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Note on the power divergence in lattice calculations ofDIÄ1Õ2 K\pp amplitudes at M KÄM p
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In this Brief Report, we clarify a point concerning the power divergence in lattice calculations ofDI
51/2 K→pp decay amplitudes. There have been worries that this divergence might show up in the
Minkowski amplitudes atMK5Mp with all the mesons at rest. Here we demonstrate, via an explicit calcula-
tion in leading-order chiral perturbation theory, that the power divergence is absent at the above kinematic
point, as predicted byCPSsymmetry.
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The subtraction of a power divergence, which arises
the mixing of dimension-six four-fermion operators wi
those of lower dimension, has been one of the central iss
in lattice calculations ofDI 51/2 K→pp amplitudes. This
power divergence is, of course, unphysical, and can be
lated to a shift of the vacuum due to the inclusion of t
weak interaction in chiral perturbation theory (xPT) @1–4#.
It results in the so-called tadpole operators, which contrib
to the processesK0→u0& and K̄0→u0&, in xPT with weak
interactions.

As argued in Ref.@5#, this power divergence should b
absent forK→pp amplitudes whenms5md5mu (mu,d,s
are the masses ofu, d, ands quarks!, due to the exactCPS
symmetry@1# of the four-fermion operators that mediateK
→pp decays. In Ref.@6#, it was argued that the power d
vergence indeed does disappear inEuclidean spaceat MK
5Mp . However, a naive calculation in Minkowski spac
suggests that this power divergence might still be presen
MK5Mp when all mesons are at rest. The issue is relev
as it has been proposed that this unphysical kinematic p
can be used to extract the low-energy constants relevan
DI 51/2 K→pp to orderp4 in xPT @7,8#.1

In this Brief Report, we show, via an explicit calculatio
in xPT, that also inMinkowskispace the power divergence
not present inDI 51/2 K→pp amplitudes atMK5Mp ,
with all mesons at rest. Since it has already been argue
Ref. @9# that the DI 51/2 K→pp amplitudes in partially
quenchedxPT at the kinematic pointMK5Mp suffer from
problems related to the lack of unitarity@6,10,11#, we con-
centrate here on full QCD. Our conclusions on the pow
divergence will, however, not change in the~partially!
quenched case.

To simplify the discussion, we only consider weak ope
tors in the (8,1) irreducible representation~irrep! of

1It follows from our analysis that the low-energy constantsa2 and
e1,2,5

r should not appear in Eq.~31! of Ref. @8#.
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SU(3)L3SU(3)R . The weak mass operator in this irrep
O(p2) in the chiral expansion is

O2
(8,1)5a2$2B0Tr@l6~M†S1S†M!#%, ~1!

wherea2 is the~power-divergent! low-energy constant asso
ciated with this operator,B052^0uūu1d̄du0&/ f 2 ~in the
chiral limit!, l6 is a Gell-Mann matrix,M is the quark-mass
matrix, andS is the standard nonlinear Goldstone field.

We first observe thatCPS symmetry implies that the
parity-odd part of this operator is proportional toms2md . In
fact,

O2
(8,1)5a2$B0~ms1md!Tr@l6~S1S†!#

1 iB0~ms2md!Tr@l7~S2S†!#%. ~2!

Therefore, atms5md the parity-odd part of the operator van
ishes, and thus itsK→pp matrix element should vanish a
well for MK5Mp . This was confirmed by an explicit calcu
lation in Euclidean space~as reported in Ref.@6#!, and
should be true in Minkowski space as well.

At leading order in the chiral expansion,O2
(8,1) contributes

to theK→pp amplitudes via the diagrams in Fig. 1, whe
the gray circles represent the weak-mass operator, and

FIG. 1. Diagrams involving the weak mass operator at the lo
est order in the chiral expansion for theDI 51/2 K→pp ampli-
tudes. The gray circles represent the operatorO2

(8,1) , and the square

is the K0K̄0→p1p2 vertex from the lowest-order strong chira

Lagrangian. The dashed line in~b! indicates that theK̄0 could be
off-shell, while all the other mesons are always on-shell.
©2004 The American Physical Society03-1
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square is from the leading-order strong chiral Lagrangian
Fig. 1~b!, there is a pole associated with theK̄0 propagator
~the dashed line in Fig. 1!, which takes the form

i

~MK22Mp!22MK
2 1 i e

, ~3!

when all the other three on-shell particles are at rest.
fixed MKÞMp , one may takee→0 at any stage of the
calculation, since the denominator of Eq.~3! does not vanish
in that case. However, forMK5Mp , the i e prescription is
needed in order to define the propagator, and should be t
to zeroonly at the end of the calculation. In that case, one
finds

^p1p2uO2
(8,1)uK0&MK5Mp

5 lim
e→0

H lim
MK→Mp

a2~MK
2 2Mp

2 !

3F 8~3Mp~MK22Mp!2 i e!

3 f 3~4iM p~MK2Mp!1e!
G J 50, ~4!

which indicates that there is no need to perform the subt
tion of a power divergence.

Let us discuss this claim in more detail. We begin
noting that it was shown long ago@1–3# that if the weak
mass term*d4xO 2

(8,1) is treated as a perturbation to th
strong chiral Lagrangian, it does not have any observa
effect. However, here we consider the unphysical situation
an energy nonconserving matrix element ofO 2

(8,1) ~corre-
sponding to the insertion of this operator at a fixed time,
below!, and the above consideration does not apply.

The factor (MK
2 2Mp

2 ) on the right-hand side of Eq.~4!
originates from theCPSsymmetry of the operator@c.f. Eq.
~2!#, while the quantity in the square brackets is determin
by the kinematics. This latter quantity indeed diverges in
limit MK→Mp ~and e→0). That this is exactly what one
expects to happen because theK̄0 propagator in Fig. 1~b!
goes on-shell without being amputated. In fact, Fig. 1~b! also
represents the process ofK0-K̄0 scattering intop1-p2, but
in that case in order to obtain a finite amplitude, the L
reduction formula tells us to amputate theK̄0 external leg,
before putting it on-shell. Since in our case this leg is n
amputated, the diagram is divergent in the on-shell limit.
the case in whichK0, p1, andp2 are all at rest, this ‘‘K̄0

on-shell’’ point coincides with the limitMK→Mp , andCPS
symmetry prevents the divergence from happening: the
plitude actually vanishes atMK5Mp .

However, one may consider the following more gene
situation. Consider for instance kinematics withK0 at rest
but p1 andp2 carrying spatial momentapW and2pW , respec-
tively. In that case, theK̄0 on-shell point is atMK5Ep

5AMp
2 1upW u2, and Fig. 1~b! is proportional topW 2/e at this

point. The extra factor (MK
2 2Mp

2 ) clearly does not help in
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this case, and the divergence occurs of course for exactly
same reason as described above.

We gain more insight by considering the amplitude
position space, as in Fig. 2~b!. This diagram contains a facto
e2 iM Kutw2tsu from theK̄0 propagator, wheretw is the location
~in time! of the weak operatorO 2

(8,1) ~taken astw50 in the
diagram!, andts is the location of the strong vertex. The LS
prescription for thisK̄0 line corresponds to taking a Fourie
transform with respect totw , and putting the correspondin
momentum on-shell. For this to work, the integral overtw
needs to be regulated by replacingMK→MK2 i e, and this is
precisely what leads to thei e prescription in Eq.~3!. It fol-
lows that the divergence encountered here is regulated
considering the amplitude at finitetw ~by time-translation
invariance we may choosetw50). This is of course what
one does anyway in a lattice computation of this amplitu
It is therefore instructive to consider this amplitude in po
tion space rather than momentum space@6#, which is what
we will do next.

Since we take all our mesons to have vanishing spa
momentum, we will consider the relevant correlators in t
time-momentum representation, i.e., study the correlator
functions of three-momentum and time. In this setup, a f

meson propagator with energyEpW5Am21upW u2 (m is the
mass andpW is the three-momentum of the meson! is

e2 iEpW utu

2EpW
~Minkowski!,

e2EpW utu

2EpW
~Euclidean!,

where t (t) is the Minkowski ~Euclidean! time. The time
dependence of the Minkowski expression is of course in
cordance with thei e prescription of Eq.~3!. We now con-
sider the Minkowski correlator

C25^0up0W
1

~ tp!p0W
2

~ tp!O2
(8,1)~0!K0W

0
~ tK!u0&

and its Euclidean counterpart

FIG. 2. Diagrams involving the weak mass operator at the lo
est order in the chiral expansion for the correlat

^0up1p2Q(8,1)K̄0u0&. The gray circles represent the weak ma

operatorO2
(8,1) , and the square is theK0K̄0→p1p2 vertex from

the lowest-order strong chiral Lagrangian. The dashed line in~b!

meansK̄0 could be off-shell, while all the other mesons are alwa
on-shell. The weak operator is at the space-time origin.K0 is cre-
ated at tK (tK), and the pions are annihilated attp (tp) in
Minkowski ~Euclidean! space.
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C25^0up0W
1

~tp!p0W
2

~tp!O2
(8,1)~0!K0W

0
~tK!u0&.

For simplicity, we choose to annihilate the two pions at t
same time, and assume thattK(tK),0 andtp(tp).0. The
weak operator is inserted at timetw50 (tw50). All par-
ticles are at rest~as indicated by the subscripts 0W ). The rel-
evant diagrams for the above correlators are shown in Fig
In the following, we only present the result in Minkows
space, but stress that the calculation in Euclidean spac
virtually identical, and leads to the same conclusion@6#.

The contribution from Fig. 2~a! to the correlatorC2 is

C2(a)5
28ia2

3 f 3
~MK

2 2Mp
2 !F e2 iM KutKue22iM ptp

~2MK!~2Mp!~2Mp!G ,
while Fig. 2~b! leads to

C2(b)5
4ia2

3 f 3
~MK

2 2Mp
2 !

i

~2MK!~2MK!~2Mp!~2Mp!

3E dtse
2 iM Kuts2tKue2 iM Kutsue22iM putp2tsu

3$MK
2 @11e~ ts!e~ ts2tK!#

1MKMp@e~ ts!1e~ ts2tK!#e~ tp2ts!12Mp
2 %,

~5!

wherets is the time component of the space-time position
the strong chiral Lagrangian vertex in this diagram. T
function e(t) is defined as

e~ t !5H 11, t.0

21, t,0.
~6!

In the above two equations, only the integral ofts between 0
and tp can result in a ‘‘vanishing denominator’’ whenMK
→Mp . Explicitly, it is

C2(b)u0→tp
52 iC2(a)S MK

2 1Mp
2 1MKMp

2MK
D

3H 1

22i ~MK2Mp!
@e22i (MK2Mp)tp21#J .

~7!

WhenMK→Mp , the factor

1

22i ~MK2Mp!
@e22i (MK2Mp)tp21#

is just tp . Therefore, for finitetp ~or finite tp in Euclidean
space!, C2 ~or C2 in Euclidean space! vanishes atMK5Mp

~with both C2(a)50 andC2(b)50 separately! due to the ex-
plicit factor of MK

2 2Mp
2 , and there is no power divergenc

This conclusion remains true to all orders inxPT.
To conclude, we would like to discuss in some more de

why the factor linear intp appears in Eq.~7!, even though
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C2(b) vanishes forMK5Mp because of the explicit facto
(ms2md) in Eq. ~2!. Omitting this factor, our result contain
a term linear intp for MK5Mp . One would expect that if
one takestp large after taking the limitMK→Mp , it would
be necessary to unitarizeC2(b).

2 Reinterpreting Fig. 2~b! as
the lowest-order contribution inxPT ~in the strong vertex! to
K0K̄0→p1p2 scattering~as we did above!, the term linear
in tp can be understood as follows. ForMK5Mp , there is
full SU(3) symmetry, anduKK& and upp& s wave, I 50
states can be expressed in terms of the (I 50 components of
the! irreducible statesu1&, u8&, andu27& through the relations
@9#

u1&5
1

A2
uKK&1

1

2A2
uhh&1

1

2
A3

2
upp&,

u8&5
1

A5
uKK&1

1

A5
uhh&2A3

5
upp&,

u27&52A 3

10
uKK&1A27

40
uhh&1

1

A40
upp&,

~8!

where

uKK&5
1

A2
~ uK0K̄0&1uK1K2&),

upp&5
1

A3
~ up0p0&1A2up1p2&). ~9!

From these relations, it follows that

^pp~ t5tp!uKK~ t50!&5
A3

4
^1~ t5tp!u1~ t50!&

2
A3

5
^8~ t5tp!u8~ t50!&

2
A3

20
^27~ t5tp!u27~ t50!&.

To leading order inxPT this expression contains a term lin
ear intp , the coefficient of which is the corresponding line
combination of finite-volume two-particle energy shifts, th
explaining how a term linear intp appears inC2(b) . Note

2The on-shell divergence discussed earlier has nothing to do
this term linear intp , but, as explained above, with the oscillato
behavior ofe2 iM Kutw2tsu.
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that the normalization ofC2(b) has been chosen such that~in
leading nonvanishing order! it is independent of the spatia
volume. Higher orders inxPT will indeed unitarize our
result.
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