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Note on the power divergence in lattice calculations oAl =1/2 K— w7 amplitudes at M =M .
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In this Brief Report, we clarify a point concerning the power divergence in lattice calculatiodd of
=1/2K— 7w decay amplitudes. There have been worries that this divergence might show up in the
Minkowski amplitudes aM =M . with all the mesons at rest. Here we demonstrate, via an explicit calcula-
tion in leading-order chiral perturbation theory, that the power divergence is absent at the above kinematic
point, as predicted b€PSsymmetry.
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The subtraction of a power divergence, which arises vieSU(3), X SU(3)g. The weak mass operator in this irrep at
the mixing of dimension-six four-fermion operators with O(p?) in the chiral expansion is
those of lower dimension, has been one of the central issues
in lattice calculations of\l =1/2 K— - amplitudes. This OBD= ,{ 2B T Ag(MTS+3TAM) T, 1)
power divergence is, of course, unphysical, and can be re-
lated to a shift of the vacuum due to the inclusion of thewherea, is the (power-divergentlow-energy constant asso-
weak interaction in chiral perturbation theoryRT) [1-4].  ciated with this operatorBy=—(0|uu+dd|0)/f? (in the
It results in the so-called tadpole operators, which contributehiral limit), A g is a Gell-Mann matrix,M is the quark-mass
to the processeK°—>|O> and E0_>|o>, in YPT with weak  matrix, andX, is the standard nonlinear Goldstone field.
interactions. We first observe thaCPS symmetry implies that the
As argued in Ref[5], this power divergence should be parity-odd part of this operator is proportionaltg—my. In
absent forK — 77 amplitudes whermg=mg=m; (M 4 ¢ fact,
are the masses af, d, ands quarks, due to the exac€PS 8.1) .
symmetry[1] of the four-fermion operators that medidte O3 7= a{Bo(Ms+mg) T A (X +27)]
— i decays. In Ref[6], it was argued that the power di- ; -~ St
vergence indeed does disappearEuclidean spacet My TiBo(Ms=Ma)Tr{A7(X =2 D1} @

=M. However, a naive calculation in Minkowski space Therefore, atn,=my the parity-odd part of the operator van-
suggests that this power divergence might still be present gnes, and thus it — = matrix element should vanish as
My =M_, when all mesons are at rest. The issue is relevantyg| for m «=M .. This was confirmed by an explicit calcu-

as it has been proposed that this unphysical kinematic poingtion in Euclidean spacéas reported in Ref[6]), and
can be used to extract the low-energy constants relevant fQfoyid be true in Minkowski space as well.

— 4 1
Al=1/2K—mm to orderp™ in xPT[7,8." _ At leading order in the chiral expansiof®¥® contributes
In this Brief Report, we show, via an explicit calculation i, thak — 77 amplitudes via the diagrams in Fig. 1, where

in xPT, that also irMinkowskispace the power divergence is yhe gray circles represent the weak-mass operator, and the
not present inAl=1/2 K— w7 amplitudes atMy=M _,

with all mesons at rest. Since it has already been argued in

Ref. [9] that the Al=1/2 K— 7o amplitudes in partially *

guenchedyPT at the kinematic poinvix=M . suffer from

problems related to the lack of unitarif$,10,11, we con- KO

centrate here on full QCD. Our conclusions on the power T

divergence will, however, not change in thHpartially) ©) (b)

guenched case.
To simplify the discussion, we only consider weak opera- FIG. 1. Diagrams involving the weak mass operator at the low-

tors in the (8,1) irreducible representatiofirrep) of  est order in the chiral expansion for tid =1/2 K— 7 ampli-
tudes. The gray circles represent the operélﬁrl), and the square

is the K°K°— 7" 7~ vertex from the lowest-order strong chiral

Yt follows from our analysis that the low-energy constamjsand Lagrangian. The dashed line {b) indicates that th&k® could be
€} , 5 should not appear in E431) of Ref.[8]. off-shell, while all the other mesons are always on-shell.
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square is from the leading-order strong chiral Lagrangian. In t(rs) >0 08 (0) () > 0
Fig. 1(b), there is a pole associated with tK@ propagator bl < mt dalessd) <%*~{f? mt
(the dashed line in Fig.)Lwhich takes the form P oV (0) = :
T T
I ’II(T‘K) >0 tW(TW) >0
i @ ° (0)
3

— 2_M2+ie’
(Mg=2M7)*=Mitie FIG. 2. Diagrams involving the weak mass operator at the low-

est order in the chiral expansion for the correlator
when all the other three on-shell particles are at rest. Fofg|+ 7~ Q(®k?|0). The gray circles represent the weak mass
fixed Mc#M ., one may takee—0 at any stage of the

calculation, since the denominator of E8) does not vanish  he |owest-order strong chiral Lagrangian. The dashed liné)in

in that case. However_, fal =M, theie prescription is meansk® could be off-shell, while all the other mesons are always
needed in order to define the propagator, and should be takeh <pai The weak operator is at the space-time orihis cre-

to zeroonly at the end of the calculationn that case, one 44 atty (7¢), and the pions are annihilated &t (7.) in
finds Minkowski (Euclidean space.

operatorO®Y | and the square is th€°K°— 7" 7~ vertex from

<7T+7T_|0(28’1)|K0>MK:M7T this case, and the divergence occurs of course for exactly the
same reason as described above.

We gain more insight by considering the amplitude in
position space, as in Fig(ld. This diagram contains a factor

e~ M«ltw=tsl from theK® propagator, wherg, is the location
(in time) of the weak operato® % (taken ast,,=0 in the
=0, 4 diagram), andt; is the location of the strong vertex. The LSZ

prescription for thisk® line corresponds to taking a Fourier
which indicates that there is no need to perform the subtra&-ranSform with respect ta, _and putting the .correspondlng
tion of a power divergence. momentum on-shell. For this to work, the_mtegral ovgr
Let us discuss this claim in more detail. We begin bynee(js to be regulated by Tep'ac'"“*ék.ﬁMK."f- and this is
noting that it was shown long agd—3] that if the weak precisely what Ifeads to thie prescription in Eq(3). It fol-
mass termfd“xo(zg'l) is treated as a perturbation to the lows that the divergence encountered here is regulated by

strong chiral Lagrangian, it does not have any observablv(szonS'd(:“rlng the amplitude at finitg, (by time-transiation

effect. However, here we consider the unphysical situation ofvanance we may choo%zO). This s of course What
an energy nonconserving matrix element (aég'l) (corre- one does anyway in a lattice computation of thls amplltud_e.
It is therefore instructive to consider this amplitude in posi-

Sion space rather than momentum sp@&6g which is what
we will do next.

=lim

e—0

lim  ay,(M3Z—M?2)

T
Mk—M

8(8M _(Mx—2M_)—ie)
3f3(4iM (M—M )+ €)

below), and the above consideration does not apply.

2 2 : H
‘The factor Mic—M?7) on the right-hand side of Ed4) Since we take all our mesons to have vanishing spatial
originates from theCPSsymmetry of the operatdic.f. EQ.  momentum, we will consider the relevant correlators in the

(2)], while the quantity in the square brackets is determined;e_momentum representation, i.e., study the correlators as
by the kinematics. This latter quantity indeed diverges in thgnctions of three-momentum and time. In this setup, a free
limit My—M . (and e—0). That this is exactly what one . = .

k=Ma ( €—~0) — y meson propagator with enerdy;= Vm2+|p|? (m is the

expects to happen because #@ propagator in Fig. (b) > :
goes on-shell without being amputated. In fact, Figp) hlso mass and is the three-momentum of the me3as

represents the process koP-K© scattering intor -7, but

—iEgt
in that case in order to obtain a finite amplitude, the LSZ e 'Sl (Minkowski),
reduction formula tells us to amputate tK@ external leg, 2E;
before putting it on-shell. Since in our case this leg is not
amputated, the diagram is divergent in the on-shell limit. In e Epl7 .
the case in whickk®, =*, and=~ are all at rest, this K° oE- (Euclidean,
on-shell” point coincides with the limiM¢—M ., andCPS P

symmetry prevents the divergence from happening: the a
plitude actually vanishes &l y=M ..

However, one may consider the following more general
situation. Consider for instance kinematics wi at rest
but 7" and#~ carrying spatial momenqﬁ and— |5 respec-

. _0 . . _ _ 0

tively. In tbat case, the&k® on-shell point is aatM k=E, C2=<0|7Tg(tw)775(tw)o(zg’l)(O)Ka(tKHO)
=\M2+|p|?, and Fig. 1b) is proportional top?/e at this

point. The extra factorMﬁ— MfT) clearly does not help in and its Euclidean counterpart

Myvhere t (7) is the Minkowski (Euclidean time. The time
dependence of the Minkowski expression is of course in ac-
cordance with the e prescription of Eq.3). We now con-
sider the Minkowski correlator
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C2=<0|wg(rﬁ)fr§(TW)O(QB'l)(O)Kg( 7%)|0). C, () vanishes forM =M, because of the explicit factor
(mg—my) in Eq.(2). Omitting this factor, our result contains
For simplicity, we choose to annihilate the two pions at thea term linear int, for M =M _. One would expect that if
same time, and assume thp{7¢) <0 andt,(7,)>0. The one taked, large after taking the limiM—M _, it would
weak operator is inserted at tintg=0 (7,=0). All par-  be necessary to unitariléz(b).2 Reinterpreting Fig. @) as
ticles are at restas indicated by the subscripty.OThe rel-  the lowest-order contribution igPT (in the strong vertexto
evant diagrams for the above correlators are shown in Fig. K°K°— 7% 7~ scattering(as we did above the term linear
In the following, we only present the result in Minkowski in t,. can be understood as follows. Fetk=M ., there is
space, but stress that the calculation in Euclidean space fall SU(3) symmetry, andKK) and |77) s wave, |=0

virtually identical, and leads to the same conclugi6h states can be expressed in terms of the@ components of
The contribution from Fig. @) to the correlatolC, is the) irreducible statefl), |8), and|27) through the relations
[9]

e M KltK|e72iM .

- 8| a'2
Coga= (Mg—M2)

3f3 (2M)(2M )(2M 1) ! 0 1 KK)+ 1 | >+1\F| >
=5 =)t s\/5l7TT),
while Fig. 2b) leads to V2 242 2V2
C _4ia2 MZ—MZ) | 1 1 \/§
20 g MM GG MM ) 8)= KK+ Elrm=[glmm,

X J dtsefiM KltsftK‘efiM Klts‘efziM ﬂ‘tw7t5|

|27>=—\/%|KK>+\/%7777>+J%)I7W>,

X{ME[ 1+ e(ts) e(ts—t)]

8
+ MM [ e(ts) + e(ts—tg) Je(t,—ts) +2M2},
(5) Where
wheretg is the time component of the space-time position of 1
the strong chiral Lagrangian vertex in this diagram. The |KK)=—=(|K°K®)+|K*K™)),
function e(t) is defined as 2
) +1, t>0 ©
e(t)= 1
-1, t<O0. |7777>=ﬁ(|770770>+\/§|77+77_>). 9

In the above two equations, only the integrakgbetween 0
andt, can result in a “vanishing denominator” whem ¢

RO From these relations, it follows that
—M .. Explicitly, it is

_ M2+M2+McM V3
C2(b)|0—>t_n:_|C2(a) 2My <7T7T(t—tﬂ.)|KK(t—0)>—T(l(t—tﬂ.)“_(t—o»
« ;[ezuwmwm_”}_ 3
—2i(M—M7) - ?<8(t:tﬂ)|8(t=0))
(7)
WhenMy—M ., the factor V3
— —=(27(t=t,)|27(t=0)).
1 20
T [ 2MkMt 1]
—2i(Mg—M,) To leading order inyPT this expression contains a term lin-

ear int ., the coefficient of which is the corresponding linear

is justt, . Therefore, for finitet, (or finite 7, in Euclidean  combination of finite-volume two-particle energy shifts, thus
spacg, C, (or C; in Euclidean spagevanishes aMc=M.  explaining how a term linear in, appears inC,,. Note
(with both C, ;=0 andC,,=0 separatelydue to the ex-
plicit factor of Mz —M?2, and there is no power divergence.
This conclusion remains true to all ordersyiT. 2The on-shell divergence discussed earlier has nothing to do with

To conclude, we would like to discuss in some more detaikhis term linear it , but, as explained above, with the oscillatory
why the factor linear irt, appears in Eq(7), even though behavior ofe” Mkltw=td,
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