

3-EPIGIBBERELLIN A₁: NATURAL OCCURRENCE IN PLANTS AND ARTEFACTUAL FORMATION FROM GIBBERELLIN A₁

PAUL GASKIN, JAKE MACMILLAN,* CLIVE R. SPRAY,† YOSHIHITO SUZUKI†‡ and BERNARD O. PHINNEY†

Department of Agricultural Sciences, University of Bristol, Institute of Arable Crops Research, Long Ashton Research Station, Bristol BS18 9AF, U.K.; †Department of Biology, UCLA, Los Angeles, CA 90024-1606, U.S.A.

(Received 17 May 1994)

Key Word Index—*Zea mays*; Graminaceae; *Lactuca sativa*; Cruciferae; 3-epiGA₁; endogenous and artefactual; isotope dilution analysis; ¹²C:¹³C ratios.

Abstract—Whether 3-epigibberellin(3-epiGA₁) is endogenous in plants or is formed from GA₁ as an artefact, can be determined by adding [¹³C]GA₁ to the plant material as an internal reference and measuring the ¹²C:¹³C ratio of 3-epiGA₁ and GA₁, recovered from the plant extract. We use this method to show that 3-epiGA₁ is not a natural constituent of vegetative tissues of *Zea mays* (maize) but is endogenous in *Lactuca sativa* (lettuce).

INTRODUCTION

3-epiGibberellin A₁ (3-epiGA₁) has been identified by GC-mass spectrometry in extracts of several plant species, e.g. the vegetative tissue of *Agrostemma githago* [1], *Pisum sativum* [2], *Zea mays* [3], *Brassica napus* [4] and *Lactuca sativa* [5-7]. In all cases 3-epiGA₁ was accompanied by the presence of GA₁. Since 3-epiGA₁ can be formed from GA₁ at high pH values and normal temperatures [8], the 3-epiGA₁ identified in extracts from plant material may not be endogenous to the plant but be an artefact formed from GA₁ during extraction, fractionation or GC-mass spectrometry.

As part of the first identification of 3-epiGA₁ from *A. githago*, Jones and Zeevaart [1] provided evidence that 3-epiGA₁ was not formed from GA₁ during extraction or fractionation of the extract and was therefore endogenous. These authors added [³H]GA₁ to the plant homogenate and showed by TLC of the fractionated extract that there was no radioactivity in the zone at the *R_f* of 3-epiGA₁. Similarly, Hedden *et al.* [4] added [³H]GA₁ to an 80% aqueous methanol extract from *B. napus* and found no evidence for the presence of labelled 3-epiGA₁ during solvent and HPLC fractionation.

When GC-mass spectral analysis is used 3-epiGA₁ could also be formed from GA₁ during derivatization or analysis. This possibility was suggested by Rood and Hedden [9]. Working with *B. rapa*, they identified 3-epiGA₄ by GC-mass spectrometry of an HPLC fraction that co-eluted with [³H]GA₄. When the same HPLC fraction was re-derivatized and re-analysed by GC-mass spectrometry it was found to contain no 3-epiGA₄. Since 3-epiGA₄ would not be expected in the GA₄-containing

HPLC fraction, Rood and Hedden suggested that the identified 3-epiGA₄ was formed from GA₄ during GC.

In this paper we describe a method to distinguish between 3-epiGA₁ that is endogenous to the plant and 3-epiGA₁ that is an artefact formed from GA₁ during fractionation, purification or GC-mass spectral analysis of plant extracts. The method uses GA₁, labelled with a stable isotope as an internal reference, followed by the measurement of the content of the stable isotope in the identified 3-epiGA₁ and GA₁. The procedure is illustrated using [¹⁷³H, ¹³C]GA₁ as the internal reference. [¹⁷³H, ¹³C]GA₁ is added to the plant material, or to the plant homogenate before extraction, in an amount close to the endogenous level of GA₁. 3-epiGA₁ and GA₁ are identified in the purified extracts by GC-mass spectrometry of their MeTMSi derivatives and the ¹²C and ¹³C content of both are determined by GC-SIM.

In the present study the GC-SIM analyses were performed using an isotope dilution programme [10] that subtracts the natural abundance of ¹³C and the results are expressed as a ¹²C:¹³C ratio. Three types of ¹²C:¹³C ratios are possible: (1) if the ¹²C:¹³C ratio of 3-epiGA₁ is 100:0 no isomerization of GA₁ has occurred. All the identified 3-epiGA₁ is endogenous, i.e. 3-epiGA₁ is naturally occurring in the plant and is not an artefact of the methodology; (2) if the ¹²C:¹³C ratio of 3-epiGA₁ is not 100:0 and is the same as that of the recovered GA₁ then the identified 3-epiGA₁ is an artefact formed entirely from GA₁ as a result of the methodology; and (3) if the ¹²C:¹³C ratio of 3-epiGA₁ is between 100:0 and the ¹²C:¹³C ratio of the recovered GA₁ then the identified 3-epiGA₁ is a mixture of endogenous and artefactual 3-epiGA₁.

Using this method, the status of 3-epiGA₁ as an endogenous GA in vegetative tissue of maize and lettuce has been examined.

*Author to whom correspondence should be addressed.

†Present address: Department of Agricultural Chemistry, The University of Tokyo, Tokyo 113, Japan.

RESULTS AND DISCUSSION

Maize

Phinney *et al.* [11] reported the presence and levels of GA₁ in the immature and mature stems and immature leaf sheaths of normal (+/+) maize; [17-³H, ¹³C]GA₁ was used as an internal standard and the ¹²C:¹³C ratios of the recovered GA₁ were published in that paper. We report here additional unpublished data from these studies on the detection and the ¹²C:¹³C ratios of 3-epiGA₁ from the three kinds of plant material (Table 1). Since the ¹²C:¹³C ratio of 3-epiGA₁ was close to the ¹²C:¹³C ratio of the recovered GA₁ for each kind of plant material, we conclude that the identified 3-epiGA₁ is an artefact. The fit factors are a measure of the reliability of the data.

The same conclusion that 3-epiGA₁ does not occur naturally in seedling shoots of maize can now be drawn from data, previously published by Fujioka *et al.* [12]. The data, shown in Table IV of that paper, had not been interpreted in terms of the origin of the identified 3-epiGA₁. In the paper by Fujioka *et al.* [12], 5-week-old normal (+/+/), heterozygous Dominant dwarf (+/D8) and homozygous Dominant dwarf (D8/D8) maize plants were injected with [³H, ¹³C]GA₁. The seedlings were extracted 12 hr later and the ¹²C:¹³C ratio of 3-epiGA₁, GA₁ and GA₈ were determined by GC-SIM. Since the reported ¹²C:¹³C ratio of 3-epiGA₁ is very similar to the ¹²C:¹³C ratio of GA₁ for each kind of plant material we conclude that the identified 3-epiGA₁ was artefactual in origin.

Since the *dwarf-1* (d1) mutant of maize contains very low levels of GA₁ [13], we have determined the ¹²C:¹³C ratio of 3-epiGA₁ and the ¹²C:¹³C ratio of GA₁ following feeds of [³H, ¹³C]GA₁ to the mutant. The experiment was conducted to look for the presence of 3-epiGA₁, in the absence of GA₁. *Dwarf-1* seedlings were injected with [³H, ¹³C]GA₁ and the shoots were harvested 0, 2, 4 and 6 hr later. As a control [³H, ¹³C]GA₁ was added to untreated seedlings after homogenization in methanol-water (4:1). The ¹²C:¹³C ratio (Table 2), determined by GC-SIM, for 3-epiGA₁ and for GA₁ is very similar for each treatment. These results show that 3-epiGA₁ is artefactual, originating from the added GA₁.

In conclusion these isotope dilution data for (+/+/), (+/D8), (D8/D8) and (+/d1) maize genotypes show that 3-epiGA₁ does not occur naturally in shoots of maize. Its identification from maize shoots is the consequence of its artefactual origin from GA₁ at some stage in the analysis.

Lettuce

In a previous publication by Waycott *et al.* [5], GA₁ and 3-epiGA₁ were identified by GC-mass spectrometry in vegetative tissue of an early flowering cultivar, E-1, of lettuce and three GA-responding dwarfs, *dwf1*, *dwf2* and *dwf2*ⁱ. GA₁ was quantified by GC-SIM using [³H, ¹³C]GA₁ as an internal standard. Their data (Table II) were not analysed in terms of the origin of the identified 3-epiGA₁. This we now do and Table 3 shows the ¹²C:¹³C ratios for 3-epiGA₁ and GA₁ together with the fit factors and relative amounts. For both E-1 and *dwf2*ⁱ the ¹²C:¹³C ratios for 3-epiGA₁ are close to 100:0; thus most of the identified 3-epiGA₁ is unlabelled and, therefore, endogenous in origin. For *dwf2* the ¹²C:¹³C ratio of 3-epiGA₁ is intermediate between 100:0 and that of the recovered GA₁; thus the 3-epiGA₁ identified in extracts of *dwf2* is both endogenous and artefactual in origin. Toyomasu *et al.* [14] have also shown that 3-epiGA₁ is endogenous in lettuce shoots by adding [2,2,3,6-²H₄]GA₁ and showing that the identified 3-epiGA₁ contained no label.

In summary, the use of GA₁, labelled with a stable isotope, as an internal reference and a comparison of the stable isotope content in the recovered 3-epiGA₁ and GA₁ is a useful method to distinguish between endogenous and artefactual 3-epiGA₁, obtained from plant extracts. The data presented here show that 3-epiGA₁ is not endogenous in shoots of maize and is endogenous in vegetative tissue of lettuce. However, the method does not provide information on the specific stage in the isolation or identification procedures at which 3-epiGA₁ is formed as an artefact. The amount of 3-epiGA₁, formed from GA₁, is variable; for example the ratio of 3-epiGA₁ to GA₁ from *dwarf-1* maize plants range from 2:1 to 1:16 (Table 2). This variability, and the difference in ratios of the amounts of 3-epiGA₁ formed from GA₁ from the

Table 1. Isotope dilution analysis by GC-SIM of the molecular ion cluster of the MeTMSi derivatives of GA₁ and 3-epiGA₁ from immature and mature stems and immature leaf sheaths of normal maize plants (the data for GA₁ are from Phinney *et al.* [11])

Sample	[¹³ C]GA	Relative amounts	¹² C	¹³ C	Fit factor
Mature stem	GA ₁	14.56	52.5	47.5	0.9961
	3-epiGA ₁	1.00	49.8	50.1	0.9920
Immature stem	GA ₁	3.04	63.6	36.4	0.9945
	3-epiGA ₁	1.00	62.1	37.9	0.9900
Immature leaf sheath	GA ₁	1.24	79.0	21.0	0.9950
	3-epiGA ₁	1.00	77.3	22.7	0.9983

Table 2. Isotope dilution analysis by GC-SIM of the molecular ion cluster of the MeTMSi derivatives of GA₁ and 3-epiGA₁ from shoots of dwarf-1 maize plants treated with [17-¹³C, ³H]GA₁

Sample	[¹³ C]GA	Relative amounts	¹² C	¹³ C	Fit factor
Homogenate	GA ₁	1.05	8.8	91.2	0.9961
	3-epiGA ₁	1.00	8.4	91.6	0.9948
Feed, 0 hr	GA ₁	0.55	8.7	91.3	0.9923
	3-epiGA ₁	1.00	8.4	91.6	0.9862
Feed, 2 hr	GA ₁	10.02	8.4	91.6	0.9945
	3-epiGA ₁	1.00	9.5	90.5	0.9901
Feed, 4 hr	GA ₁	3.67	8.6	91.4	0.9929
	3-epiGA ₁	1.00	8.7	91.3	0.9904
Feed, 6 hr	GA ₁	16.05	8.7	91.3	0.9909
	3-epiGA ₁	1.00	9.0	91.0	0.9908

Table 3. Isotope dilution analysis by GC-SIM of the molecular ion cluster of the MeTMSi derivatives of GA₁ and 3-epiGA₁ from lettuce (data derived from Waycott *et al.* [5])

Sample	[¹³ C]GA	Relative amounts	¹² C	¹³ C	Fit factor
E-1*	GA ₁	3.40	52.5	47.5	0.9909
	3-epiGA ₁	1.00	97.7	2.3	0.9881
dwf2	GA ₁	19.09	31.2	68.8	0.9936
	3-epiGA ₁	1.00	77.0	23.0	0.9657
dwf2 ⁱ	GA ₁	9.19	34.2	65.8	0.9934
	3-epiGA ₁	1.00	90.4	9.6	0.9838

*Average of three determinations.

equilibrium ratio of 3:1 [8], support the previous evidence [3, 4] that 3-epiGA₁ is not formed during extraction or fractionation of the extract. 3-epiGA₁ may be formed from GA₁ during GC injection in GC-mass spectral analysis [9]; this possibility requires further investigation.

EXPERIMENTAL

[17-³H, ¹³C]GA₁ (0.915 atoms ¹³C molecule⁻¹, 2.11 GBq mmol⁻¹) was prepared by Fujioka *et al.* [13].

Plant material. Maize dwarf-1 plants came from a selfed stock that is heterozygous for the *d1* mutant. The origin of the stock is described in ref. [13]. Seeds were planted and grown in the UCLA greenhouse. Thirty-day-old plants were used.

Treatment, incubation, extraction and purification. Twelve dwarf-1 plants were each injected at the base of the stem with [17-¹³C, ³H]GA₁ (0.52 µg; 3.13 × 10³ Bq), dissolved in EtOH-H₂O (1:1, 10 µl). Three of the treated plants were harvested at 0, 2, 4 and 6 hr after injection. The shoots were excised from the roots (discarded), frozen immediately on solid CO₂ and then homogenized in MeOH-H₂O (4:1). In addition, as a control, the shoots from three untreated seedlings were frozen and homogenized and [17-¹³C, ³H]GA₁ (1.56 µg; 9.4 × 10³ Bq) was added to the homogenate. All homogenates were purified as described in ref. [13]. Radioactive frs from HPLC were methylated, trimethylsilylated and analysed by GC-MS. The conditions for GC-SIM and the determination of ¹²C:¹³C ratios by the isotope dilution fit programme were the same as those described in Method 2 by Croker *et al.* [10]. All [M]⁺ ion clusters had the correct Kovats Retention Indices.

Acknowledgements—Financial support is gratefully acknowledged from the National Science Foundation, Grant DCB 8819809 (BOP) and the Agricultural and Food Research Council (JMacM).

REFERENCES

1. Jones, M. G. and Zeevaart, J. A. D. (1980) *Planta* **149**, 274.
2. Ross, J. J., Reid, J. B., Gaskin, P. and MacMillan, J. (1989) *Physiol. Plantarum* **76**, 173.
3. Fujioka, S., Yamane, H., Spray, C. R., Katsumi, M., Phinney, B. O., Gaskin, P., MacMillan, J. and Takahashi, N. (1988) *Proc. Natl Acad. Sci. U.S.A.* **85**, 9031.

4. Hedden, P., Croker, S. J., Rademacher, W. and Jung, J. (1989) *Physiol. Plantarum* **75**, 445.
5. Waycott, W., Smith, V. A., Gaskin, P., MacMillan, J. and Taiz, L. (1991) *Plant Physiol.* **95**, 1169.
6. Toyomasu, T., Yamane, H., Yamaguchi, I., Murofushi, N., Takahashi, N. and Inoue, Y. (1991) *Plant Cell Physiol.* **33**, 697.
7. Pearce, D., Miller, A. R., Roberts, L. W. and Pharis, R. P. (1987) *Plant Physiol.* **84**, 1121.
8. Cross, B. E., Grove, J. F. and Morrison, A. (1961) *J. Chem. Soc.* 2498.
9. Rood, S. B. and Hedden, P. (1994) *J. Plant. Growth Regul.*, (in press).
10. Croker, S. J., Gaskin, P., Hedden, P., MacMillan, J. and MacNeil, K. A. G. (1994) *Phytochem. Anal.* **5**, 74.
11. Phinney, B. O., Spray, C. R., Suzuki, Y. and Gaskin, P. (1991) in Gibberellins (Takahashi, N., Phinney, B. O. and MacMillan, J., eds), pp. 22–31. Springer, Berlin.
12. Fujioka, S., Yamane, H., Spray, C. R., Phinney, B. O., Gaskin, P. and MacMillan, J. (1990) *Plant Physiol.* **94**, 127.
13. Fujioka, S., Yamane, H., Spray, C. R., Gaskin, P., MacMillan, J., Phinney, B. O. and Takahashi, N., (1988) *Plant Physiol.* **88**, 1367.
14. Toyomasu, T., Tsuji, H., Yamane, H., Nakayama, M., Yamaguchi, I., Murofushi, N., Takahashi, N. and Inoue, Y. (1993) *J. Plant Growth Regul.* **12**, 85.