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Interaction of DO-brane bound states and Ramond-Ramond photons
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We consider the problem of the interaction between a DO-brane bound state and one-form Ramond-Ramond
(RR) photons using the world-line theory. Based on the fact that in the world-line theory the RR gauge fields
depend on the matrix coordinates of DO-branes, the gauge fields also appear as matrices in the formulation. At
the classical level, we derive the Lorentz-like equations of motion for DO-branes, and it is observed that the
center of mass is colorless with respect to the ISU¢ector of the background. Using the path integral method,
the perturbation theory for the interaction between the bound state and the RR background is developed.
Qualitative considerations show that the possibility of the existence of a map between the world-line theory
and the non-Abelian gauge theory is very considerable.
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I. INTRODUCTION the noncommutativity is “confined” just inside the bound
state; to put it simply, the noncommutativity is not seen by an
In recent years a great deal of attention has been paid tobserver far from the bound state. In contrast with the case of
the formulation and study of field theories in noncommuta-infinite extension of noncommutativity, we call this kind
tive spaces. Apart from the abstract mathematical interestonfined noncommutativity.
the physical motivation for this has been the natural appear- |n this picture, the natural question is, how can we know
ance of noncommutative spaces in string theory. Correspongout the structure of confined noncommutativity? Since the
ingly, it is understood that string theory involves some kindsnoncommutativity of the bound state is confined, as in any
of noncommutativity; two important examples a® the  other similar situation known in physics, the answer to the
coordinates of the bound states WfDp-branes[1], which  above question is gained by analyzing and studying the re-
are represented by X N Hermitian matrice$2], and(2) the  sponse of the substructure of the bound state to external
longitudinal directions of [p-branes in the presence of a probes. In this respect one may consider two kinds of the
Neveu-SchwarZNS) B-field background, which appears to external probe (1) another D-brane, of2) the quanta of
be noncommutativg3,4], as seen by the ends of open stringsexternal fields, like gravitons or photons of the form fields.
[5]. In the second example, the coordinates in the longitudiTo be specific, let us consider the special case of DO-branes.
nal directions of the P-branes act as operators and satisfyUsing another DO-brane as a probe of a system of DO-branes
the algebra is a familiar example from studies related to the matrix
model conjecture of M theor6]. In the matrix model pic-
[X#, X" ]=i0"", (1.1)  ture, since DO-branes are already assumed to be supergravi-
tons of 11-dimensional supergravity theory in the light-cone
where 6#” is a constant antisymmetric tensor. There havegauge, the problem at hand is in fact nothing but “probing”
been many attempts in the recent literature to study differentne bound state by another individual graviton. In the matrix
aspects of field theories defined in these kinds of noncommodel, the high amount of supersymmetry, together with the
mutative spaces. As one point, we mention that the abovepecific form of the commutator potential of the matrix co-
algebra is satisfied just bye(x)-dimensional matrices, ordinates, help to calculate the elements of $h@atrix for
and consequently the noncommutativities concerned shoularious scattering processes. The important peculiarity of
be assumed in alregions of the space. Also, since there is this case is that, in these kinds of investigation, one uses
a nonzero expectation value for the tensor field(Bf”)  noncommutativity(by things like the commutator potential
=(6"1)*" [4], in these spaces generally one should expecto study the effective theory of DO-branes, rather than ana-
violation of Lorentz invariance. lyzing the “structure” of confined noncommutativity itself
As we recalled above, there is another kind of noncom{7]. In other words, generally in this case one ignores the
mutativity concerning the coordinates of D-brane boundinternal dynamics inside the bound stés target and es-
states, which from now on we call the “matrix coordinates.” sentially considers only the relative dynamics of the target
In contrast to the case related to the algetird), for the  and other DO-bran(e) as probés).
case of D-brane bound states, we have noncommutativity for In this work we want to discuss the basic elements of
finite dimensional matrices, and thus the noncommutativityusing the second kind of probe mentioned ab6we, exter-
of coordinates is not extended to all of the space. In this caseal fieldg to find information about the structure of confined
noncommutativity. As will be clear throughout the paper, the
language used in this kind of probe is much closer to the
*Email address: fatho@roma?2.infn.it field theory formulation of the problem in comparison with
"Mailing and permanent address. the approach in which the probe is viewed as another DO-
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brane. To continue, we need to know the dynamics of theects of the world-line formulation of the dynamics of DO-
bound state of DO-branes in different backgrounds. Becauderane bound states in nontrivial backgrounds. These include
of the nature of the matrix coordinates, the formulation of thethe equations of motion of DO-branes in a one-form back-
dynamics of DO-branes in the background of gravity andground, and also the symmetry aspects of the world-line for-
various form fields is a nontrivial question. Some of the mostmulation. In Sec. IlI, by using the path integral method, we
important progress in this direction was mad¢80]. Here  quantize the DO-brane theory. In particular, we write down
we use the results dB,9], restricting ourselves to the sim- the expression of the propagator in the first order of pertur-
plest case of zero NB field and a flat metric, but a nonzero pation, which can be converted to the amplitudes of the scat-

one-form Ramond-RamonRR) field. Although the frame-  o1ing processes by an arbitrary external source. Section IV is
work we use here comes from thepfbranes of string jayoted to the conclusion and discussion

theory, it is useful to consider the more general case in arbi-
trary space-time dimensiomst 1. Also, as the first step, we ous work in[12] and [13]. In particular, the problem we

consider the bosonic partners only. . L . R
One of the questions which can be addressed in this digon5|der in this work was interpreted j3] as the world

rection is about the nature of the effective field theory that!me formulatlpn of elec.trodynar.mcs on matrix space.
captures the interaction between the bound state of D(f\lso,.the SUb.JeCt .Of probing confined noncommutativity is
branes and the “photons” of the one-form RR field. To be Mentioned briefly in the last part ¢13].
more specific, it will be interesting to derive the effective
vertex function for the interaction of a one-form RR photon
with the incoming and outgoing DO-branes. These kinds of [l DYNAMICS OF DO-BRANES IN ONE-FORM RR
guestions, and in particular the question of the amplitudes of BACKGROUND
which field theory may correspond to the amplitudes derived
by the world-line theory of DO-branes in a RR background,
constitute some parts of the discussion of this paper. It is known that the transverse coordinates of bound states
The world-line formulation we will use in this work is of N Dp-branes are represented < N Hermitian matrices
very much like that of the matrix model conjecture; in par-rather than numbef®]; see the reviey14]. Because of the
ticular, it is in the nonrelativistic limit. To approach the Lor- nature of matrix coordinates, the formulation of the dynam-
entz covariant formulation, following the finitd-interpreta-  ics of Dp-branes in the background of gravity and various
tion of [11], it is reasonable to interpret things in the discreteform fields is a nontrivial question. Some of the most impor-
light-cone quantizationDLCQ) framework. This point of tant progress in this direction is [8,9]. In [8], by taking the
view should also be kept for the correspondence we considdr duality of string theory as the guiding principle, an action
with an effective field theory for the interacting theory of for the dynamics of the bound states gbranes in a non-
DO-branes and photons. trivial background is proposed. The proposed bosonic action
The organization of the remaining parts of this paper is agor the bound state oN Dp-branes(in units where 2|2
follows. In Sec. Il, based of8,9], we review the main as- =1) is the sum of

The discussions and ideas in this paper stem from previ-

A. First look: D p-branes in general background

SBI:_Tpf dP* o Tr(e” V'~ def P{E;;+ E;(Q*— 8)Ej;} + F 3]detQ))), (2.)
scszﬂpf Tr P[e“fbifb > cmeB ]eF , 2.2
|
with the following definitiong 8]: In the aboveG,, andB,, are the metric and N8 field,
respectively, andb' are world-volume scalars andx N
E..=G,,*B,.,, Q}Eé}ﬂ[d)i,@]Ekj, Hermitian matrices that describe the position of the

Dp-branes in the transverse directions. T¢& is ann-form
_ _ . RR field, whileF,; is the UN) field strength. In this action,
#.v=0,...9, 1,J=0...p, i,j=p+1..9. ,5 Pl denotes the pullback of the bulk fields to the world
23 volume of the p-branes, and Tr is the trace on the gauge
group. i, denotes the interior product with a vectey for

: 2)_1~(2 i Nyl
The reader can refer {d.0], as an attempt to interpret the quan- example,ig acts on the two-forn€ )= Eci(i dxdx as
tized propagation of DO-branes while they are interacting with each
other via the commutator potential, like the Feynman graphs of a CA(2) i (D) g
field theory in the light-cone gauge. ipC = Cij dx’,
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above, the functional dependence on the matrix coordinates
of DO-branes should be understood. Finally, we have the ac-

Therefore {)°C"=0 for the commutative case, i.e., for tion (2.6), which can be interpreted as the world-line formu-

one Dp-brane.
Some comments on the above action are in order.

(i) All the derivatives in the longitudinal directions should

actually be covariant derivatives, i.e),—D,;=d,+i[A,, ]
[15]. This point is true also for the pullback quantities.

(ii) The pullback quantities depend on the transverse di

rections of the [P-branes only via their functional depen-
dence on the world-volume scalabs [16]. Since the matrix

coordinatesb do not commute with each other, the problem
of ordering ambiguity is present. Following previous argu-

ments, it is proposed that the coordinatesappear in the

background fields by the “symmetrization prescription”
[8—19. The symmetrization on coordinates can be obtained Spo=
by the so-called non-Abelian Taylor expansion. The non-

Abelian Taylor expansion for an arbitrary functiétd®', o)
is given by
f((I)i5O-I)Ef(xi!O-I)|X~>(I>:exdq)iaxi]f(xiio-lnxzo

[

-3

1 . . )
n=0 Fq)ll' “q)ln(‘?xil' "&xin)f(xly(flﬂxzo.

(2.5

lation of the dynamics of DO-branes in nontrivial back-
grounds.

B. Action of DO-branes in one-form background

In the following consideration in this work, we take the
special case of the dynamics of DO-branes in the background
of a one-form RR field(Ay(x,t),A;(x,t)), in a flat metric
and zero NSB field. Consequently, the low energy bosonic
action of N DO-branes, after restoring the string lenggths
given by

1 : .
fdtTr(EmDtXiDtX'+thX'Ai(X,t)—qA0(X,t)
[X!, X172 )

+mm+ s ( 7)

in which we have slightly changed the notation for matrix

coordinates from (212)®' to X', with the usual expansion
Xi=X.T?, a=0,1,..N*>—1,

i=1,.d, 2.9

with T? as the basis for the Hermitian matricgise., the

In the above expansion the symmetrization is recovered vigenerators of U{)]. Although Dp-branes of string theory
the symmetric property of the derivatives inside the termexist in the critical dimension® = 10 (or 26), for the case of

(Oxiy**dyxin) -

DO-branes it will be useful to consider the more general case

(iii) This action involves a single Tr, and this Tr should bein arbitrary spatial dimensiond. We recall that the gauge
calculated by the symmetrization prescription for the non-ields appear in the action through their functional depen-

commutative quantities,;, D,®', andi[®',d1] [20].2

dence on symmetrized products of the matrix coordinXtes

To become more familiar with the terms in the action of The action(2.7) can be interpreted as the world-line formu-

Dp-branes, let us consider the special cgse0 of DO-

lation of electrodynamics on the matrix spdd&]. We men-

branes, in which the world volume consists of only the timetion also that in this action the degrees of freedom are en-

direction, 0°=t. The dynamics of DO-branes in the back-

ground of the metricG,,(x,t), the one-form RR field
CH(x")=A,(x.t), and zero NSB field (without being pre-
cise about the indices and coefficigntsthe lowest orders is
given by an action likg8,9]

m . )
S: f dtTr(5G|J((D,t)th)lDt(DJ

+0G;;(D,H)A(D,1)D DI —gAy(D,t)
— G (P, 1)D D' Ag(P,t) +mMG(D,1)G(D,t)[P,D]?

; (2.6

H[1-Goo( P, )]+

in which Dy=d;+i[a(t), ] acts as convariant derivative on
the world line, and we have set the chargg=q. In the

There is a stronger prescription, with symmetrization between all

noncommutative objectf,;, D,®', andi[®',®/] and the indi-

vidual ®'s appearing in the functional dependences of the pullback
fields [8,21]. We will not use this one in our future discussion for
the case of DO-branes, with no essential change in the conclusions.

hanced frond in ordinary space tal X N? in the space with
matrix coordinates.

The original theory, which may be called the bulk theory,
is invariant under the usual(l) transformations such as

A#(x,t)—>A;’L(x,t)=AM(x,t)—é'MA(x,t), u=01,...d.

(2.9
In the world-line theory, the transformation takes the form
A|(X,t)—>A|,(X,t):A|(X,t)+ 5|A(X,t),
Ag(X,D) = AKX D =Ag(X,D) = GA(X,1), (2.10

in which &; is the functional derivativé/ 5X'. Consequently,
one obtains

5SDo~qf dt TrH{ A (X,t) + X §A (X, 1)

dA(x,t)
dt

+iat[Xi,5iA(X,t)]}~qJ dtTr(

+iat[Xi,5iA(X,t)])~0. (2.11)
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In the above, the first term is a surface term, and the second(N). From the string theory point of view, this observation

term vanishes by the symmetrization prescripfiag].>

The equations of motion for th&'s anda; by the action

is based on the simple fact that the $U)(structure of DO-
branes arises just from the internal degrees of freedom inside

(2.7), ignoring for the moment the commutator potential the bound state.

[X;,X;]% are found to b¢12,13

mD,D X;=q[E{X,t)+DX'B;(X,1)], (2.12
NN L
m[Xl ,D,X']=q[A,(X,t),X'], (213)
with the following definitions:
Ei(x,t)E_(5iA0(x,t)_atAi(x,t), (214)
Bji (X,t)=—5;Ai(X,t) + §A|(X.1). (2.15

In Eq. (2.12), the symbol D X/B ;i(X,t) denotes the average
—_—

over all of positions of D X/ between the X’s of B X0,
The above equations for the X’s are like the Lorentz equa-
tions of motion, with the exceptions that two sides are N
XN matrices, and the time derivative J, is replaced by its
covariant counterpart D, [15]

An equation of motion similar to Eq2.12) is considered

The world-line formulation we have here is very similar
to the matrix model conjecture; in particular, it is in the non-
relativistic limit. For the case of the dynamics of a charged
particle with ordinary coordinates, we can see easily that the
light-cone dynamics have a form similar to the one we have
in action (2.7); see the Appendix of24]. To approach the
Lorentz covariant formulation, following the finitd-inter-
pretation of[11], it is reasonable to interpret things here in
the DLCQ framework. This should also be applied in con-
sidering the correspondence of the effective field theory and
the interacting theory of DO-branes—photons.

C. Symmetry transformations
Actually, the action(2.7) is invariant under the transfor-
mations
X=X =utXu,
a(t)—a(X,t)=UTa,(t)U—iUTs,U,
(2.18

with U=U(X,t) as an arbitraryN XN unitary matrix; in
fact, under these transformations one obtains

in [23,24] as part of the similarities between the dynamics of

DO-branes and bound states of quarks—QCD strings in a
baryonic stat¢23—25. The point is that the dynamics of the
bound state center of magésm) is not affected directly by

DX DX =UDXU, (2.19

DD X' -DDX'=U'D,D,XU. (2.20

the non-Abelian sector of the background, i.e., the c.m. is

“white” with respect to the SUN) sector of UN). The c.m.
coordinates and momenta are defined by

. 1 . ' .
X m= NTrX', P.=TrP', (2.19

Now, in the same spirit as for the previously introduced)U
symmetry of Eq(2.10, one finds the symmetry transforma-
tions

X =X =utxiu,

~ _nt gt
where we are using the conventionl=N. To specify the ()= (X,n=UTa(HU iU 4V,

net charge of a bound state, as an extended object, its dy-
namics should be studied in zero magmjtic and uniform elec-
tric fields, i.e.,B;;=0 andE;(X,t)=E." Since the fields ~ .
are uniform, the;J/I do not invlo(lvx )matr?(lses, and contain just Ao(X,t)—Ao(X,1) = UTAo(X,h)U=iU T3 U,
the U1) part. In other words, under gauge transformations (.29
Eoi and B;;=0 transform toE;(X,t) = VT(X,t)EgV(X,t) in which we assume thal=U(X,t) =exp(—iA) is arbitrary
=E,, andﬁji =0. Thus the actiori2.7) yields the following  Up to the condition thaA(X,t_) is tqtally symmetrized in_ the
equation of motion: X's. The above transformations in the gauge potentials are
similar to those of non-Abelian gauge theories, and we men-
tion that this is just the consequence of the enhancement of
the degrees of freedom from numbéxs to matrices(X). In
other words, we are faced with a situation in which “the
rotation of fields” is generated by “the rotation of coordi-
nates.” The above observation on the gauge symmetry asso-
ciated with DO-brane matrix coordinates is not a new one,

3a general proof of the invariance of the full Chern-Simons action@nd we already know another example of this kind in non-
was reported recently if22]. commutative gauge theories; sE8]. In addition, the case

“In a non-Abelian gauge theory a uniform electric field can bewe see here for DO-branes may be considered as the Knite-
defined up to a gauge transformation, which is quite adequate foversion of the relation between gauge symmetry transforma-
identification of white(singled states. tions and transformations of matrix coordinaf2$].

A(X,H)—=A X H=UTA(X,HU+iUTsU,

(NM)X, n=NQEp ), (2.17

in which the subscriptl) emphasises the (W) electric field.
So the c.m. interacts directly only with the(1) part of
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The behavior of Egs(2.12 and (2.13 under the gauge non-Abelian Fourier expansigrone can simply interpret the
transformation(2.21) can be checked. Since the action is derivatives of the usual coordinatég in Eq. (2.5 as mo-
invariant under Eq(2.21), it is expected that the equations of mentum numbersk; . It is then not hard to see that for an
motion change covariantly. The left-hand side of E§12)  arbitrary functionf(X,t) the non-Abelian Fourier expansion
changes toU'DD,XU by Eq. (2.20, and therefore we il be found to be
should find the same change for the right-hand side. This is
in fact the case, since for any functidi(X,t) under trans- _
formations(2.18 we have f(x,t):f ddkT(k,t)eikiX', (3.1

f(X,H)—=TF(X,t)=UTf(X,t)U, _
in which f(k,t) are the Fourier components of the function
f(x,t) (i.e., the function in ordinary coordinapewhich is

SHXH—=8T(XH)=UTsf(X, DU, defined by the known expression
— F(X = T —_— 1 . i
ﬁtf(X,t) 5tf(xyt) U &tf(X,t)U (222 f(k!t)EWf ddX f(X,t)e_lkiX. (32)

In conclusion, the definition&2.14 and(2.19, lead to Since the momentum numbeksare ordinary numbers, and

so commute with each other, the symmetrization prescription
is automatically recovered in the expansion of the momen-
Bji(X,t)H~Bji(7<,t)= UTBji(X,t)U, tum eige.nfunctiqnsikix'.. This .picture of symmetrization for
(2.23 the matrix coordinates is similar to that we already know for
Weyl ordering in phase spac,p), with [§,p]=1.
a result consistent with the fact tht andB;; are function- Now, by using the symmetric expansidB.1), we can
als of X. We thus see that, in spite of the absence of the usualagine some general aspects of the interaction between DO-
commutator ternmi[A,,A,] of non-Abelian gauge theories, brane bound states and RR photons. We recall that the bound
in our case the field strengths transform like non-Abelianstate of DO-branes is described by the acti@ry) after set-
ones. We recall that this is all a consequence of the matril(ing AM(X,t)EO_ We mention that the degrees of freedom
coo_rdir_wates of DO-branes. Finally, for a similar_reason to thestjl| interact due to the commutator potential. By doing a
vanishing of the second term of E@.11), both sides of Eq.  gjmple dimensional analysis it can be shown that the size
(2.13 transform identically. _ scale of the bound state for a finite numbeof DO-branes is
The last notable points are about the behavia, ¢f) and finite and is of the order of ~m~3,/23[27 24. We recall
Ao(X,1) under symmetry transformation@.21). From the that the action we are using comes from string perturbative

world-line theory point of viewa(t) is a dynamical vari- ; ;
calculations, and consequently we have for the size scale the
able, butAy(X,t) should be treated as a part of the back—further relation/’<| [27,24.

ground; however, they behave similarly under transforma- Before proceeding further, we should distinguish the dy-

tions. Also, we see by Eq(2.2] that the coordinate namics of the c.m. from the internal degrees of freedom of

independence o&;(t), which is a consequence of dimen- . S
sional reduction, should be understood up to a gauge tranéhe bound state. As mentioned before, the c.m. position and

formation. In[12] a possible map between the dynamics of ’0Mentum of the bound state are represented by ifie U
DO-branes and the semiclassical dynamics of charged pap€ctor of UN)=SU(N)xU(1), and thus the information re-
ticles in a Yang-Mills background was mentioned. It is worth lated to the c.m. can be gained simply by the Tr operation,
mentioning that this possible relation might be an explanatelation (2.16. So the internal degrees of freedom of the

Ei/(X,t)—E;(X,t)=UTE;(X,t)U,

tion for the above notable poinf42]. bound state, which consist of the relative position&NdDO-
branes together with the dynamics of strings stretched be-

IIl. QUANTUM THEORY IN ONE-FORM BACKGROUND tween the DO-branes, are described by the Ugector of
the matrix coordinates. It is easy to see that the commutator
A. Some general aspects of bound statghoton potential in the action has some flat directions, along which
interaction the eigenvalues can take arbitrarily large values. But it is

Before presenting the formulation, it is useful to mentionunderstood that, by considering the quantum effects and in
some general aspects of the problem at hand. First let ube case that we expect formation of the bound state, we
recall another representation of the symmetrization of theshould expect suppression of the large values of the internal
matrix coordinates. The other useful symmetric expansion islegrees of freedofi28]. Consequently, it is expected that the
done by using the Fourier components of a function. To gairBU(N) sector of the matrix coordinates will take mean val-
this Fourier expansion in matrix coordinat@se call it the  ues like(X,)~/ (a=1,... N°—1, nota=0 as c.m), with
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/ as the bound state size scale mentioned abaVe.should
mention that, although the c.m. is represented by tii#) U
sector, its dynamics is affected by the interaction of the in-
gredients of the bound state with the 3)(sector of exter-
nal fields, similar to the situation we imagine in the case of
the van der Waals force. @ ®)
The important question about the interaction of a bound

state(as an extended objeanith an external field is about £ 1. substructure is not experienced by the long wavelength
the regime in which the substructure of the bound state igyodes(a). Because of their functional dependence on the matrix
probed. As we mentioned in the Introduction, in our case th@gordinates, the short wavelength modes can probe inside the bound

quanta of RR fields are th_e representatives of the externg{ate(b). Y andK#(k,t) represent the size of the bound state and
field. The quanta are coming from a source and so, as e Fourier modes, respectively.

makes things easier, we ignore their dynamics. The source is
introduced into our problem by the gauge fie?d,(x,t). probe both DO-branegs pointlike objects and the strings
These fields appear in the action through their functionaktretched between them. In this case, it is completely to be
dependence on the matrix coordina¥sin fact, this is the expected that the energy levels of the incoming and outgoing
key to probing the substructure of the bound state. Accordingpound states will be different, since the ingredients of bound
to the non-Abelian Fourier expansion we mentioned abovestate substructure can absorb quanta of energy from the in-
we have cident wave. In this case the c.m. dynamics can be affected
in a novel way by the interaction of the substructure with the
external fields(the van der Waals effect

In the general case, one can gain more information about
the substructure of a bound state by analyzing the recoil ef-
in which Kﬂ(k,t) are the Fourier components of the fields fect on the source. To do this, one should be able to include
A,(x,1) (i.e., fields in ordinary coordinatesOne can imag- the dynamics of the source in the formulation. Considering
ine scattering processes that are designed to probe inside tH¢ dynamics of the source, in terms of quantized field
bound state. As in every other scattering process, the twi1€ory, means that we consider the processes in which the
limits of the momentum modes, corresponding to long ancsource and the target exchange one quantum of gauge field
short wavelengths, behave differently. with definite wavelength and frequency, although off shell,

In the limit /|k|—0 (long wavelength regimethe field asAM(x,t)~eMe'kix""“t. This kind of process is shown in
A, is not involved in theX matrices mainly. This means that Fig. 2.
the fields appear to be nearly constant inside the bound state,
and in an estimation we have B. Path integral quantization

A k)
&k~

Kp(k,t)
k=0

Source Source

A#(X,t):J' dok A, (k,t)eiX, 3.3

o In this subsection we consider the quantization of DO-
~ e em. . (3.9 brane dynamics, using the path integral method. The theory
on the world line has gauge symmetry, defined by the trans-
So in this limit we expect that the substructure and conseformations(2.21). We should fix this symmetry, and here we
quently noncommutativity will not be sedfig. 1@]. Asa  yse simply the temporal gauge, defined by the condition
consequence, after interaction with a long wavelength modey (t)=0. So after the Wick rotatiort— —it and Ag—
it is not expected that the bound state will jump to another_ja  we have the following expression for the path inte-
energy level different from the first one. It should be notedgra| of our system:
that the c.m. dynamics can be affected as well in this case.
In the limit /|k|=finite (short wavelength regimethe
fields depend on the coordinat¥sinside the bound state,
and so the substructure responsible for noncommutativity
should be probefFig. 1(b)]. In fact, we know that the non- PI, EI l%-, EF
commutativity of DO-brane coordinates is a consequence of
the strings which are stretched between DO-branes. So, by
these kinds of scattering processes, one should be able to

elkiX

SThere is another way to justify this expectation. It is known that
diagonal SUN) matrices represent the relative positions of DO-
branes, which are expected to be of the order’ @f a bound state. P..E P-.E
But due to the symmetry transformation we introduced in the pre- 1"=1 2’52
vious section, the diagonal and nondiagonal elements in the matri-
ces can mix with each other, representing the same mechanical
system. So the size scale associated with the diagonal elements FIG. 2. Exchange of one photon between a DO-brane bound
should be valid for the nondiagonal elements also. state(thick lines and another sourcghin lines.
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day eigenenergies to have the general fom}:g({n})/—l,

(X telX ’tl)NJ [DX][DaJota)dets5re oo, with g({n}) as a function of the quantum numbérs, and
(3.5  also the condition

in which &(a;) supports the gauge fixing condition, (X[{MY—0  for |X[>/ 39

detsa;/SA| is the determinant that arises by variation of the

gauge fixing condition, and finallppo[ X,a;] is the action

(2.7) evaluated betweerX¢ ,te) and (X, ,t,), as “final”and  for the wave functions, with’~m~ 425 the size scale of
“initial” conditions. The variation of the gauge fixing condi- the bound state as we mentioned before. As in any other
tion can be calculated easily in our case, and it is found to b@uantum mechanical system, for the caseO the general
[for U(X,t)=exp(=iA)] expression of the propagator can be used:

- 1/3|

a;=0—a/=da,=—iUT9U=—9A(X,1)+O(A?),
(3.6 (Xa.ta|Xq,t1)q=0= PE % (X2 Pem. AnH{(Pem. {n}Xy)

and consequently we havia,(t)/SA(t')=—4d,6(t—t"). So % e,i(pg_m/ZNw Eqnp)(t2—11)
we see that the determinant and consequently the corre- '
sponding ghosts are decoupled from our dynamical fiXI€is

So, up to a normalization factor, we have for the above exwith the definition| P, ,{n})=|P.m)®|{n}). We can now

(3.10

pression of the path integral: insert the propagator above in the expresdi8i®), noting
that the perturbation expansion has terms involving the ve-
X X N DX e~ SoolX.a=0] _ locity X. Baseq on the st_andard representation of “glicing“
(X telXi t) f [DX]e 3.9 used for path integrals, finally the following expression for

the first order of perturbation is foundee[30]):
To calculate the path integral in a general background we
have to use a perturbation expansion in powers of the charg
; this expansion is also valid for weak external fields ?XF'tF|X' )~ (Xe el X1 t)g=0
(Ag,A;). So we have n
FiNlim D | d9X,_,d9%,d9X, ;4

<XF1tF|XI1t|> At—ok=1
. 1 X{XE e Xir 15tk 1)g=0
F P
~J [DX]ex;{—f dtTr(—mXiX' X=X
t 2 x2At~Tr<q%Ai(Xk,t)
+ [Xi,X"]z‘”
mo 5 122
A +qu(xk,t>)
*© qn te N n
xrzom[ift dtTr[X'Ai(X,t)+A0(X,t)]} : X (Xi—1:tk=1 X1 1 ti)g-0
=, nt |y,

X e~ Sq=olkik—LiAtlg=Sg=olk+ LiAl{ O (g2),

(3.11

(3.9

As mentioned before, from the point of view of DO-brane
dynamics, the commutator potentfa',X!]? is responsible
for the formation of DO-brane bound statgx7]. Although
the problem of finding the full set of eigenenergies and
eigenvectors of the corresponding Hamiltonian is very diffi-

cult, we assume that this full set is at hand. It is logical totion constant\ contains sufficient powers dt to make the
separate the c.m. variables from the internal ones; we sho P

those of the ¢.m. by the momen ,, and|P, ), and the Yinal result finite and independent Aft. The sum, comes

internal ones by the energf, and [{n1), in which {n} from slicing the pqten_tial ternfidt Tr(X- A+Ap) in th_e pa}th
represents all the quantum numbers associated with the iftegral(3.8), and it will eventually change to the time inte-
ternal dynamics. We recall that the c.m. is free in the cas@ral Jdt over the intermediate times in which the interaction
g=0. It is worth recalling that, in general, we expect the CCUrs. Itis WC;I’th recalling that spatial integrals like®X
are in factfT1)_,'dX,. We mention that for the velocity
independent termAy(X,t) the integrals ofdX,.; can be
5This case is similar to the so-called axial gauge in the extreméerformed to get the new propagators, and after the change
limit A—o (p. 196 of[29]). X— X we simply find an expression like

in whichtj—t,=j-At andtg—t,=(n+1)At. In the above,
Sy=ol],j +1;At] is the value of the action in the exponential
of Eq. (3.8) evaluated between the pointsX;(t;) and
(Xj+1:tj+1) (Isj=n) in the limit At—0. The normaliza-
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e 1 . .
(X tel X, ,t|>~J' [DX]exr{—ft dtTr(ZmXiX'”

PE, Fe.Ep
n t .
{l‘l 1} { F} x[1+iqf thTr[X'Ai(X,t)
t
+AO(X,t)]+O(q2)}. (3.19
A (X t) A similar theory for a charged particle in ordinary space is
pa considered in Appendix A, to extract the field theory vertex

N _ function of the coupling of a photon to incoming or outgoing
_FIG. 3. The graph for the transition amplitude between stategharged particles. So the result of the path integral above can
with definite c.m. momenta and energi@E), and intemal energy  pe considered as the matrix coordinate version of the ex-
specified by the quantum numbeirg. ample of Appendix A. We continue with an expression like
. that of Eq.(3.11), as
F
~if dtf dOX(Xg ,te| X, t) g o TG AG(X, 1) ]
ty K Xe el X0t~ (Xe tel Xt ).
XX 1) g0+ O(07), (3.12 n
! HINlim S J A%, 1d9X, dX,cs
which is the familiar expression for velocity independent in- At—ok=1
teractions.
XA X, te | X4 q,t
For many practical aims, we should find tBematrix el- (Xe el ket k+1>fjp'
ements between states with definite momenta and energies Xy 1~ X1
(Fig. 3). This can be done by the proper transformations of X2At-Tr A——a; A
the amplitudeg Xg ,tg| X, ,t;) in coordinate space.

Because there is less knowledge about the propagator
(3.10, expressior(3.11) can still not be used for actual cal- +qu(Xk,t))
culations. As mentioned before, we expect that the spatial
integrations/d?X will get their main contribution from the X (X 1:tk— 1] X1t g p.

volume of the bound staté~ /9. So as an approximation,
and to know a little more about the result, we may ignore the
commutator potential, and do the integrations in the finite (3.15
volume V~ /9, or simply putfdX,~/9, for a#0=c.m.
By doing this, we can verify the general aspects of probingn which Sy, and(: --), are the action and the propagator of
the Substructure of the bound state discussed in the previow@e partidesl respective|y; see Appendix B for the exp”cit
subsection. expressions. The integratiod$X, . ; can be done to get new
propagators, and after the change— X we find

x @~ Stplkk-LAtg=Splk+ LA O (¢g?),

C. Effective interaction vertex of photon and free DO-branes

In the considerations of the previous subsection, the back- (Xe el Xt~ (Xe el Xy e,

ground(Ag(x,t),A;i(x,t)) was taken to be arbitrary. Here we te

take an example in which the DO-branes interact with a +i/\/’f dtJ ddX(XF,tF|X,t>f.p.
monotonic incident wave, defined by the condition b

ALK w')=€,5%K —K)8(o' — o), with €, as the polar- Xp—X X=X

ization vector, and the following definition for the Fourier XTriq S Ai(X.1)
modes: F '

) 2
AM(k/,w,)E (277]; — f ddx thM(X,t)e_iki,XI+iw,t. +qAO(X!t)}<X’t|X| !t|>f.p.+o(q )
(3.13 (3.16

So the corresponding gauge field As,(X,t) ~ €, exp(k; Xi Up to now the gauge field can be in any arbitrary form.
—iwt). In addition, here we ignore the commutator potential,Also, since in this case we have ignored the commutator
and consequently it is assumed that all of Mfedegrees of potential and so the degrees of freedom are freg fob, we
freedom, including thoshl that describe the position of DO- can easily use the momentum basis for the incoming and
branes, are free fa=0. So we have the following expres- outgoing states; see Fig. 4. So for thenatrix element in the
sion for the path integral: momentum-energy basis, we have the expression
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in which the second series @ffunctions have appeared as
support for the total momentum and total energy conserva-
tion. The last expression contains the Tr and integrals over

the matrix coordinateX[ Tr(X)=0], and although the im-
proved forms in some special cag®s=2 or in the largeN
limit) are accessible, the result in the general case is not
known. We mention that such integrals for ordinary coordi-
nates as that of Appendix A can be calculated exactly. We
can present the general form of the result as

NZ2—1

Efferive S~ [1 8%Pra=Pia) 8(Era=Eia) ()

NZ-1
FIG. 4. The graph for the transition amplitude between states
with definite momenta and energies, specified by théRE} for all X 8%(Prom~ Piom—K) 5( aZO (Bra=EBia)— w)
N? degrees of freedom. Here we use thin lines as incoming and
outgoing states, to emphasize that these states are free before and X[iqe-V(Piara k) +i0egVo(Para K]+ 0(g?),
after the vertex of interaction.

(3.19
NZ-1 in which V#(P, £4,K), as the effective vertex functioisee
S~ 11 6%(Pra=Pia) 8(Era=Era) Fig. 4), has the general form
. VI=TH(PE+PDH(Piara k)],
() dtJ' ddxf d9%,d9x
( { oE VO=TIH(Para k)], (3.20
NZ-1 _ . with H(P, ra,K) as a matrix depending oR,, Pg, (a
X (€' (Bralr ~Bial) @~ 1(Pra: Xra=Pia-Xja)) =1,...N?-1a#c.m.), andk. In the case of ordinary co-
a=0 ordinates for covariant theory we find simp*~(p,
X(Xg e[ X e . +pg)#; see Appendix A.
. Xg—X X=X, IV. CONCLUSION AND DISCUSSION
XTrlige- ot Tt
F |

In this work we provide the basic elements of the interac-
tion of DO-brane bound states and one-form RR photons,
using the world-line formulation. At the classical level, we
checked that the action is invariant under the gauge transfor-
XOGH Xt )p + 0(g?), (3.17 mation of the gauge fields in the bulk theory. Also, because
of the matrix nature of the coordinates, we see that new

in which E,=P2/(2Nm) for both| andF stategby conven- ~ Symmetry transformations exist, under which the gauge
tion Tr(TaTP)=N&%"], and the symboA-B is for the inner fields transform as gauge fields of a non-Abelian gauge

productA,B'. We recall that the subscripgsandb count the theory. We interpret this observation as the case in which
N2 indeplendent degrees of freedom associated withNthe “the fields rotate due to rotation of coordinates.” We derived

XN Hermitian matrices< and P. Some of the integrations the Lorentz-like equations of motion, and the covariance of

above can be donesee Appendix B and the resulting ex- the equations was checked _unde_r the symmetry t_ransforma-
pression is found to be tions. It is seen that the c.m. is white or colorless with respect

to the SUN) sector of the background fields.
At the quantum level, we developed the perturbation

Xeik-X—iwt+iqeoeik-X—iwt

2
N d theory of the interaction of DO-branes with the RR gauge
Sri~ aﬂo 6% (Pra=Pia) 8(Epa—Eja) +(- 1) fields. In particular, using the path integral method, we wrote
down the expression for the propagator in the first order of
NZ-1 perturbation, which can be converted to the amplitudes of the
X 8UPrem—Prem—K) 8 E (Epa—Ej3)—w scattering processes by an arbitrary external source. We dis-
a=0 cussed how the functional dependence of the gauge fields
N2_1 provides the base for probing the substructure of the bound
d$ Ai(P,—P )X . states.
% j bﬂl d™Xpe e TR T e (Pet Py One natural extension of the studies in this work is for the
. supersymmetric case. Particularly in the case of maximal su-
+e]€* X1+ 0(g?), (3.18  persymmetry §=9), we have the DO-branes of the matrix
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model, coupled to the one-form RR background. As menvof fermionic matter with the non-Abelian gauge fielg,(x),
tioned in the Introduction, in the matrix model picture DO- which is described by the action

branes are assumed to be the supergravitons of 11-
dimensional supergravity in the light-cone gauge, and in
particular in this case they play the role of the “photons” of
the one-form RR field in ten dimensions. The interaction of L

one DO-brane with a bound state of DO-branes is studied in T a wn) s

the context of the matrix model, and according to the matrix i Amoa v g Ta (4.2
model interpretation the commutator potential is responsible A“(X)=Az )T, 7 (x) = F5"(X)T%,

for the interaction of the single DO-brarfimaybe viewed as
one RR photopand the bound state. The known results are

those of different orders of loop calculations. It will be inter- in which the termJ“ A, is responsible for the interaction; it

esting to check whether the perturbation expansion in the . .
i . fmay be chosen as that of the minimal couphrj@
chargeq of this work can reproduce the loop expansion re- 2

sults of the matrix model. =iyy,T%p. Gauge invariance specifies the behavior of the
Another extension of the studies of this work might be tocurrent J, #Jnder the gauge transformations to Béx)

include the gravitational effects, specifically by considering—J'(X)=U"J(x)U. . _ .

nonflat metrics. Comparison to the matrix model calculations On the side of the world-line theory of matrix coordinates,

can also be done in this case. in contrast to the example of previous sections, here we con-
One interesting question is about the field theory that mayider a covariant theory, presented by an action like

correspond to the world-line theory of matrix coordinates in

the presence of a one-form background. For the case of or- S[x]:j d7 Tr[3mD,X*D X*— gD, X A ,(X)+---],

dinary coordinates, by studies like those[81], it has been

understood that the quantized world-line theory of a charged (4.3

particle in the presence of the gauge field(x) corresponds i, \yhich we have dropped any kind of potential, including
to a quantized field theory of interaction of charges and phog,« ~ommutator potential of DO-branes. In the abovea-

tons. As an example, in Appendix A we derived the field rameterizes the world line, arl,=d_+i[a., | is the cova-

theory vertex function for the interaction of a photon W'th. riant derivative along the world line with. as the world-line

the currt;nt of mcohmlngdarr:d outgoing part|(|;ltez. In the Erew- auge field. The gauge fieldA\(X) depends on the symme-
ous section, we Showed how varlous amplitudes can be cafy, o products oiX’s. In the same spirit as the transforma-

culated in pr|nC|_pIe by the world-line theory, at least in thetions in the world-line theory of DO-branes, we take
perturbative regime. As we saw, our knowledge of the exact

S=f d9 I (i y#a,—m) p—g Tr(I*A,

*.,=[D,.,D,], D,=d,—igA

TR

values of the amplitudes is restricted, and hence the discus- b1ty u
; . o . . Xt X#=UX*U,
sion here will be based on some qualitative considerations.
Probably one of the best guiding observations is the ma- a.—3a.=UTaU-iuTo.U,

trix nature of the gauge fields in the world-line formulation.

The components of the gauge field in the matrix basis are = ot ot

defined simply by A, (X)—A,(X)=U'A, (X)U-iU's,U wa
4.4

as the gauge transformation in the covariant theory, With
=exd —iA(X,;7)]. We mention thatD X* transforms as

(4.  p.X*—D X*=U'D,X*U under the transformations. Fol-
lowing the relationg2.14) and(2.15), we can define the field
in which A{(X;,) are some functiongnumber$ depending  strength as
on the matrix coordinates. The most famous matrix gauge
fields we know are those of non-Abelian gauge theories, and F L (X)=6,A,(X)—8,A,(X), (4.5
it is tempting to see what kind of relation between these two _
kinds of matrix gauge field can be verified; on one side theand so the field strength transforms ds,,—F,,
guantum theory of matrix gauge fields, and on the other side= UTFWU; see Eq(2.23. Now, we want to sketch the map
the quantum mechanics of matrix coordinates. between the field theory in space-time and the world-line
The best base we found for the possible relation mentheory of a charged particle in a matrix space. It is natural to
tioned above was the suggested relation4df the map be- assume that the map should relate the objects in the two
tween field configurations of noncommutative and ordinarytheories as shown in Table I.
gauge theories. The suggested map preserves the gaugeWe mention thatl) it is enough that the gauge fields are
equivalence relation, and it is emphasized that, due to theelated up to a gauge transformati@®) the objects on both
different natures of the gauge groups, this map cannot be asides are matrices, ar{@) the field strengths and currents of
isomorphism between the gauge groups. Since for the con-
siderations below there is no essential difference between
fermions and bosons, we take the example of the interaction’See[12] for an example of these objects in a covariant theory.

A*(X)=AZ(Xp) TS, AL(Xp) = %TT[A“(X)Ta],
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TABLE I. The quantities that should be related by the map i”(x,: TEIX T~ (e TElX
field and world-line theoriesA is the symbol for the gauge trans-
formation parameter in the two theories.

7'I>f.p.

n
FIN lim Y | d9Fix,d9FIx

Non-Abelian field theory <  Gauge theory on matrix space Ar—ok=1
AH(X) = AK(x) T? ~ A*(X) +gauge trans. terms XA Xy 1 (X TE X 1 T Dip.
FHX) =T (x)T? ~ F#¥(X) Ly
a Xir1 ™ Xk—1
IE(X) = JE4() T ~ D, X~ X2A7 | 45— Au(xi7)
A(X)=Aa(x)T? ~ A(X) T

X (Xi— 12 Tk—1|X1 71 )1,

X @~ Siplkk=1iA7lg=Sip [kt 1kiA7l L O(g2),
the two theories transform identically under the gauge trans- A2)

formations. Since in this case we have matrices of equal

sizes on both sides, it may be considered as a case in Whigh \yhich the normalization constant’ contains sufficient
one is able to find a one-to-one map between the wo thegyoyers of A7 to regulate the final result, and we have the

ries. It remains for future studies to check the relation quanfo|iowing relations:
titatively, in particular by comparing the amplitudes as ob-

servable quantities. —M(xg—Xq)2/2( 79— 77)

<X2172|X1!Tl>f.p.~e

~f dd+y exp(ﬂ -(Xp—Xyq)
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and Technology of Iran. place the new propagators, and after the chaggex, we
find

Xe TelXi )~ (Xe  TE X0, T,
APPENDIX A: PERTURBATION THEORY OF A ,
CHARGED PARTICLE IN ORDINARY SPACE BY PATH _HN/f Fde dd+lX<X|: 'TF|X'T>f.p.
INTEGRAL METHOD 7|

Xg—X X—X
As an exercise, and to complete the basics of the present x{q F_ +— ') -A(x)}
paper, here we review the perturbation theory of a charged T OTTT
particle in an electromagnetic background. In particular, we X (X, 7|X, aTI>f.p.+ o(qZ)_ (A5)

extract the vertex function of the coupling of a photon to
incoming and outgoingbosonig charged particles. In con- From now on we restrict the calculation to the plane wave
trast to the nonrelativistic theory of the paper, here we conAM(X)MeﬂeikVX“. To find theS-matrix elements, it is usual to
sider a covariant example. A good reference for this discusgo to momentum space, and we have the expression
sion is[30]. The action we use, initially in Euclidean space-
time, is simply N7~ imA(re—m)l2

Sri~ 6% (Pe—p)) S(Ep—E) +

TE— T
XJTFdTJ dd+le dd+1XIJ dd+1XF
Szf dr zm¥X—igxX“A ,(x)]. (A1) I
X e PEXFelPIXi(xe 1|, 7)1 €K X expiqge- Xe X
Fs /Rl T/ fp. TE—T
We begin with an expression similar to the form(®a11) of n X_X') ’ 06X, 7)1+ O(GR) (A6)
the text: T T linear in e P
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in which pZ=p?=—m?, and to make the calculation easier NZ-1
we have exponentiated the, ; so we should keep only the <X21t2|X11t1>f.p.~J 11 dd”Laexp( il (Xoa—X1a)
linear term ine finally. By using the momentum representa- a=0
tion of the propagatof- --); , we find L2

Sri~ 8%(Pr—P) S(Eg—E)) + () 8%(pe—py—k) _iﬁn(tz_tl))’ (B1)

X 8(Ex—E;—ko)[ige,(pe+p) 1+ 0(g?),
(A7)
in which we recognize the field theory resakt(pg+ p,) for

2
the vertex function(p. 548 of[29]). Nm(X; )2
Sf [j-l—l,j At]— 20 ( j+1a™ J,a)

(B2)

2At '
APPENDIX B: CALCULATION OF SMATRIX ELEMENT
FOR MATRIX COORDINATES IN MOMENTUM
BASIS
Here we present the derivation of E§.18), starting with

Eq. (3.17. By using the definitions we find for Eq.(3.17)

NZ-1 e N2-1

~ 1 6%Pra—P1a) 8(Epa—E) +(-+) dtJ ddxf diX,d9%; [ (e'Eratr~Eiat)g=i(Pra-Xpa=Pia-Xia))
a=0 t a=0

N1 2 NZ-1
. . Q . X C_Xc XC_XC
H dd+1Qbex;{lQb.(XFb—Xb)—| ﬁn(t':_t)>( 2 (exp{lqe-( F . I )”
e linear in e

& te—t t—t,

N -1 L2
X Tr(TCe X719 + Tr(iqege!* X~ 'wt)) f H dd+iL exp(.L -(Xe—Xje) — 2N ——(t—t,)|+0(g?, (B3

in which to make the calculation easier we have exponentiated;tBe we should keep only the linear termérfinally. In
the above the symbd\- B is for the inner produch;B'. It is worth recalling that the spatial integrals lifel°X are in fact

fHN2 1ddX Here we leave the termq, for the reader to evaluate. After doing the integrations ojf’e«l ., we have
NZ2—1
~ :;II;[O 5d(PFa_ Pia)S(Epa—Ej)+ ()

NZ-1
j dt H ddX e/ (Eratr~ E|at|)xf I1 dd+1ded+1Lbe—i(Qﬁ/sz)(tF—t)e—i(L§/2Nm)(t—t|)ei(Lb—Qb)-xb
t) b=0

a=0

N?-1 N2-1 qed. qed.
X 2 H 5d(Qe_ PFe+ __ce) 5d( I—e_ Ple+ ce)
c=0 e=0 tg—t

t—t,

X

-1 1 _ .
ex,{me X (t R d— )“ Tr(T°e'k'X'“”))+O(q2). (B4)
I linear in e
By using thes functions we can simply perform the integrations odé® andd’L. Also, based on the fact that exp(X)

=exp(k-X. m1n)explk-X), with Tr(X)=0, we can perform the integration ove’X,=d"X.,. By recalling thatE,
=PZ2/(2Nm) for | andF stategby convention Tr{3T?)=Né%"], and in the limitst;— — andt—o, we arrive at

NZ-1 NZ-1 NZ-1 R
~ Il 6%Pra=Pia) 8(Era=Epa) + () 8%(Prom=Piom=K)8| 2 (Epa—Eia) =0 f [] - doXpe!(Pio=Peo)
a=0 a=0 b=1

NZ-1
X 2 {e(i/m)qé'(PFC+PIC)}Iinear in ETr(TceikX)_'_o(qZ)_ (85)
c=0

046004-12



INTERACTION OF DO-BRANE BOUND STATES AND.. .. PHYSICAL REVIEW [®5 046004

[1] J. Polchinski, Phys. Rev. Left5, 4724(1995. [16] M. R. Douglas, Nucl. Phys. BProc. Supp). 68, 381 (1998;
[2] E. Witten, Nucl. PhysB460, 335 (1996. Adv. Theor. Math. Phys1, 198 (1998; M. R. Douglas, A.
[3] A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy Kato, and H. Ooguriibid. 1, 237 (1998.

Phys.02, 003(19998; M. R. Douglas and C. Hulipid. 02, 008 [17] M. R. Garousi and R. C. Myers, Nucl. Phyg542, 73 (1999;

(1998. J. High Energy Physl1, 032 (2000.
[4] N. Seiberg and E. Witten, J. High Energy Phy9, 032  [18] D. Kabat and W. Taylor, Phys. Lett. 86, 297 (1998.
(1999. [19] W. Taylor and M. Van Raamsdonk, Nucl. PhyB532, 227
[5] H. Arfaei and M. M. Sheikh-Jabbari, Nucl. PhyB526, 278 (1998; M. Van Raamsdonkipid. B542, 262(1999; W. Taylor
(1998; M. M. Sheikh-Jabbari, Phys. Lett. 825 48 (1998. and M. Van Raamsdonk, J. High Energy Phy4.013(1999.
[6] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Phys[20] A. A. Tseytlin, Nucl. PhysB501, 41 (1997.
Rev. D55, 5112(1997. [21] W. Taylor and M. Van Raamsdonk, Nucl. PhyB558 63
[7] T. Banks, Nucl. Phys. BProc. Supp).67, 180(1998; “TASI (1999.

Lectures on Matrix Theory,” hep-th/9911068; D. Bigatti and L. [22] C. Ciocarlie, J. High Energy Phy67, 028 (2001).
Susskind, “Review of Matrix Theory,” hep-th/9712072; W. [23] A. H. Fatollahi, “DO-Branes as Confined Quarks,” talk given

Taylor, “The M(atrix) Model of M-Theory,” hep-th/0002016; at Isfahan String Workshop 2000, Iran, hep-th/0005241.
Rev. Mod. Phys73, 419 (200)); R. Helling, Fortschr. Phys. [24] A. H. Fatollahi, Eur. Phys. J. @9, 749 (200J.
48, 1229(2000. [25] A. H. Fatollahi, Europhys. Lett53, 317 (2001); “Do Quarks
[8] R. C. Myers, J. High Energy Phy%2, 022(1999. Obey D-Brane Dynamics? Il,” hep-ph/9905484.
[9] W. Taylor and M. Van Raamsdonk, Nucl. Phy8573 703 [26] A. H. Fatollahi, Eur. Phys. J. @7, 535(2000.
(2000. [27] U. H. Danielsson, G. Ferretti, and B. Sundborg, Int. J. Mod.
[10] S. Parvizi and A. H. Fatollahi, “D-Particle Feynman Graphs Phys. A11, 5463(1996; D. Kabat and P. Pouliot, Phys. Rev.
and Their Amplitudes,” hep-th/9907146; A. H. Fatollahi, Lett. 77, 1004(1996.

“Feynman Graphs  from D-Particle Dynamics,” [28] B. de Wit, Nucl. Phys. B(Proc. Supp). 56, 76 (1997; H.
hep-th/9806201. Nicolai and R. Helling, “Supermembranes and (a&tix)
[11] L. Susskind, “Another Conjecture about (Btrix) Theory,” Theory,” hep-th/9809103; B. de Wit, “Super-membranes and

hep-th/9704080. Super Matrix Models,” hep-th/9902051.
[12] A. H. Fatollahi, Phys. Lett. B512, 161 (2001. [29] G. StermanAn Introduction To Quantum Field Theo(€am-
[13] A. H. Fatollahi, Eur. Phys. J. @1, 717 (2001). bridge University Press, Cambridge, England, 1994
[14] J. Polchinski, “TASI Lectures on D-Branes,” hep-th/9611050. [30] L. H. Ryder, Quantum Field TheoryCambridge University
[15] C. M. Hull, J. High Energy Phys10, 11 (1998; H. Dorn, Press, Cambridge, England, 1985

Nucl. Phys.B494, 105 (1997). [31] M. J. Strassler, Nucl. Phy8385, 145(1992.

046004-13



