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Renormalization of gravitational self-interaction for wiggly strings

Brandon Carter
D.A.R.C., Observatoire de Paris, 92 Meudon, France

~Received 8 October 1998; published 8 September 1999!

It is shown that for any elastic string model with energy densityU and tensionT the divergent contribution
from gravitational self-interaction can be allowed for by an action renormalization proportional to (U2T)2.
This formula is applied to the important special case of a bare model of the transonic type~characterized by a
constant value of the productUT! that represents the macroscopically averaged effect of short-wavelength
wiggles on an underlying microscopic model of the Nambu-Goto type~characterized byU5T!.
@S0556-2821~99!06216-5#

PACS number~s!: 98.80.Cq, 04.40.2b, 11.27.1d
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I. INTRODUCTION

Although not so important for lightweight cosmic string
such as may may have been formed later on~for example at
the time of electroweak symmetry breaking!, gravitational
self-interaction is generally supposed to have played an
sential role in the evolution of the cosmic strings that m
have been formed earlier, at the epoch of grand uni
theory~GUT! symmetry breaking. In the kind of scenario@1#
originally proposed by Kibble, an initial period during whic
the main damping mechanism was the friction exerted by
ambient thermal gas would be followed by a period dur
which the main damping mechanism would have been gr
tational, at least for the local kind of strings to be conside
here~in contrast with global strings for which axion radiatio
damping would have been more important!.

Nearly all the work that has been done@1# on gravitational
self-interaction in cosmic strings has been based on the
of a string model of the simplest kind, namely that
Nambu-Goto, in which~with the speed of light set to 1! the
energy densityU and the tensionT are both equal to a con
stantm2, wherem is a mass scale that will typically be of th
order of the mass associated with the Higgs field respons
for the relevant vacuum symmetry breaking. The use of s
a simple model will be justifiable while gravitational sel
interaction is important, even in typical cases where
strings are of the current carrying kind whose likely re
evance was first pointed out by Witten@2#, since, at least a
the outset, the currents would be expected to be very wea
that their effects would be relatively negligible.

At a later stage the currents in small loops would intens
as the loops contracted due to radiative energy loss, so th
might become necessary to use a description based o
elastic string model of an appropriate kind@3#, in terms of
which it is possible to describe oscillations@4,5# about sta-
tionary ‘‘vorton’’ states@6# ~whose existence would not eve
be possible if the Nambu-Goto description remained val!.
However, by this later stage~except in the case of an elec
tromagnetically neutral current!, the main self-interaction
mechanism would no longer be gravitational, but elect
magnetic. Thus, as long as one has to do with a regim
which gravitation is still the main self-interaction mech
nism, a Nambu-Goto description will usually be adequate

Although adequate in principle, an absolutely prec
0556-2821/99/60~8!/083502~6!/$15.00 60 0835
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Nambu-Goto description will seldom be feasible in nume
cal simulations, due to the enormous amount of informat
that would be required for following the detailed evolution
small scale wiggles. Some kind of approximation will ther
fore be needed in pratice. Following the remark by Shell
and Allen@7# that in the presence of small scale wiggles t
macroscopically averaged value of the energy densityU
would exceed its Nambu-Goto valuem2, I observed@8# that
the tensionT would be correspondingly diminished and pr
posed as an approximation the use of a model in which
product of energy density and tension remained constan

UT5m4. ~1!

This relation was confirmed for a special subclass of wig
modes by Vilenkin@9# and more recently for unrestricte
wiggle modes by Martin@10#. A particularly attractive fea-
ture of this model is the property of being transonic, in t
sense that the propagation speed

cE5AT/U ~2!

of its extrinsic ~tranverse! perturbations is the same as th
speed

cL5A2dT/dU ~3!

of its longitudinal ~sound-type! modes. This makes it pos
sible to prove@11# that such a model can match the lon
term evolution of the string with any desired acuracy~de-
pending on the resolution! and without any accumulative
error buildup, at least in flat spacetime where the dynam
equations are exactly integrable.

For a practical description of cosmic strings in circum
stances where the main kind of self-interaction is grav
tional, it is therefore this transonic model that will common
be most appropriate. The purpose of this article is to cons
the way this model will need to be modified to allow for th
dominant effect of the self-interaction, which will be dive
gent.

As in the simpler case of electromagnetic self-interacti
gravitational self-interaction in a four-dimensional spaceti
background will give rise in point particle models to pol
type singularities and in string models to logarithmic sing
larities, which need to be regularized by the use of an ‘‘
©1999 The American Physical Society02-1
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BRANDON CARTER PHYSICAL REVIEW D 60 083502
traviolet’’ cutoff. In order to do this in a systematic manne
I have developed a simple technical formalism@12# whose
application to the electromagnetic self-interaction gives
sults that agree with the conclusions of earlier approac
while providing a more convenient means of dealing w
applications to particular problems such as oscillations o
conducting string loop about a stationary vorton state@13#.
The more recent application of this formalism to the line
ized gravitational case@14# has, however, given results@15#
that deviate from what had previously been obtained@1# in
the only case that had been considered previously, nam
that of a Nambu-Goto string, for which the divergent p
simply vanishes. A detailed examination of this particu
case@16# has shown that previous assertions to the contr
@1# were effectively based on the neglect of terms that wo
indeed be relatively small when due to high-frequency gra
tational radiation from a distant source, but that in the cas
local self-gravitation are of the same order as the other ter
which they finally cancel.

What will be done here is to apply the general formu
@15# for the divergent part of the self-gravitational interacti
of a string to the nontrivial case of a generic elastic str
model and, in particular, to the case of the transonic str
model, for which it does not vanish. The nonvanishing res
for the transonic string model is entirely consistent with
interpretation as a smoothed approximation to a wig
Nambu-Goto model for which the corresponding short-ran
self-gravitational contribution vanishes. The nonvanish
short-range contribution in the approximate description r
resents the finite intermediate-range contribution in the
derlying Nambu-Goto model. Thus the treatment provid
here takes care of everything except the very-long-range
of the self-interaction, which will be dynamically negligibl
in the short run, though it is of course very important in t
long run since it is the part that is ultimately responsible
the radiative damping.

Unlike the dissipative long-range part, the dominant co
tribution considered here is strictly conservative: one of
main results of this work is the demonstration that for
generic~not just a transonic! elastic string model the diver
gent self-gravitational stress energy contribution given~‘‘on
shell’’! by the new formula@15# is derivable from a corre-
sponding~‘‘off-shell’’ ! action contribution that is precisel
the same as what is obtained as the four-dimensional spe
ization of a more general~higher-dimensional! action for-
mula that has recently been derived using an entirely dif
ent approach by Buonanno and Damour@17#. The net effect
is thus describable as an action renormalization, whose e
is trivial in the case of a Nambu-Goto model for which~con-
sistently with what was suggested by exact analytic con
erations in static configurations@18#! it simply vanishes, but
nontrivial in the more general string models considered h

II. GRAVITATIONAL FORCE DENSITY

Since the cosmic strings to which this work applies w
be characterized by a gravitational coupling constant tha
very small, Gm2&1026 ~where G is Newton’s constant!
even for the heavyweight case of GUT strings, it is sufficie
08350
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to base the analysis on linearized gravitational theory,
expressed in terms of a small but perhaps rapidly vary
perturbationhmn5dgmn of a slowly varying cosmologica
background metricgmn . Moreover, for the purpose of ana
lyzing the short-range self-interaction, it will sufficient t
neglect the background curvature altogether, i.e., to take
unperturbed four-dimensional spacetime metricgmn to be
flat, so that subject to the usual@18# DeDonder gauge condi
tion ¹mhmn5 1

2 ¹nhm
m , the linearized Einstein equations fo

the Eulerian metric perturbation will reduce to the we
known form

¹s¹shmn528pG~2T̂mn2T̂s
sgmn!, ~4!

whereT̂mn is the stress momentum energy density tenso
the source.

The problem of ultraviolet divergences for point partic
or string models arises because in these cases the rele
source densities are not regular functions, but Dirac-type
tributions that vanish outside the relevant one- or tw
dimensional world sheets. In the case of a string with lo
world sheet embedding given byxm5 x̄m$s% in terms of in-
trinsic coordinatess i ( i 50,1), so that the induced surfac
metric will have the formg i j 5gmnx̄m

,i x̄
n

, j , the relevant
source distribution will be expressible using the terminolo
of Dirac delta ‘‘functions’’ in the form

T̂mn5igi21/2E T̄mnd4@x2 x̄$s%#igi1/2d2s, ~5!

where ugu is the determinant of the induced metric and t
surface stress-energy densityT̄mn is a regular tensorial func-
tion on the world sheet~but undefined off it!.

In the simple elastic models considered here, the o
internal field on the string will be a surface current dens
c̄m5« i j x̄m

,ic , j , wherec is a scalar stream function on th
world sheet~which will be a free variable in the variation
formulation described below!, using the notation« i j 52« j i

for the antisymmetric world sheet measure tensor tha
specified~modulo a choice of sign representing an orien
tion convention! as the square root of the induced metr
i.e., « ik«k j5g i

j . If there were a nonzero charge couplin
constantq, as supposed in Witten’s theory@2# of supercon-
ducting strings, then this would correspond to an elec
surface current densityj̄ m5qc̄m. However, the present dis
cussion is concerned just with the early regime in wh
effects of electromagnetic coupling are negligible compa
with those of gravitation. This means that in the releva
action for the ‘‘bare’’ string model~i.e., the non-self-
interacting limit!, as given by an integral of the formI
5*L̄igi1/2d2s, the specification of the relevant Lagrangia
scalarL̄ on the world sheet will be given by a master fun
tion, L that depends only on the undifferentiated backgrou
metric and the gradient of the stream functionc, according
the formula

L̄5L1 1
2 T̄mnhmn , ~6!
2-2
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RENORMALIZATION OF GRAVITATIONAL SELF- . . . PHYSICAL REVIEW D 60 083502
in which the coefficient for the linearized gravitational a
justment term here is the surface stress-energy tensor
specifies the gravitational source in Eq.~4!, which is given
by T̄mn52igi21/2](Ligi1/2)/]gmn .

Since the ensuing field equations will evidently invol
gradients of the stress-energy tensor, their formulation
require the introduction of the appropriately defined hyp
Cauchy tensor~a relativistic generalization of the Cauch
elasticity tensor of classical mechanics!, which is defined by
C̄mnrs5igi21/2](T̄rsigi1/2)/]gmn . In terms of this quantity,
the dynamical equations obtained from the Lagrangian~6!
can be shown@14# to be expressible in the standard form

¹̄nT̄mn5 f g
m , ~7!

where the effective gravitational force density vector is giv
by

f g
m5 1

2 T̄ns¹mhns2¹̄n~ T̄nshs
m1 C̄mnrshrs!, ~8!

using the notation¹̄m5hm
n¹n for the tangentially projected

gradient operator, wherehm
n is the tangential projection ten

sor, i.e., the index-lowered form of the first fundamental te
sor of the world sheet, which is obtained simply by mapp
its internal metric onto the spacetime background accord
to the formulahmn5g i j x̄m

,i x̄
n

, j .

III. RENORMALIZATION

The problem with the application of Eq.~8! is of course
that the linearized gravitational field will consist not just of
well-behaved long-range contribution,h̃mn say, but also of a
divergent short-range self-interaction contributionĥmn5hmn

2h̃mn , which needs to be appropriately regularized in t
manner recently described in the analogous electromagn
case@12#. This routine procedure leads to a result that
proportional to the relevant source in Eq.~4!, which gives

ĥmn52Gl̂~2T̄mn2T̄s
sgmn!, ~9!

where, as usual for a string self-interaction in four dime
sions, the proportionality factor has the form

l̂ 5 ln$D2/d
*
2 % ~10!

in terms of an ‘‘ultraviolet’’ cutoff length scaled* represent-
ing the effective thickness of the string and a much lar
‘‘infrared’’ cutoff D given by a length scale characterizin
the large-scale geometry of the string configuration.
pointed out in the electromagnetic case@12#, the correspond-
ing regularized value of the gradient of such a diverg
self-field will be obtainable from the regularized self-field b
application of the regularized gradient operator defined b

¹̂m5¹̄m1 1
2 Km , ~11!
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whereKm is the world sheet curvature vector that is obta
able as the surface divergence of the fundamental~tangential

projection! tensor,Km5¹̄nhm
n .

When the corresponding divergent self-force contribut
is evaluated substituting Eq.~9! and ~11! into Eq. ~8!, the
result turns out, rather remarkably, to be describable a
renormalization of the stress-energy tensor, since one obt
@15# a regularized self-force that is expressible as world sh
divergence

f̂ g
m52¹̄nT̂g

mn , ~12!

in which the relevant stress momentum energy density c
tribution from the gravitational self-interaction has the for

T̂g
mn5ĥs

mT̄ns2 1
4 ĥrsT̄rshmn1ĥrsC̄rsṁn. ~13!

It is also to be observed that this ‘‘on-shell’’ sel
gravitational stress energy contribution is obtainable from
corresponding ‘‘off-shell’’ self-gravitational action contribu
tion given by

L̂g5 1
4 T̄mnĥmn5 1

2 Gl̂~2T̄mnT̄mn2T̄m
mT̄n

n!. ~14!

This provides a regularized treatment in which the origin
world sheet LagrangianL is replaced by a regularized La
grangianL̃5L̃1 1

2 T̄mnh̃mn involving only the well-behaved
part h̃mn of the gravitational field, whereby the divergent pa
ĥmn is absorbed into a renormalized master function given

L̃5L1L̂g . ~15!

The consistency of this treatment has been neatly confirm
by an independent investigation in which, by working e
tirely at the level of the ‘‘off-shell’’ action in a space-time o
arbitrary dimension, Buonanno and Damour@17# have re-
cently obtained a general self-interaction formula whose s
cialization to the case of gravitation in four-dimensions is
precise agreement with the result~14! obtained here.

For any simple elastic string model of the kind consider
here, the master functionL will depend just on the scala
magnitude that is specifiable@3# as x5 c̄mc̄m52g i j c ,ic , j
52pmpm where the relevant momentum vector is defin

by pm5¹̄mc5 x̄m
,ig

i j c , j . Using the notationL85dL/dx,
it can be seen that the regularized self-field will be given

ĥmn54Gl̂~2L8pmpn1xL8gmn2L'mn!, ~16!

using the notation'n
m5gn

m2hn
m for the ~rank-2! world

sheet orthogonal projection tensor. The corresponding s
gravitational action contribution~14! will be expressible as

L̂g5 1
2 Gl̂~U2T!252Gl̂~xL8!2. ~17!
2-3
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BRANDON CARTER PHYSICAL REVIEW D 60 083502
IV. EFFECT ON STRESS TENSOR AND PROPAGATION
SPEEDS

In analogy with the standard formula

T̄mn5Lhmn12L8pmpn, ~18!

for the ‘‘bare’’ surface stress-energy tensor, the correspo
ing self-gravitational stress energy tensor~13! will be obtain-
able in the form

T̂g
mn5L̂ghmn12L̂g8pmpn. ~19!

If the current is timelike—as can be assumed without l
of generality in the wiggly Nambu-Goto strin
approximation—so that we havex<0, then the energy den
sity and tension will be given for the bare model byU5
2L and T52xL82L, while the corresponding extrinsi
~wiggle-type! and longitudinal ~sound-type! perturbations
speedscE andcL will be given @3# by

cE
25122xL8/L, cL

25112xL9/L8. ~20!

An elastic string state is describable as supersonic, trans
or subsonic, according to whether the difference

cE
22cL

2522x~ ln$LL8%!8 ~21!

is positive, zero, or negative. In terms of these quantities
corresponding renormalized energy density~for a given
value of the current magnitude as specified byx! will be
obtainable directly from the renormalized action~15! as

Ũ52L̃5U2 1
2 Gl̂UT~cE

212cE!2. ~22!

However, the evaluation of the corresponding renormali
tension is not so quite so simple: it works out to be

T̃5T1 1
2 Gl̂UT~cE

212cE!2~112cL
2!. ~23!

V. CASE OF THE TRANSONIC WIGGLY STRING
MODEL

In the exact Nambu-Goto case@16#, the master function is
just a constant,L52m2, where ~in units with the Dirac
Planck constant\ set to unity! the parameterm is the rel-
evant Kibble mass scale, which is a constant that can
expected to be of the same order of magnitude as the H
mass scale associated with the underlying symmetry br
ing for a string of the ordinary ‘‘cosmic’’ kind, representin
a vortex-type defect of the vacuum. In this case one sim
obtainsL850, so the divergent short-range self-gravitation
contribution vanishes.

However, for the purpose of a course-grained descrip
on a larger scale, it is appropriate to use the transonic m
@8,9# to represent the smoothened average over sh
wavelength wiggles in the underlying microscopic Namb
Goto model. For this transonic string model, the relev
master function has the form

L52mAm22x, ~24!
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with nonzero derivative

L852m2/2L. ~25!

This gives a nonzero self-gravitional contribution attribu
able to an interaction at intermediate range, i.e., distan
large compared with the wiggle wavelength in the under
ing macroscopic model, but small compared with t
smoothening length on which the macroscopic descriptio
based. A noteworthy example of the application of th
model is to the case of wiggles that are of purely therm
origin, for which the state parameterx will be given@8,19# as
a function of the relevant temperatureQ by the formula

x5
22pm2Q2

3m222pQ2 , ~26!

from which it can be seen that corresponding wiggle pro
gation speed will be given by

cE
2512

2pQ2

3m2 . ~27!

It is evident that the special transonicity property

cL5cE ~28!

of the ‘‘bare’’ model will not survive in the renormalized
model, as obtained using Eq.~24! from Eqs.~15! and ~17!,
for which ~still working just to linear order in the gravita
tional coupling! the difference between the squared propa
tion speeds is found to be given by

cE
2̃2cL

2̃5Gm2 l̂ ~cE
212cE!@~11cE

2 !21 1
2 ~12cE

2 !2#.
~29!

The manifest positivity~since 0,cE,1! of this result shows
that the ‘‘dressed’’ gravitationally self-interacting wiggl
string model will be of supersonic type.

VI. ORDERS OF MAGNITUDE

The regime of applicability of the foregoing analysis is
course subject to limitations. To start with, for the validity
the linearized gravitation equation~4! on which the entire
analysis depends, the weak-coupling condition

Gm2 l̂ !1 ~30!

must be satisfied. This requirement is not very restricti
because even the heaviest kind cosmic strings that are c
monly considered in cosmological applications, nam
those arising from GUT symmetry breaking, are charac
ized by Gm2'1026. For other kinds, such as those arisin
from electroweak symmetry breaking, the value ofGm2 will
be smaller still. The smallness ofGm2 will be partially coun-
terbalanced by the fact that the regularization factorl̂ will be
large compared with unity, but since, according to Eq.~10!,
it arises as a logarithm, it can never be extremely large
2-4
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RENORMALIZATION OF GRAVITATIONAL SELF- . . . PHYSICAL REVIEW D 60 083502
nearly all cases that are likely to arise in practice, it w
satisfy l̂ !102, so the requirement~30! will be satisfied by a
large margin.

Since the rigorous justification@11# of the description of
the macroscopic effect of the wiggles by the simple ela
model~24! depends on the supposition that self-intersecti
of the string can be neglected~since if loop formation were
important a more elaborate nonelastic model would
needed!, the validity of the model as a precise representat
is limited to the regime in which the effective energy dens
of the wiggles, as formally defined by

«5
U2T

2
.U2m2, ~31!

is small compared with the intrinsic energy density of t
string, i.e.,

«!m2, ~32!

which is interpretable in the thermal case as meaning

Q!m. ~33!

Since this is equivalent to the restriction

12cE
2!1, ~34!

it can be seen that the difference~29! will be given approxi-
mately by the simple formula

cE
2̃2cL

2̃.8Gl̂«. ~35!

In an application of this kind, the magnitude,l, say, typi-
fying the wavelength of the wiggles over which the avera
ing is taken will provide an appropriate choice for the infr
red cutoff; i.e., it will be natural to takeD'l. Similarly, the
magnitude, a, say, characterizing the amplitude of th
wiggles will provide the corresponding value for the ultr
violet cutoff, which will thus be given byd* 'a, provided
that, as will usually be the case, the amplitude of the wigg
is not even smaller than the microscopic string radius,r, say,
in which case the latter would itself provide the releva
ultraviolet cutoff. When the string is of the usual ‘‘cosmic
variety, representing an underlying vortex-type defect of
vacuum, one expects the radius to be of the same orde
magnitude as the Compton wavelength associated with
relevant Kibble mass; i.e., one expects to haver'm21. In
most applications of interest, the relevant amplitudea will
be considerably larger than this, and even for wiggles
purely thermal origin it will never be smaller: for the wiggle
produced by a given temperatureQ, as given by Eq.~26!,
one can estimate the relevant magnitudes asl'Q21 and
a'm21; i.e., independently of the temperature the relev
amplitude will be of the same order as the cosmic str
radius,a'r . This means that, in the usual physical applic
tions, it will generally be possible to take the relevant cut
ratio to be given byD/d!'l/a.

Since the effective energy density« contributed by small
wiggles of wavelengthl and amplitudea can be roughly
08350
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estimated as«'m2a2/l2, we see that the squared cuto
ratio appearing in the logarithm in Eq.~10! will be given by
the corresponding rough estimateD2/d

*
2 'm2/« and, hence,

that a reasonably accurate description should be obtain
by taking the regularization factor itself to be given by
approximation of the form

l̂ . lnH m2

^«&J , ~36!

where ^«& is a constant chosen as some suitably weigh
mean value of the energy density«5m2x/2L in the string
segment under consideration. The requirement~32! that the
wiggle energy density should be small compared with
intrinsic energy of the string implies that the ensuing factol̂
will be reasonably large compared with unity, and the co
sideration that the dependence is logarithmic means tha
result will be insensitive to the details of the particular pr
scription chosen to specifŷ«&. In order to obtain higher
accuracy, one might be tempted to replace the fixed m
value^«& in Eq. ~36! by the variable local value of«, which,
by Eq. ~17!, would be equivalent to taking the sel
gravitational action adjustment to be

L̂g.2G«2 lnH m2

« J , ~37!

with

«5
2mx

2Am22x
. ~38!

However, the appearance of improvement provided by s
use of a variable rather than a constant value for the re
malization factor l̂ is rather illusory, since the precedin
demonstration of renormalizability—as embodied in the f
mulas~12!, ~13!, and~14!—was dependent on the postula
that l̂ should be constant. Moreover, it can easily be chec
explicitly that the only effect of the use of the apparen
more precise formula~37! on the final formula~35! will be to
replace the factorl̂ by l̂ 2 3

2 . This adjustment would be sig
nificant only if « were so large as to be comparable withm2,
so that the accuracy of the treatment would in any case
affected by other complicating processess such as loop
mation due to self-intersections.
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