'hese cases the releyant
What will be done here is to apply the general formulaSource densities are not regglar functions, but Dirac-type dis-

[15] for the divergent part of the self-gravitational interaction tributions that vanish outside the relevant one- or two-

of a string to the nontrivial case of a generic elastic stringdimensional world sheets. In the case of a string with local

model and, in particular, to the case of the transonic stringvorld sheet embedding given by*=X"*{c} in terms of in-

model, for which it does not vanish. The nonvanishing resulfrinsic coordinatesr' (i=0,1), so that the induced surface

for the transonic string model is entirely consistent with itsmetric will_have the formy; =g, X" X" ;, the relevant

interpretation as a Smoothed approximation to a Wigg|ysource diStI’ibution will be expl’essib|e USing the terminology

Nambu-Goto model for which the corresponding short-rangé®f Dirac delta “functions” in the form

self-gravitational contribution vanishes. The nonvanishing

short-range contribution in the approximate description rep-

resents the finite intermediate-range contribution in the un-

derlying Nambu-Goto model. Thus the treatment provided

here takes care of everything except the very-long-range paythere |y is the determinant of the induced metric and the

pf the self-interaction, whlgh will be dynamlgally negllglble surface stress-energy densﬂ?” is aregular tensorial func-

in the short run, Fhough it is of course very important in thetion on the world sheebut undefined off it

long run since it is the part that is ultimately responsible for | ihe simple elastic models considered here, the only

the raldliati\;]e damping. | N _ internal field on the string will be a surface current density
Unlike the dissipative long-range part, the dominant CONGr:_ ol Ly where s a scalar stream function on the

tribution considered here is strictly conservative: one of the, 44 sheet(which will be a free variable in the variation
main results of this work is the demonstration that for 3ormulation described belowusing the notatiors !l = — gli

generic(not ju§t a transonjcelastic string r‘_nod_el th? diver- for the antisymmetric world sheet measure tensor that is
gent self-gravitational stress energy contribution given g0 cified(modulo a choice of sign representing an orienta-

shell”)_ by“the new”formu_la{15] is derivable from a corre- 5, convention as the square root of the induced metric,
sponding(“off-shell” ) action contribution that is precisely ie gl

., €*e,i=9'.. If there were a nonzero charge couplin
the same as what is obtained as the four-dimensional speciaclbn'sgtar?t'a’ aZ Jsupposed in Witten's theofg] of guperco%- g
ization of a more generahigher-dimensionalaction for- :

. ; X ... ducting strings, then this would correspond to an electric
mula that has recently been derived using an entirely differ- g g P

ent approach by Buonanno and Damglir]. The net effect surface gurrent denSitW:qa' However, the presept di;—
is thus describable as an action renormalization, whose effe&tSSI0N 1S concerned Ju.St with _the early regime in which
is trivial in the case of a Nambu-Goto model for whi@won- e_feCtS of electromz_ign_etlc CO‘.Jp“ng are negllglble compared
sistently with what was suggested by exact analytic consid\—’v'th thc])cse or:‘ gr“:it:’ |tat'|,on. Th's m%arlls that r']n the releh:/ant
erations in static configurationi8]) it simply vanishes, but action for It e “hare strlnbg mode ("e"l t fe hnor;—se )
nontrivial in the more general string models considered herdNt€racting limi, as given by an integral of the for@
= [ L] y||*?d?0, the specification of the relevant Lagrangian
scalarL on the world sheet will be given by a master func-
ll. GRAVITATIONAL FORCE DENSITY tion, A that depends only on the undifferentiated background
Since the cosmic strings to which this work applies will metric and the gradient of the stream functignaccording
be characterized by a gravitational coupling constant that i§e formula
very small, Gm?<10 ® (where G is Newton's constant - -
even for the heavyweight case of GUT strings, it is sufficient L=A+ %T’”hw, (6)

fer—gl 2 TS Kal e, @
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in which the coefficient for the linearized gravitational ad- whereK , is the world sheet curvature vector that is obtain-
justment term here is the surface stress-energy tensor thable as the surface dlvergence of the fundamétdabential
specifies the gravitational source in Eg), which is given projection tensor,K, =V, 7" .

by T#=2||y]|~*23(Al|¥|¥315g,,, . When the corresponding divergent self-force contribution
Since the ensuing field equations will evidently involve js evaluated substituting Eq9) and (11) into Eq. (8), the

gradients of the stress-energy tensor, their formulation wilkesult turns out, rather remarkably, to be describable as a

require the introduction of the appropriately defined hyperrtenormalization of the stress-energy tensor, since one obtains

Cauchy tensora relativistic generalization of the Cauchy [15] a regularized self-force that is expressible as world sheet

elasticity tensor of classical mechanicshich is defined by  divergence

chrro =l y|| = Y25(TPel | Y3149, . In terms of this quantity,

the dynamical equations obtained from the Lagrandi@n fuo Y 5 omv (12)

can be showi14] to be expressible in the standard form Y vig o

V? 7) in which the relevant stress momentum energy density con-
" tribution from the gravitational self-interaction has the form

where the effective gravitational force density vector is given R R R
by T*'=h, T~ 3 h,, TP gV + h LT (13)

fgh= %?”"V”hw—g,,(?”"h(,’“ra‘”""hp(,), 8 It is also to be observed that this “on-shell” self-
gravitational stress energy contribution is obtainable from a
corresponding “off-shell” self-gravitational action contribu-

using the notatiorﬁf n,"V, for the tangentially projected tion given by

gradient operator, wherg, " is the tangential projection ten-

sor, i.e., the index-lowered form of the first fundamental ten- . . L

sor of the world sheet, which is obtained simply by mapping Ag=3TF"h,,=3GI(2T,, TH =T, T,"). (19

its internal metric onto the spacetime background according

to the formulan®”= y"x* X" ;. This provides a regularized treatment in which the original
world sheet Lagrangiaf is replaced by a regularized La-

Ill. RENORMALIZATION grangianZ=A+3T#’h,,, involving only the well-behaved

The problem with the application of E¢8) is of course E)artﬁ of the gravitational field, whereby the divergent part

that the linearized gravitational field will consist not just of a N.» IS @bsorbed into a renormalized master function given by
well-behaved long-range contrlbutlolm/w say, but also of a 5 .
divergent short-range self-interaction contributiop,=h,, A=A+Ay. (15

—FW, which needs to be appropriately regularized in the
manner recently described in the analogous electromagnetithe consistency of this treatment has been neatly confirmed
case[12]. This routine procedure leads to a result that isby an independent investigation in which, by working en-
proportional to the relevant source in Eg), which gives tirely at the level of the “off-shell” action in a space-time of
arbitrary dimension, Buonanno and Damdudi7| have re-
F‘;w: 2G1(2T, V_?Uagw)! 9) cgn.tly (_)btained a general selfjint'erac_:tion formula whosg spe-
cialization to the case of gravitation in four-dimensions is in
precise agreement with the res(l#) obtained here.
For any simple elastic string model of the kind considered
here, the master functioA will depend just on the scalar
A magnitude that is specifiablg] as y=c*c,=— "¢y ;
=In{A?/ 62} (10 =—p,p* where the relevant momentum vector is defined
by p#=VHy=X" ;¥4 ;. Using the notatiom'=dA/dy,
in terms of an “ultraviolet” cutoff length scalé, represent- it can be seen that the regularized self-field will be given by
ing the effective thickness of the string and a much larger
“infrared” cutoff A given by a length scale characterizing
the large-scale geometry of the string configuration. As
pointed out in the electromagnetic cd4€], the correspond-
ing regularized value of the gradient of such a divergenusing the notation. *=g,*— n,* for the (rank-2 world
self-field will be obtainable from the regularized self-field by sheet orthogonal projection tensor. The corresponding self-
application of the regularized gradient operator defined by gravitational action contributiofil4) will be expressible as

where, as usual for a string self-interaction in four dimen-
sions, the proportionality factor has the form

h#*=4GT(2A'ptp”+xA'g*"—AL*"),  (16)

V,=V,+ (11) Ag=1GI(U-T)2=2GI(xyA")2. (17)

NIH
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IV. EFFECT ON STRESS TENSOR AND PROPAGATION with nonzero derivative
SPEEDS
. A'=—m?/2A. 25
In analogy with the standard formula @9
v A e This gives a nonzero self-gravitional contribution attribut-
THY=Ap""+2A"pHp”, (18) able to an interaction at intermediate range, i.e., distances
dgrge compared with the wiggle wavelength in the underly-
ing macroscopic model, but small compared with the
smoothening length on which the macroscopic description is
based. A noteworthy example of the application of this
= A ~ model is to the case of wiggles that are of purely thermal
my— mv mpv
Tg""=Agn""+2A4p"p". (19 origin, for which the state parametgwill be given[8,19] as

If the current is timelike—as can be assumed without los& function of the relevant temperatugeby the formula

of generality in the wiggly Nambu-Goto string 2262
approximation—so that we hawe<0, then the energy den- X= 577,
sity and tension will be given for the bare model by= 3m°—2mw0
—A and T=2yA’'—A, while the corresponding extrinsic
(wiggle-type and longitudinal (sound-type perturbations
speedse andc, will be given[3] by

for the “bare” surface stress-energy tensor, the correspon
ing self-gravitational stress energy tensb8) will be obtain-
able in the form

(26)

from which it can be seen that corresponding wiggle propa-
gation speed will be given by

2=1-2yA'/A, c2=1+2xA"/A". (20 ,_, 2m0Z )
el g @0
An elastic string state is describable as supersonic, transonic,
or subsonic, according to whether the difference It is evident that the special transonicity property
cg—cf=—2x(In{AA"})’ (21) cL=Ce 28)

is positive, zero, or negative. In terms of these quantities thgs the “bare” model will not survive in the renormalized
corresponding renormalizgd energy den;{tpr a .given model, as obtained using E(p4) from Egs.(15) and (17),
value of the current magnitude as specified ywill be  for which (still working just to linear order in the gravita-
obtainable directly from the renormalized acti@i®) as tional coupling the difference between the squared propaga-
tion speeds is found to be given by

U=-A=U-1GIUT(cz'—cp)? (22)
22 T 2 2
However, the evaluation of the corresponding renormalized ~ C& —Ct=Gml(cg*—ce)[(1+c@)*+ 3 (1-cg)?].
tension is not so quite so simple: it works out to be (29)
T=T+1GIUT(cz —ce)X(1+2c2). (23  The manifest positivitysince 0<cg<1) of this result shows

that the “dressed” gravitationally self-interacting wiggly

string model will be of supersonic type.
V. CASE OF THE TRANSONIC WIGGLY STRING

MODEL
VI. ORDERS OF MAGNITUDE

In the exact Nambu-Goto caf6], the master function is
just a constantA =—m?, where (in units with the Dirac
Planck constant: set to unity the parametem is the rel-
evant Kibble mass scale, which is a constant that can b
expected to be of the same order of magnitude as the Higg‘%n
mass scale associated with the underlying symmetry break-
ing for a string of the ordinary “cosmic” kind, representing
a vortex-type defect of the vacuum. In this case one simply _ ) ) _ -
obtainsA ' =0, so the divergent short-range self-gravitationalMust e satisfied. This requirement is not very restrictive,
contribution vanishes. because even the heaviest kind cosmic strings that are com-

However, for the purpose of a course-grained descriptiof’oNly considered in cosmological applications, namely

on a larger scale, it is appropriate to use the transonic mod&1©Se arising from GUT symmetry breaking, are character-

2 _10-6 : o
[8,9] to represent the smoothened average over shorz€d byGm~10"". For other kinds, such as those arising
wavelength wiggles in the underlying microscopic Nambu-Tom electroweak symmetry breaking, the valueGoh® will

. 2 . .
Goto model. For this transonic string model, the relevan® Smaller still. The smallness Gfm” will be partially coun-

The regime of applicability of the foregoing analysis is of
course subject to limitations. To start with, for the validity of
g1e linearized gravitation equatio@) on which the entire
alysis depends, the weak-coupling condition

Gmili<1 (30)

master function has the form terbalanced by the fact that the regularization fattell be
large compared with unity, but since, according to Ed),
A=—mym?—y, (24 it arises as a logarithm, it can never be extremely large. In
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nearly all cases that are likely to arise in practice, it will estimated as~m?a?/\?, we see that the squared cutoff

satisfyi <107, so the requiremer(0) will be satisfied by a  ratio appearing in the logarithm in EGLO) will be given by

large margin. the corresponding rough estimaié/ 52 ~m?/s and, hence,
Since the rigorous justificatiofiL1] of the description of that a reasonably accurate description should be obtainable

the macroscopic effect of the wiggles by the simple elastidy taking the regularization factor itself to be given by an

model(24) depends on the supposition that self-intersectiong@pproximation of the form

of the string can be neglectédince if loop formation were

important a more elaborate nonelastic model would be A { mz]

[=In

()]’

needed the validity of the model as a precise representation
is limited to the regime in which the effective energy density
of the wiggles, as formally defined by

(36)

where(e) is a constant chosen as some suitably weighted
e— U_Tzu—mz (31) mean value of the energy density=m?y/2A in the string
2 ’ segment under consideration. The requiren{8@} that the
wiggle energy density should be small compared with the

is small compared with the intrinsic energy density of theintrinsic energy of the string implies that the ensuing fattor

string, i.e., will be reasonably large compared with unity, and the con-
2 sideration that the dependence is logarithmic means that the
e<<m?, (32 s ) e . ;
result will be insensitive to the details of the particular pre-
which is interpretable in the thermal case as meaning scription chosen to speciffe). In order to obtain higher
accuracy, one might be tempted to replace the fixed mean
®<m. (33)  value(e) in Eq. (36) by the variable local value af, which,
. o _ o by Eq. (17), would be equivalent to taking the self-
Since this is equivalent to the restriction gravitational action adjustment to be
1-ci<1, (34) i
~ L
it can be seen that the differen(29) will be given approxi- Ag=2Ge In[ € ] (37)

mately by the simple formula

~ S - with
c2—c?=8Gle. (35
In an application of this kind, the magnitude, say, typi- —my
fying the wavelength of the wiggles over which the averag- = ——=—. (39

ing is taken will provide an appropriate choice for the infra-
red cutoff; i.e., it will be natural to takA ~X\. Similarly, the
magnitude, o, say, characterizing the amplitude of the However, the appearance of improvement provided by such
wiggles will provide the corresponding value for the ultra- use of a variable rather than a constant value for the renor-
violet cutoff, which will thus be given by, ~a, provided  najization factorl is rather illusory, since the preceding
that, as will usually be the case, the amplitude of the wigglegiemonstration of renormalizability—as embodied in the for-
is not even smaller than the microscopic string radiusay, mulas(12), (13), and (14—was dependent on the postulate

in which case the latter would itself provide the relevantthati should be constant. Moreover, it can easily be checked

ultraviolet cutoff. When the string is of the usual “cosmic” licitlv that th v eff £ th f th |
variety, representing an underlying vortex-type defect of the <P icitly t. at the only effect o the use of the gpparenty
’ ore precise formulé37) on the final formuld35) will be to

vacuum, one expects the radius to be of the same order & T ] ] i
magnitude as the Compton wavelength associated with thgpPlace the factor by | —3. This adjustment would be sig-
relevant Kibble mass; i.e., one expects to havem 1. In nificant only if e were so large as to be compar_able with,
most applications of interest, the relevant amplitudevill so that the accuracy of _the_ treatment would in any case be
be considerably larger than this, and even for wiggles offfected by other complicating processess such as loop for-
purely thermal origin it will never be smaller: for the wiggles Mation due to self-intersections.
produced by a given temperatu@ as given by Eq(26),
one can estimate the relevant magnitudes\as® ~! and
a~m~1; i.e., independently of the temperature the relevant
amplitude will be of the same order as the cosmic string The author wishes to thank Xavier Martin, Paul Shellard,
radius,a~r. This means that, in the usual physical applica-and Alex Vilenkin for earlier discussions about the treatment
tions, it will generally be possible to take the relevant cutoffof string wiggles and to thank Richard Battye, Thibault
ratio to be given byA/5,~\/a. Damour, Alejandro Gangui, Gary Gibbons, and Patrick Peter
Since the effective energy densitycontributed by small for more recent discussions about regularization and renor-
wiggles of wavelengtin and amplitudea can be roughly malization.
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