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Critical exponents from seven-loop strong-couplinge® theory in three dimensions
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Using strong-coupling quantum field theory, we calculate highly accurate critical expanenfellowing
from new seven-loop expansions in three dimensions. Our theoretical value for the critical expaid¢he
specific heat near the point of superfluid helium igx=—0.01294-0.00060, in excellent agreement with the
space shuttle experimental value=—0.01285-0.00038.[S0556-282(99)01312-(

PACS numbgs): 11.10.Gh, 11.10.Hi

The accurate calculation of critical exponents from fieldV, has practically no influence on the results, except for low-
theory presents a theoretical challenge, since the relevant irring w slightly (by less than~0.2%). The reason for the
formation is available only from divergent power series ex-little importance of the large-order information in our ap-
pansions. The results are also of practical relevance, singgroach is that the critical exponents are obtained from evalu-
they predict the outcome of many possible future experiations of expansions at infinite bare couplings. The informa-
ments on many second-order phase transitions. In recefbn on the large-order behavior, on the other hand, specifies
work [1] we have developed a novel method for extractingihe discontinuity at the tip of the left-hand cut which starts at
these exponents from such eXpansions via a strong-couplinge origin of the complex-coupling constant pldié]. This
theory of scalar fields with @ interaction. The fields are g 144 far from the infinite-coupling limit to be of relevance.
assumed to have components with an action which is@( |, 4y resummation scheme for expansion in powers of the

fymmetrr'tc'rlf‘sti ar? a)[:()pllﬁaglonn, Wf t?\a\/? lrjlsfri "’I‘I\; a':?t:e S'r):bare coupling constant, an important role is played by the
oop perturbation expansions of the renormaization Con ;. exponent of approach to scaling whose precise
stants in three dimensiof2—4] to calculate the critical ex- : . ; - .

- . o - calculation by the same scheme is crucial for obtaining high
ponents for all Of) universality classes with high precision. accuracies in all other critical exponents. It is determined b
Strong-coupling theory works also in—4% dimensionsi6], e condition that the renormaliz%d cou .Iin strengyoes g
and is capable of interpolating between the expansions in piing g

. . : .~
4— e with those in 2+ e dimensions of the nonlinear model ~ 29&INSt & constang |n'th§ strong-coupling limit, The
[7] knowledge ofw is more yielding than the large-order infor-

mation in previous resummation schemes in which the criti-

The purpose of this note is to improve significantly the : ;
pu'p b g Y cal exponents are determined as a function of the renormal-

accuracy of our earlier results in three dimensiphsby . d ’ ¢ * which is of ord it
making use of new seven-loop expansion coefficients for th ed coupling cons ang nearg® which is of order untty,
us lying a finite distance away from the left-hand cut in the

critical exponentsy and » [8] and, most importantly, by o X
applying a more powerful extrapolation method to infinite c_omplexg ple_me. AlthQUQh these determmatlons_ are sensi-
order than before. The latter makes our results as accurate gge_to the d|scont|nU|ty at the top Qf the cut, it must be
those obtained by Guida and Zinn-Jusi®} via a more so- realized that the |anuepce of the cut_ is very small dug to the
phisticated resummation technique based on analytic ma&_mallness of the fugaC”XC?,ﬁige leading instanton, which car-
ping and Borel transformations, which in addition takes into' €S @ Bol_tzmann factoe N .

account information on the large-order growth of the expan- Ve Priefly recall the available expansioiig] of the
sion coefficients. We reach this accuracy without using thafenormalized coupling=g/m in terms of the bare coupling

information which, as we shall demonstrate at the end in Se@y=g,/m for all O(n),

9/go=1-00(8+n)+g3(2108/27 514n/27+ n?) + g3(— 878.7937193 312.6344467d— 32.54841308°— n°)
+95(11068.06183 5100.403286+ 786.3665690°+ 48.21386744°%+ n*)
+03(—153102.85023 85611.91996— 17317.7025487— 1585.1141894° — 65.82036208* — n®)
+05(2297647.148 1495703.318+ 371103.0896°+ 44914.04818°%+ 2797.291578% + 85.2131050t% + n°),
ey

and of the critical exponen{$],

*Email address: kleinert@physik.fu-berlin.de
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TABLE I. Fluctuation determinants and integrals over extremal field solution.

D D, Dy Iy ., l Ha
3 10.544-0.004  1.457%.0001  31.691522  75.589005  659.868352  13.563312
2 135.3¢0.1 1.465-0.001 15.10965 23.40179 71.08023 9.99118

w(go) = — 1+ 2go(8+n) —g5(1912/9+ 452n/9+ 2n?) + g3(3398.857964 1140.946698+ 95.91428962+ 2n3)
+9o(—60977.50127 26020.14956— 3352.610678%— 151.1725764°— 2n*)
+035(1189133.10% 607809.998 + 104619.0280%+ 7450.143950° + 214.8857494% + 2n°)
+95(—24790569.76- 14625241.8f — 3119527.96/° — 304229.0256° — 14062.53136% — 286.3003674°— 2n°),
(7
7(9)=02(16/27+ 8n/27) + g3( — 9.086537459 5.679085918— 0.5679085918?)
+00(127.4916153 94.77320534+ 17.1347756%+ 0.8105383224°)
+03(— 1843.49199 1576.46676— 395.2678358° — 36.00660248° — 1.026437848%)

+05(28108.60398 26995.8796@+ 8461.481806°+ 1116.246868°+ 62.8879068%+ 1.218861538°%),  (3)

7m(9) =do(2+n) + ga( — 523/27- 316n/27— n?) + g3(229.3744544 162.8474234 + 26.08009808°+ n°)
+9o(—3090.996037 2520.848750— 572.3282898% — 44.32646140°— n*)
+03(45970.71839 42170.3270/ + 12152.70676° + 1408.064008°+ 65.97630108% + n°)

+9g5(—740843.1985 751333.064— 258945.003% — 39575.5703/° — 2842.8966*— 90.7145588°—nf),  (4)

wherey,=2— v 1. To save space we have omitted a factor ¢ )
1/(n+8)" accompanying each powey, on the right-hand oM=1y (—a)k!kl'(k+b,)| 1+ % + iz + , (6)
sides. The additional seventh-order coefficients have been k

calculated fon=0, 1, 2, 3 and arf8] [these without a factor

1/(n+8)" on the right-hand side c@® @
n(k):yn(—a)kk!kI‘(k+b,})( +T+k—+...), (7)
—0.216423937

—0.239546791
7=

) (2)
Y Y
1+—+F+...), (8)

—0.2414247646 " 7=y~ MK (ktby)| 1+

—0.233364541

TABLE II. Growth parameter oD =3 perturbation expansions

—6.099829565 n=0 of B(g), 7(g), andp=7y+r t-2.
0 —7.048219834%2 . n=1 o 1 5 3
- = n= n= n= n=
v —7.3780800846 % " Y n—p [+ ©®
7380848508 n=3 a 0.1662460 0.14777422 0.1329968 0.12090618
b,, 4 92 9 11/2
b* 3 712 4 9/2
It is instructive to see how close the new coefficients areb 2 5/2 3 7/2
to their large-order limiting values derived from instanton 102><7 8.548916) 3.99626) 1.63023) 0.5960910)
calculations, according to which the expansion coefﬁuentqoax,r 10.107 6.2991 3.0836 1.2813
with respect to the renormalized coupllggshould grow for  18x Yy 2.8836 1.7972 0.8798 0.3656

large orderk as follows[11]:
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FIG. 1. Precocity of large-order behavior of coefficients of the expansions of the critical expanemtsy 1+ »—2, andz in powers

of the renormalized coupling constant. The dots show the relative deviations exact/asymptotic-1. The curves are plots of the asymptotic

expressions in Eqe6)—(8) listed in Table Ill. The curve fow is the smoothest, promising the best extrapolation to the next orders, with

consequences to be discussed in Sec. V.
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FIG. 2. Strong-coupling values for the critical
exponenty~! obtained from expansiofd) via
formula (14), for increasing orderdl=2.3,...,7
of the approximation. The exponents are plotted
against the variablel,\,:e’CNl_w and should for
largen lie on a straight line. Here at finifd, even
and odd approximants may be connected by
slightly curved parabolas whose common inter-
section determines the critical exponents for
=o. More details on the determination of the
constantc are given in the text. The numbers on
top give the extrapolated critical exponents and,
in parentheses, the highest approximants, to illus-
trate the extrapolation distance.
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TABLE III. Coefficients of the large-order expansiot@—(8), to fit the known expansion coefficients @f 7, 7. The coefficients;¥) possess

two shorter expansions for even and ddd

n o c@ c® c® ) c(6)
o 0 0.2630147511231  3.440818282282-31.7673335904347  209.9430468590877387.982076950413  212.156573953838
1 1.6353509905175 —8.762940856111  32.5298724631003 49.569397985562(198.550118637547  130.539359765928
2 4.1903240993241-32.521882201016  159.2316083453243-271.5678237829086  185.521462986276-36.220362093550
3 8.0659054235535—69.138003762384  356.1987017927173-773.4084307341978  787.410568298674297.863117806916
7 0 15.4745287323349-263.105249597920 1695.85217994178 —4797.25478881458 6198.211268910182825.37877442787
1 10.9470420638543 169.697930580512 1074.82692242305 —2886.57808941584 3577.486553055291577.19837665961
2 1.2481454871524  60.932456514040409.59535356475 1526.62040773429 —2300.49464074955  1163.42553732492
3 —25.8032867124555 508.523659337568253.93912011988 9876.1715769086113307.48621904672  6257.59065449436
700 —6.3634296712273  54.796985733992209.212694395258 159.7791383324933
1 -5.8608156341154  58.173292227872237.158174423958 183.8456978302008
2 -5.1086981057007  64.465105150609285.116154230741 224.7597471858332
3 —4.2039863427233  76.269147128915364.452995945739 291.3878351595474
ne 0 —5.6929922203758  15.551243915764  61.12469347544379

1 —5.3245881267711
2 —4.5203425601138
3 —3.1970976073075

14.110708087849
9.799960635959
1.705210978430

81.2312043328075
117.4131477198922
176.4615812743069

where »= 7+ v 1—2. The growth parametea is propor-
tional to the inverse Euclidean action of the classinatan-
ton solution ¢(x) to the field equations

1 9

The quantityl, denotes the integrdl,= [ dPx[ ¢.(x)]%. Its
numerical values in two and three dimensi@hare listed in
Table I. The growth parametetks, ,b_»,b; are directly re-
lated to the numbeb +n of zero-modes in the fluctuation
determinant around the instant¢ssociated witlD transla-
tions,n—1 rotations, and one dilationTheir values are

167
a:(D_l)T 9

b,=bg+1=3(D+5+n),

b,=3(D+1+n), b,=3(D+3+n).

n- 2

(10

0.03215 (0.02445) c=3.47416

The prefactorsyg,v,,, v in Egs.(6)—(8) require the calcu-
lation of the full fluctuation determinants. This yields

(n+ 8)2(n+D5)/233(D2)/2( |i) 2
Y=

O 2 (2] \la

IG D/2

X
14

The constant$,, |,, |5 are are generalizations of the above
integral 1 4: |p=deX[<pC(X)]p, andD, and Dy are found
from the longitudinal and transverse parts of the fluctuation
determinants. Their numerical values are given in Table I.
The constanty, is the prefactor of growth in the expansion

coefficients of thep function [the integral overw(g)]:

FIG. 3. Strong-coupling values for the critical
exponenty obtained from the expansiai®) via
formula (14) for increasing orderdl=3,...,7 of
the approximation. The exponents are plotted
against xy=e °N' . Even approximants are
connected by straight line and odd approximats

0.03572 (0.02898) c=4.22746
0.03\0-005 0.01 0.015 0.035 5005
0.0275 —0 0.0325 _,
n n= n n=
0.025 0.03
0.0225 0.0275
0. 02 0.025
0 0175 0.0225
0.015 0.02
0.0175
0.03642 (0.03103) c=4.86392 0.03549 (0.03149) c=5.62134
0.035 0.002

n n=2

by slightly curved parabolas, whose common in-
tersection determines the critical exponents ex-
pected forN=oc.
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0.0301 (0.02445) c=3.98312
03 0.004 0.008

0.03370 (0.02898) c=4.93209
0.001 0.002 0.003
n n=1

FIG. 4. Plot analogous to Fig. 3, but the ex-
trapolation is found from the intersection of the
straight lines connecting the last two even and
odd approximants. The resulting critical expo-
0.0348 (0.03103) c=5.65012 0.03447 (0.03149) c=6.23862 nents differ only little from those obtained in Fig.
0.001 3, the differences given an estimate for the sys-
tematic error of our results.

n n=2

ﬁ(k)_” 7,8(*a)kklr(k+bﬁi)- The prefactors iny,,, v,, and g scaling of every functios(g) which behaves like&s(g)
Y5 in Egs.(6)—(8) are related toy, by =G(§*)+G’(§*)><const5§’+

2H, How do we recover thgo— o limits of a functionf(go)
Yo= ~&Ygs  VyT ﬁm if we know the firstN terms of its asymptotic expansion
fn(go) = En 0ang 5? Extending systematically the behavior
n+2 l, (13) we shall assume thd{g,) approaches its constant lim-
Y= 7Bn+8(D 1)477|2 (12 iting value f* in the form of an inverse power seri¢$2]
1 fm(do) ==M_,bm(go ©)™. This strong-coupling expansion

has usually a finite convergence radigs (see[1,10,13).

here |1,=(1—D/4)I H li in Table I. Th
where |,=( /4)ls and Hs are listed in Table i The Nth approximation to the valug* is obtained from the

numerical values of all growth parameters for are listed in
Table Il. In Fig. 1 we show a comparison between the exac{
coefficients and their asymptotic forni8).

The critical exponents are derived from the divergent ex-
pansions(1)—(5) by going to the limitgo—. In a theory
with scaling behavior, the renormalized coupling constant
tends to a limiting valug* as follows: where the expression in brackets has to be optimized in the

variational parameteg,. The optimum is the smoothest
— const+ (19 among all real extrema. If there are no such extrema, which
o happens for the even approximants, the turning points serve
the same purpose.
where g* is commonly referred to as the infrared-stable ~From the theory{1], we expect the exact values to be
fixed point, ande is called the critical exponent of the ap- a@Pproached exponentially fast with the ordkenf the avall-

N NIl
fX=opt, ; agOE0 ( )(1)k (14)

k

0

proach to scaling. The same exponent governs the approaelble expansions, with the error decreasing ke . In
1.161 (1.159) c=9.57984 1.241 (1.236) c=7.68318
1.16 000001 1200 00012
1.155 ¥ n=0 1.23 4 n=1 FIG. 5. Strong-coupling values for the critical
1.15 1 92 exponent y=v(2—n)=(2—n)l(2—n,) ob-
1 145 tained from a combination of the expansidi3s
1.21 and (4) via formula(14) for increasing order$\
1.14 =2,3,...,7 of theapproximation. The exponents
1.2 . . __cNte
are plotted against the variablg=e and
1.318 (1.308) c=6.82296 1.39 (1.374) c=6.43547 should lie on a straight line in the limit of lardé:
131 0.0002 0.0004  _o 0 0002 0. 0004 0.0006 Even and odd approximants are connected by
1.3 _s sllghtly cgrved parqbolas yvhose common |nt9r-
1 29 1.36 v section with the vertical axis determines the criti-
1 28 vy n=2 L 14 cal_exponents expecte_d ftN:O_O. Th_e determi-
1.97 i nation of the constarnt is described in the text.
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TABLE IV. Our seven-loop critical exponentsuperscript 5 compared with results obtained by other techniques. The superscripts f and
g refer to other seven-loop expansionshDr=3 dimensionsf e [9], g € [8]), the other superscripts a—e refer to six-loop results of a
PadeBorel resummatiorta € [4], b € [3], ¢ e [15]), and to five-loop expansions k=4—D (de [16], es [17]). For each of our results
we give the highest approximation before the extrapolated one in parentheses. Only the first three rowsaradue with superscript a

in the entries fon=0,1,2,3 are new with respect to the table in R&i.

n Oc (6,7 7(76,7) v(ve,7) a B o (wg)
0 1.1611.159°  0.0311-0.001° 0.58830.5864 S 0.8100.773
1.413+0.006"  1.160+0.002" 0.0284-0.0025 0.5882+0.0011" 0.235-0.003" 0.3025+0.0008"  0.812+0.016
1.399 1.1569+0.00049 0.0297+0.00099 0.5872+0.00049
1.4022 1.1602 0.0342 0.5892 0.2312 0.3052
1.421+0.004°  1.161+0.003°  0.026+0.026°  0.588+0.001°  0.236+-0.004°  0.302+0.004° 0.794+0.06"
1.421+0.008° 1.1615-0.002° 0.027+0.004° 0.5880+0.0015° 0.3020+0.0015° 0.80+0.04°¢
1.160-0.004°  0.031+0.003° 0.5885+0.0025° 0.3025¢-0.0025° 0.82+0.04°
1 1.2411.236°%  0.0347-0.001° 0.630%0.6270 S 0.8050.772
1.411+0.004"  1.240-0.001" 0.0335-0.0025" 0.6304-0.0013" 0.109+0.004" 0.3258-0.0014"  0.799+0.011f
1.409 1.2378+0.00069 0.0355-0.0009% 0.6301=0.0005¢
1.4192 1.2392 0.0382 0.6312 0.1072 0.3272 0.7812
1.416+0.0015° 1.241+0.004°  0.031+0.011°  0.630:0.002° 0.110+0.008°  0.324+0.06" 0.788+0.003°
1.416+0.004° 1.2410-0.0020° 0.031+0.004° 0.6300+0.0015° 0.3250+0.0015° 0.79+0.03¢
0.035+0.002¢  0.628+0.001¢ 0.80+0.02¢
1.1239+0.004°  0.037+0.003° 0.6305-0.0025° 0.3265-0.0025° 0.81+0.04°
2 1.311.306°  0.0356:0.001° 0.671G0.6652 S 0.8000.772
1.403+0.003"  1.317+0.002" 0.0354-0.0025" 0.6703-0.0013" —0.011+0.004" 0.3470-0.0014"  0.789+0.011f
1.409 1.3178£0.001¢ 0.0377:0.0006° 0.6715-0.00079
1.4082 1.3152 0.0392 0.6702 —0.010? 0.3482 0.7802
1.406+0.005°  1.316-0.009°  0.032+0.015°  0.669+0.003° —0.007+0.009°  0.346+0.009° 0.78+0.01°
1.406+0.004° 1.3160-0.0025° 0.033+0.004°  0.6690+0.0020° 0.3455+-0.002° 0.78+0.025°
0.037:0.002¢  0.665+0.001¢ 0.79+0.02¢
1.315-0.007°  0.040+0.003°  0.671+0.005° 0.3485-0.0035° 0.80+0.04°
3 1.39(G1.374 %  0.0350:0.0005° 0.70750.7009 S 0.7970.776
1.391+0.004"  1.390+0.005" 0.0355-0.0025" 0.7073-0.0030" —0.122+0.009" 0.3662-0.0025"  0.782+0.0013'
1.399 1.3926¢0.0019 0.0374+0.00049 0.7096+0.0008°
1.3922 1.3862 0.0382 0.7062 —-0.1172 0.3662 0.7802
1.392-0.009°  1.390+0.01°  0.031+0.022°  0.705-0.005° —0.115+0.015° 0.362° 0.78+0.02°
1.391+0.004°  1.386-0.004°  0.033-0.004°  0.705+0.003° 0.3645-0.0025° 0.78+0.02¢
0.037+0.002¢ 0.79+0.02¢ 0.79+0.02¢
1.390+0.010°  0.040+0.003°  0.710+0.007° 0.368+0.004° 0.79+0.04°
4 1.4511.433 0.0310.0289 0.7370.732 0.7950.780
1.3752 1.449? 0.0362 0.7382 —0.213? 0.3822 0.783?
5 1.5111.487 0.029%0.0283 0.7670.760 0.7950.785
1.3572 1.5062 0.0342 0.7662 —0.2972 0.3962 0.7882
6 1.5581.535 0.02760.0273 0.7900.785 0.7970.792
1.3392 1.5562 0.0312 0.790% —0.3702 0.4072 0.7932
7 1.5991.577) 0.02620.0260 0.8100.807) 0.8020.800
1.3212 1.5992 0.0292 0.8112 —0.4342 0.4172 0.800?
8 1.6381.612 0.02470.0246 0.8290.825 0.8100.808 0.848
1.3052 1.6372 0.0272 0.830% —0.4892 0.4262 0.8082
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TABLE IV. (Continued).

PHYSICAL REVIEW @& 085001

n 9 ¥(7ve) 7(76) v(v) a B o (wg)
9 1.6801.643 0.02330.0233 0.8500.841) 0.8170.815 0.854
1.2892 1.669% 0.0252 0.8452 —0.5362 0.4332 0.8152
10 1.7131.670 0.02160.0220 0.8660.859 0.8240.8220.860
1.2752 1.6972 0.0242 0.8592 —0.5762 0.4402 0.8222
12 1.7631.716 0.019@0.01998 0.8900.877 0.8380.839
1.2492 1.7432 0.0212 0.8812 —0.6432 0.4502 0.8362
14 1.79%1.750 0.01690.0178 0.9050.899 0.8510.849
1.2272 1.779% 0.0192 0.8982 —0.693? 0.4572 0.8492
16 1.8221.779 0.01520.0162 0.9180.907 0.8620.860
1.2082 1.8072 0.0172 0.9112 —0.7322 0.463?2 0.8612
18 1.8451.803 0.01480.0137% 0.9290.918 0.8730.869
1.1912 1.8292 0.0152 0.9212 —0.7642 0.468?2 0.8712
20 1.8641.822 0.01250.0135 0.9380.927 0.8830.878
11778 1.8472 0.0142 0.930? —0.7892 0.4712 0.8802
24 1.8901.850 0.01060.0116 0.9500.939 0.9000.899
1.1542 1.8742 0.0122 0.9422 —0.8272 0.4772 0.8962
28 1.9091.87) 0.0092320.01010 0.9590.949 0.9130.906
1.1362 1.8932 0.0102 0.9512 —0.8542 0.4812 0.9092
32 1.9201.88% 0.008140.00895 0.9640.955 0.9240.915
1.1228 1.908? 0.0092 0.958?2 —0.875% 0.4832 0.919?2
aSix-loop results of a Pade-Borel resummatien]4]. €Five-loop expansions ie=4—D, e [17].
bSix-loop results of a Pade-Borel resummatien]3]. fSeven-loop expansions D=3 dimensions,e [9].
“Six-loop results of a Pade-Borel resummatien[15]. 9Seven-loop expansions B=3 dimensions,e [8].
drive-loop expansions ie=4—D, e [16]. "Our seven-loop critical exponents.

order to extrapolate our results d=c, we plot the data They lead to thev values v,={0.5883, 0.6305, 0.6710,
against the variablezN:e‘Clem (see also Addendum to 0.7078, the entries in this vector referring t0=0,1,2,3.
Ref.[1]). This is done separately for even and odd approxi-Since these results depend on the critical exponents is
mants, since the former stem from extrema, the latter fronuseful to study the dependence of the extrapolationwon

turning points. The unknown constart ¢ are determined by with the result
fitting to each set of points a slightly curved parabola and
making them intersect the vertical axis at the same point,

which yields the extrapolated critical exponent listed on top 0.5883+0.0417< (w—0.810
0.6305+ 0.0400< (w—0.805
0.6710+ 0.0553< (w—0.800
0.7075+0.1891X (w—0.797

of each figure(together with the seventh-order value in pa-
rentheses, and the optimal parameter

Following this procedure, we find from the expansidn
for v~ 1 the approximants:,gl via formula(14). Extrapolat-
ing separately even and odd approximamis we determine
the limiting valuev, as shown in Fig. 2. The values used
for this extrapolation are those of R¢6], listed in the last
column of Table IV:

V7=

for

Zz Z2 Z2 2
Il
w N O

(16)

For the critical exponeny, we cannot use the same ex-

0.81
0805
@6~ 0.797( "

0.790

> 5 S O
[ |
w N O
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trapolation procedure, since the expangi®nstarts out with

6(2), so that there exists only an odd number of approximants
(15) nn - We therefore use two alternative extrapolation proce-

dures. In the first we connect the even approximapteind

na by a straight line and the odd onesg;, 75,7, by a
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TABLE V. Coefficients of extended perturbation expansions obtained from the large-order expafki¢8sfor w, 7., 7 up tog2

k n=0 n=1 n=2 n=3
»® 0 -1 -1 -1 -1
1 2 2 2 2
2 —95/72 —308/243 —272/225 —1252/1089
3 1.559690758 1.404278391 1.259667768 1.131786725
4 —2.236580484 —1.882634142 —1.589642400 —1.351666500
5 3.803133000 2.973285060 2.346615000 1.875335400
6 —7.244496000 —5.247823000 —3.867143000 —2.904027000
7 15.0706772 10.0938530 6.9384728 4.8954471
8 —33.8354460 —20.9045761 —13.3833570 —8.8630280
9 81.4263429 46.2983010 27.5543342 17.1018561
10 —209.0371337 —109.1428445 —60.2679848 —34.9985085
11 570.2558985 272.8574773 139.5403648 75.6925030
12 —1647.63898 —721.159283 —340.986931 —172.506443
13 5027.12671 2009.473994 877.142753 413.269514
14 —16154.2792 —5888.53514 —2369.63316 —1038.433113
15 54539.7867 18105.83253 6708.76515 2731.28823
16 —193034.402 —58292.0930 —19865.5739 —7505.78230
17 714771.195 196130.5369 61414.0151 21513.8526
18 2.763728% 10° —688418.829 —197883.530 —64215.5872
19 1.1139536 10° 2.516611% 10° 663509.086 199303.824
20 —4.6728706¢ 107 —9.5668866¢ 10° —2.311771% 10° —642301.398
21 2.0370346 10° 3.7765630x 10 8.358176% 10° 2.146564% 10°
22 —9.215271x 1¢° —1.546026& 10° —3.131794% 10’ —7.430188% 1¢°
23 4.320666% 10° 6.555288% 10° 1.214705% 10° 2.660774% 10
24 —2.097013% 10%° —2.875515% 10° —4.871456 10° —9.846911% 10’
25 1.052367& 10 1.303511K% 10'0 2.017896 10° 3.7621336¢ 10°
7 1 —-1/4 -1/3 —-2/5 —5/11
2 1/16 2127 2125 10/121
3 —0.0357672729 —0.0443102531 —0.0495134446 —0.0525519564
4 0.0343748465 0.0395195688 0.0407881055 0.0399640005
5 —0.0408958349 —0.0444003474 —0.0437619509 —0.0413219917
6 0.0597050472 0.0603634414 0.0555575703 0.0490929344
7 —0.09928487 —0.09324948 —0.08041336 —0.06708630
8 0.18143353 0.15857090 0.12955711 0.10413882
9 —0.35946458 —0.29269274 —0.22839265 —0.17925852
10 0.76759881 0.58218392 0.43525523 0.33488318
11 —1.75999735 —1.24181846 —0.88911482 —0.66904757
12 4.31887516 2.82935836 1.93487570 1.41644564
13 —11.3068155 —6.86145603 —4.46485563 —3.15991301
14 31.4831400 17.65348358 10.8846651 7.40110473
15 —92.9568675 —48.04185493 —27.9476939 —18.1528875
16 290.205144 137.9015950 75.3808299 46.5326521
17 —955.369710 —416.4425396 —213.088140 —124.454143
18 3308.08653 1319.8954890 630.008039 346.784997
19 —12019.6749 —4380.9238169 —1944.51060 —1005.36571
20 45726.095 15196.764595 6254.75115 3028.67211
21 —181763.39 —54989.750148 —20934.4636 —9469.48945
22 753530.79 207207.59430 72800.2529 30694.0685
23 —3.252298K 1¢° —811759.779 —262684.705 —103030.713
24 1.459060% 10’ 3.301437% 10° 982242.312 357779.77
25 —6.7936016¢ 10 —1.391984& 10 —3.801639% 10° —1.284028% 10°

085001-8
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k n=0 n=1 n=2 n=3
7® 1 0 0 0 0
2 1/108 8/729 8/675 40/3267
3 0.0007713749 0.0009142223 0.0009873600 0.0010200000
4 0.0015898706 0.0017962229 0.0018368107 0.0017919257
5 —0.0006606149 —0.0006536980 —0.0005863264 —0.0005040977
6 0.0014103421 0.0013878101 0.0012513930 0.0010883237
7 —0.001901867 —0.0016976941 —0.001395129 —0.001111499
8 0.003178395 0.0026439888 0.002043629 0.001544149
9 —0.006456700 —0.0049783320 —0.003585593 —0.002532983
10 0.012015200 0.0084255120 0.005570210 0.003647578
11 —0.029656348 —0.0194143738 —0.012066168 —0.007451622
12 0.064239639 0.0378738590 0.021403479 0.012148673
13 —0.180415293 —0.0992734993 —0.0527914785 —0.0282931664
14 0.4519047994 0.22304200134 0.1074844332 0.0528085190
15 —1.4092869972 —0.6472476781 —0.2928360472 —0.135567321
16 4.0214900375 1.65386975 0.6774143887 0.287414739
17 —13.758814405 —5.24609037 —2.01071514 —0.801301742
18 44.090284529 15.0426293 5.21919799 1.907241838
19 —164.205876 —51.7544723 —16.7458885 —5.728643910
20 583.728411 164.571258 48.2146655 15.13540671
21 —2352.30706 —610.647520 —166.308263 —48.72074256
22 9182.66367 2131.95908 525.890013 141.4691142
23 —39836.8326 —8491.50902 —1941.60261 —486.0716246
24 169338.243 32279.4193 6686.67654 1538.009823
25 —787352.117 —137442.343 —26325.2747 —5621.263980

slightly curved parabola, and varyuntil there is an inter-
section atx=0. This yields the critical exponents shown
in Fig. 3.

Allowing for the inaccurate knowledge @, the results
may be stated as

Combining the two results and using the difference to
estimate the systematic error of the extrapolation procedure,
we obtain for# the values

0.0311+0.001 n=0
0.03215+ 0.1327 (w— 0.810 n=0 _ ] 0:0347-0.001 n=1
7771 0.0356:0.001) O o (19
0.03572+ 0.0864 (w— 0.805 f n=1 ' : n=
7771 0.03642+ 0.0655<(w—0.800 [ ' | n=2 0.0350=0.001, n=3
0.03549+ 0.0320<(=0.797 n:3(17) whosew dependence is the average of that in E43) and

Alternatively, we connect the last odd approximamts
and n, also by a straight line and choos¢o make the lines
intersect atk=0. This yields the exponents

(18).

For our extrapolation procedure, the power series for the
critical exponenty=v(2— ) are actually better suited than
those for », since they possess three even and three odd
approximants, just ag . Advantages of this expansion
have been observed befdr&].

0.03010+0.08760< (w—0.810 n=0 The associated plots are shown in Fig. 5. The extrapolated
0.03370+ 0.03816¢ (w— 0.805 n=1 exponents are, including the dependence,
n7= _ for o[
0.034806+ 0.01560< (w—0.800 n=2 1.161- 0.049 (w—0.810 =0
0.0344# 0.00588< (w—0.797) n—3218) 1.241-0.063< (w—0.809 f n=1
Y77\ 1.318-0.044<(0—0.800 [ 'O | n=2
as shown in Fig. 4, thes dependences being somewhat 1.390-0.120X (w—0.797) n=3
weaker than in Eq(17). (20

085001-9
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0.75 . w n=0 2 3 4 5 6 7 ¢
0.5 -0.2 . " 0.5 .
. k
0.25 -0.4 * 3 ) 5 6 7
2 3 3 5 6 k . "0.5
-0.25 -0.6 -1
-0.5 -0.8} » -1.5 n n=0
-0.75 7 n=0 N
_1 L]
k
. w n=1 2 3 4 5 6 7 *
0.5 _0'2 . A4 0'5 .
0.25 . > k
0.4 3 4 5 6 7
* k : : -0.5 .
2 3 4 5 6 :
-0.25 -0.6 . 1
- n=1
0.5 0.8 . _ -1.5 7
-0.75 7 on=1
-1 -2 .
k
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0.5 -0.2 by
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2 1 4 s 6 . 0.5 .
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k
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2§ 4 3 ¢ .« 0.5 .
-0.25 -0.6 . -0.75
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-0.75 0.8 : -1.25 n n=3
) ) 7 n=3 -1.5 .

FIG. 6. Relative errors in predicting tHah expansion coefficient by fitting the strong-coupling expansi@)s(8) for w, =1

+7—2, andy to the firstk—1 expansion coefficients.

Unfortunately, the exponent=v(2— 7) is not very insen- orderN, seems to be more powerful than the knowledge of

sitive to 7, since this is small compared to 2, so that thethe large-order behavior exploited by other auth@nsoted

extrapolation result§17) are more reliable than those ob- in Table 1V).

tained fromvy via the scaling relatiom=2— y/v. By com- The complete updated list of exponents is shown in Table

bining Eqs.(16) and(17), we find fromy=v(2— 7): IV, which also contains values for the other critical expo-
nentse=2—Dv andB=v(D—2+ 7)/2.

1.158 n=0 Let us now show that the large-order information is in-
1.2403 n=1 deed rather irrelevant to the critical exponents within strong-
y7= for , (21 coupling theory. For this purpose we choose the coefficients
1.3187 n=2 ¢ in the asymptotic formulags)—(8) to fit exactly the six
1.3932 n=3 known expansion coefficients af(g) and the seven of(g)

and 7(g). The coefficients are listed in Table I, and the
the difference with respect to ER0) showing the typical associated fits are shown in Fig. 1. Since even and odd co-
small errors of our approximation, which are of the sameefficients »(*) lie on two separate smooth curves, we fit the
order as those of the exponents obtained in RE4f.As men-  two sets separately. These fits permit us to extend the pres-
tioned in the beginning, the knowledge of the large-orderently available coefficients and predict the results of future
behavior does not help to improve significantly the accuracyhigher-loop calculations, listed in Table V up to order 25.
of the approximation. In our theory, the most important ex-The errors in these predictions are expected to be smallest for
ploited information is the knowledge of the exponentially »®, as illustrated in Fig. 6.
fast convergence which leads to a linear behavior of the re- At this place we observe an interesting phenomenon: Ac-
summation results of ordelN in a plot againstxy  cording to Table V, the expansion coefficier$? of (g)
=e~°N""“ This knowledge, which allows us to extrapolate have alternating signs and grow rapidly, reaching preco-
our approximations foN=2,3,4,5,6,7 quite well to infinite ciously their asymptotic forn6), as we have seen in Fig. 1.

085001-10



CRITICAL EXPONENTS FROM SEVEN-LOOP STRONG- ... PHYSICAL REVIEW @& 085001

TABLE VI. Coefficients ofg,(g) obtained from extended perturbation expansions obtained from the large-order expéb)si8)sfor
w(g) up tog®.

k n=0 n=1 n=2 n=3

g 1 1 1 1 1
2 +1 +1 +1 +1
3 +337/432 +575/729 +539/675 +2641/3267
4 +0.61685694588 +0.62411053351 +0.63484885720 +0.64721832545
5 +0.44266705709 +0.45557995443 +0.47149516705 +0.48876206059
6 +0.35597494073 +0.35927512536 +0.36876801981 +0.38195333853
7 +0.21840619207 +0.23668638696 +0.25507866294 +0.27372501773
8 +0.23516444398 +0.22010271935 +0.21833333377 +0.22423492600
9 +0.02522653990 +0.07797541233 +0.11146939079 +0.13619054953
10 +0.32466738893 +0.21722566733 +0.17071122132 +0.15281461436
11 —0.46084539160 —0.17781419227 —0.04796874299 +0.01851106465
12 +1.36111296151 +0.62177013621 +0.32371445346 +0.19688967179
13 —3.42004319798 —1.33935153089 —0.55625249070 —0.23297770291
14 +9.68597708110 +3.55457753745 +1.44715002648 +0.65263956302
15 —28.5286709455 —9.51594412468 —3.51833733708 —1.41477489238
16 +88.9376821020 +27.1477264424 +9.31404148366 +3.53850316476
17 —291.235785543 —81.0609653416 —25.6008150903 —9.00262320492
18 +1000.66241399 +253.799830529 +73.8458792207 +24.1544067361
19 —3599.15484483 —830.784519325 —222.359395181 —67.4743858406
20 +13526.5566605 +2838.71379781 +698.348588943 +196.518945901
21 —53025.6841577 —10107.5962344 —2283.46544025 —595.358754523
22 +216470.154554 +37445.8720302 +7762.54138666 +1873.85881729
23 —918905.735057 —144134.115732 —27396.7807350 —6119.04352841
24 +4050397.96349 +575646.134976 +100259.282083 +20705.5670994
25 —18514433.0840 —2382463.70507 —379975.758849 —72517.4413857

Now, from w(g) we can derive the so called@ function Given the extrapolated list of expansion coefficients in

B(9)=Jdgw(g), and from this the expansion for the bare Table V, we may wonder how much these change the seven-

coupling constantgy(g)=— fdg/A(g), with coefficients loop results. In Fig. 7 we show the results. The known six-
g listed in Table VI. From the standard instanton analysid©®0PS coefficients oi»(go) and#(go) were extended by one

[10], we know that the functiogy(g) has the same left-hand extrapolated coefficient, since this produces an even number
cut' in the complex Eplgne as  the functions of approximants which can be most easily extrapolated to

D (3. (3. with th di tinuit tional infinite order. Fory(g,) we use two more coefficients for
(9).7(9),7(9). with the same discontinuity proportional y,o same reason. The extrapolations are shown in Fig. 7. The

- i icienfy) : .
to e~ "% at the tip of the cut. Hence, the qoefﬂqug resultingwg values are lowered somewhat with respeabto
must have asymptotically a similar alternating signs and gom Eq. (15) to

factorial growth. Surprisingly, this expectation is not borne

out by the explicit seven-loop coefficiengy following 0.793 n=0

from Eq.(6) in Table VI. If we, however, look at the higher- 0.7916 n=1

order coefficients derived from the extrapolated® se- wg= for (22
guence which are also listed in that table, we see that sign 0.7900 n=2

change and factorial growth do eventually set in at the rather 0.7880 n=3

high order 11. Before this order, the coefficienf’ look

like those of a convergent series. Thus, if we would make & "€ Néw7 values are

plot analogous to those in Fig. 1 fg K we would observe

huge deviations from the asymptotic form up to an order

much larger than 10. In contrast, the inverse sagi@g) has 0.02829-0.01675<(w—0.7939 n=0
expansion coefficientg, which do approach rapidly their 0.03319-0.01523K (w—0.7910 n=1
asymptotic form, a§ seen in Tap!e VII. This is E]e reason = 003503 0.02428< (w—0.7900 for n=2("
why our r_esu!rﬂma_\tlon of the critical exponents»,n qs 0.03537- 0.01490K (@ — 0.7880 n=3
power series iy, yields good results already at the available

rather low order seven. (23
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TABLE VII. Coefficients ofg(g,) obtained from extended perturbation expansions obtained from the large-order expé)sitB)sor

w(g) up tog®.

PHYSICAL REVIEW D 60 085001

k n=0 n=1 n=2 n=3
g® 1 1 1 1 1

2 -1 -1 -1 -1

3 +527/432 +883/729 +811/675 +3893/3267

4 —1.7163939829 —1.680351960126292 —1.642256264617284 —1.60528382897736

5 +2.7021635328 +2.591685040643859 +2.481604560563785 +2.378891143794822

6 —4.6723281932 —4.363908063002809 —4.073635397816119 —3.813515390028028

7 +8.7648283753 +7.926093595753771 +7.180326093595318 +6.539645290718699

8 —17.684135663 —15.39841276963578 —13.47981441366666 —11.90293506879397

9 +38.129348202 +31.80063328573243 +26.79259688548747 +22.86325133485651
10 —87.419391225 —69.48420478282783 —56.1279351033013 —46.14596304145893
11 +212.28789113 +160.0400066477353 +123.4985362910675 +97.5437851896555
12 —544.33806227 —387.4479410496121 —284.6297746951519 —215.3826650602743
13 +1470.2445538 +983.719405302971 +685.668309006505 +495.7770927688912
14 —4175.1804881 —2614.933427024693 —1723.672999416843 —1187.794187410145
15 +12447.739474 +7268.064649337187 +4516.120357408118 +2958.336103932099
16 —38915.141370 —21101.49568383381 —12320.85534817637 —7652.516371929849
17 +127440.33105 +63943.24392789235 +34975.98186824855 +20545.02631707489
18 —436738.21140 —202094.1329180427 —103252.1798678474 —57215.98372843337
19 +1564637.2472 +665710.523944826 +316810.7604431689 +165210.8008728902
20 —5853354.4104 —2283830.09806744 —1009811.938755735 —494409.476944406
21 +22839087.694 +8153184.95412866 +3341698.327836095 +1532757.736028176
22 —92830002.172 —30260412.9590709 —11473421.52345331 —4920271.757368278
23 +392524311.64 +116646023.338810 +40840739.00033049 +16345368.25243382
24 —1724406456.3 —466498175.446816 —150595276.6851763 —56159032.51385756
25 +7860313710.5 +1933471826.94197 +574727529.9905997 +199417525.2243582

lying reasonably close to the previous seven-loop result$V. The only comparison with experiment which is sensitive
(17), (18) for the smallerew values(22). The first set yields enough to judge the accuracy of the results and the reliability

17g=10.0300,0.0356,0.0360,0.0354 the second 7z  of the resummation procedure is provided by the measure-
={0.03150.0342,0.0349,0.0345 ment of v for n=2, where the critical exponert=2—3v
0.03150.0342,0.0349,0.0 fvf 2, wh he critical 2-3
For 7 we find the results has been extracted from the singular®y<|1—T/T "¢ in
the specific heat at the point of superfluid helium with high
accuracy[18]:
—0.2711+0.0400< (w—0.810 N=0
] —0.3803+0.0974x (w—0.803 or N=1 a=—0.01285-0.00038. (25)
797 —0.4735+ 0.1240< (v —0.800 N=2|"
—0.5506+ 0.4761X (w—0.797) N=3 Since v is of the order 2/3, this measurement is extremely
' ' ' (24  sensitive tov. It is therefore useful to do the resummations

and extrapolations foN=2 directly for the approximatex
o ) valuesay=2—3vy, once for the six-loopy value w=0.8,
It is interesting to observe how the resummed valuegng once for a neighboring value=0.790, to see thev
oy, 7N, 77 Obtained from the extrapolated expansion coef-dependence. The results are shown in Fig. 9. The extrapo-
ficients in Table V continue to higher orders i This is  |ated values for ouw=0.8 in Table IV yield
shown in Fig. 8. The dots converge against some specific
values which, however, are different from the extrapolation
results in Fig. 7 based on the theoretical convergence behav-
ior error~e~°N""“. We shall argue below that these results
are worse than the properly extrapolated values. in very good agreement with experiment.
All the above numbers agree reasonably well with each The extrapolated expansion coefficients for orders larger
other and with other estimates in the literature listed in Tabléhan 11 do not carry significant information on the critical

a=—0.01294-0.00060, (26)
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FIG. 7. Extrapolation of resummeadl, 77, 7 values if one §, %) or two () more expansion coefficients of Table V are taken into account.
The fat dots show the resummed values used for extrapolation, the small dots indicate higher resummed values not used for the extrapolation.
The numbers on top specify the extrapolated values and the values of the last approximation, corresponding to the leftmost fat dot.

exponentr. The fact that the extrapolated expansion coeffi-obtain «= —0.0091, which differs by~25% from the ex-
cients should lie rather close to the true ones as expectgukrimentala.

from the decreasing errors in the plots in Fig. 6 does not The extrapolation of the approximations, . ..,vg can
imply the usefulness of the new coefficients in Table V forbe done similarly, as illustrated in Fig. 9.

obtaining better critical exponents. The errors are only rela- Combining these with(23), we find from v=1/(2+ 7
tively small with respect to the huge expansion coefficients.— ) the new values fow:

The resummation procedure removes the factorial growth

and becomes extremely sensitive to very small deviations

from thes huge coefficients. This is the numerical conse-

guence of the fact discussed earlier that the information re- 0.5880-0.0196x (w—0.7935 n=0
siding in the exponentially small imaginary part of all critical _ _
exponents near the tip of the left-hand cut in the complex Vg= 0.6303-0.044/x(«~0.7919 for n=1 ,
do-plane has practically no effect upon the strong-coupling 0.6705-0.0267< (»—0.7900 n=2
results at infinitego. 0.7072-0.3123< (w—0.7880Q n=3
Note also that the critical exponents which one would (27

obtain from a resummation of the extrapolated expansion
coefficients of high order in Table V and their naive extrapo-

lation performed in Fig. 8 yield slightly worse results fer  quite close to the seven-loop results). We may also sum
in superfluid helium. Indeed, inserting=—0.47366 andy  directly the series forw =2+ 7— 7 and extrapolate the
=0.0331 into the scaling relatioae=2-3/(2+ n— ) we  resulting values fow,, ... ,vg yielding
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FIG. 8. Direct plots of the resummesl, 7, » values for all resummed values from all extrapolated expansion coefficients of Table V. The
line is fitted to the maximum of all dots at the place specified by the number on top. Fat and small dots distinguish the resummed exponents
used in the previous extrapolations from the unused ones.
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FIG. 9. Extrapolation of resummedvalues if two more expansion coefficients are taken from list in Table V. The large dots show the
resummed values used for extrapolation; the small dots indicate higher resummed values not used for the extrapolation.
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0.5889-0.0417< (w—0.7935

n
0.6311-0.0400¢ (0 —0.7916 | n=
¥97) 0.6714-0.0553<(0—0.7900 [ ' | n

0.7079-0.1891X (w—0.7880 n
(28)
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even closer to the seven-loop resylt$).
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