

CYTOTOXIC METABOLITES FROM A FUNGAL ADHERENT OF A MARINE ALGA

CHIKA TAKAHASHI, YASUSHI TAKAI, YOSHINORI KIMURA, ATSUSHI NUMATA,* NOBUHARU SHIGEMATSU† and HIROKAZU TANAKA†

Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara, Osaka 580, Japan; †Exploratory Research Lab., Fujisawa Pharmaceutical Co. Ltd, 5-2-3 Tokodai, Tsukuba, Ibaraki 300-26, Japan

(Received 13 May 1994)

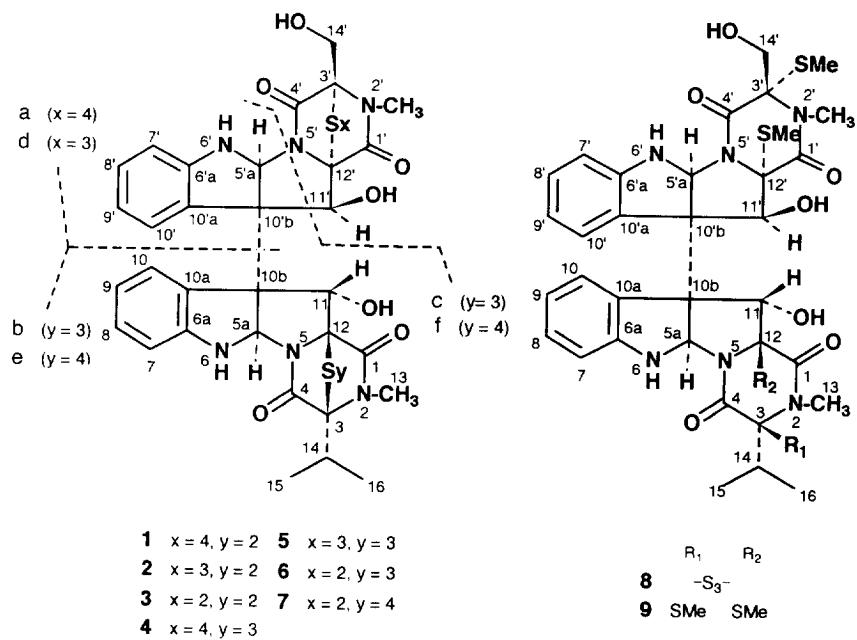
Key Word Index—*Leptosphaeria* sp.; fungus; *Sargassum tortile*; marine alga; epipolythiodioxopiperazine; leptosin; cytotoxicity.

Abstract—Leptosins G, G₁, G₂ and H, belonging to a series of dimeric epipolythiodioxopiperazines, were isolated from the mycelium of a strain of *Leptosphaeria* sp. stuck on the marine alga *Sargassum tortile*. Their stereostructures were elucidated by chemical and spectral evidence.

INTRODUCTION

As part of our ongoing search for new antineoplastic materials from marine microorganisms [1, 2], we found that cytotoxic compounds, leptosins A (1), B (2), C (3) and D-F, belonging to a series of epipolythiodioxopiperazines, were produced by a strain of *Leptosphaeria* sp. isolated from the marine alga *Sargassum tortile*. Compounds 1 and 3 exhibited significant antitumour activity against Sarcoma 180 ascites [3]. Further investigation of the secondary metabolites of this fungus has led to the isolation of four additional cytotoxic compounds, named leptosins G (4), G₁ (5), G₂ (6) and H (7).

RESULTS AND DISCUSSION


The molecular formulae of leptosins G (4)–H (7) and the general features of their UV, IR and NMR (Tables 1 and 2) spectra suggested that they were analogues with different numbers of sulphur atoms in the polysulphide bridges from those of leptosins A (1)–C (3) belonging to a series of dimeric epipolythiodioxopiperazines [3]. Leptosin G (4) was assigned the molecular formula C₃₂H₃₂N₆O₇S₇ (HRFABMS). The ¹³C NMR signals (C-1' to C-14') for the hydroxymethyl-bearing half of the molecule of 4 (Table 2) showed close correspondence with those of the corresponding half of 1 with the tetrasulphide bridge [3]. In addition, the FABMS of 4 revealed a fragment peak at *m/z* 428 [a]⁺, corresponding to the hydroxymethyl-bearing half of the molecule of 4 together with the peaks at *m/z* 709 [MH-4S]⁺ and 691 [MH-4S-H₂O]⁺ arising from the loss of sulphur atoms from the

polysulphide bridge in the hydroxymethyl-bearing dioxopiperazine ring and successive dehydration, respectively. Assignment of the [MH-4S]⁺ peak was based on the report that sulphur atoms in a hydroxymethyl-bearing dioxopiperazine ring were eliminated more easily than those of an isopropyl-bearing ring [3]. This evidence indicated that the hydroxymethyl-bearing dioxopiperazine ring of 4 has a tetrasulphide bridge. The FABMS of 4 also exhibited fragment peaks at *m/z* 408 [b]⁺, corresponding to the isopropyl-bearing half of the molecule of 4, 312 [b-3S]⁺, 525 [cH]⁺, 429 [cH-3S]⁺ and 411 [cH-3S-H₂O]⁺, indicating that the isopropyl-bearing ring in 4 has a trisulphide bridge (see structures 1–7 for the fragment ions). The above-mentioned evidence allowed assignment of planar structure 4 to leptosin G.

Leptosin G₁ (5) was assigned a molecular formula which contained one sulphur atom less than that of 4. The two sets of ¹³C NMR signals (C-1 to C-16 and C-1' to C-14') for the isopropyl- and hydroxymethyl-bearing halves of the molecule of 5 (Table 2) revealed similarities with those of the isopropyl-bearing half of 4 and the hydroxymethyl-bearing half of 2 with the trisulphide bridge [3], respectively. The FABMS of 5 exhibited fragment peaks at *m/z* 709 [MH-3S]⁺, arising from the loss of sulphur atoms from the polysulphide bridge in the hydroxymethyl-bearing dioxopiperazine ring, and *m/z* 397 [d+H]⁺ together with the fragment ions *m/z* 408 [b]⁺, 312 [b-3S]⁺, 524 [c]⁺, 428 [c-3S]⁺ and 410 [c-3S-H₂O]⁺ which indicated that the isopropyl-bearing ring in 5 has a trisulphide bridge. This evidence led to planar structure 5 for leptosin G₁.

Leptosin G₂ (6) was assigned a molecular formula which contained one sulphur atom less than that of 5. Most of the ¹³C NMR signals of 6 were not observed due to peak broadening. The FABMS of 6 exhibited a fragment

*Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of leptosins 4–7 and derivative 8 (300 MHz, CHCl_3 , TMS as int. standard)*

H	4	5	6	7	8
5a	6.28 <i>s</i>	6.31 <i>s</i>	6.50 <i>br s</i>	6.29 <i>br s</i>	6.64 <i>s</i>
6	5.28 <i>s</i>	5.31 <i>br s</i>	5.36 <i>br s</i> †	5.47 <i>br s</i>	†
7	6.70 <i>d</i> (8.0)	6.72 <i>d</i> (7.8)	6.74 <i>br s</i>	6.23 <i>br d</i> (7.8)	6.69 <i>d</i> (7.8)
8	7.14 <i>t</i> (8.0)	7.15 <i>t</i> (7.8)	7.17 <i>t</i> (7.8)	7.07 <i>br t</i> (7.8)	7.12 <i>td</i> (7.8, 1.0)
9	6.41 <i>t</i> (8.0)	6.43 <i>t</i> (7.8)	6.50 <i>br s</i>	6.81 <i>br t</i> (7.8)	6.38 <i>t</i> (7.8)
10	5.49 <i>d</i> (8.0)	5.55 <i>d</i> (7.8)	5.36 <i>br s</i>	7.65 <i>br d</i> (7.8)	5.53 <i>dd</i> (7.8, 1.0)
11	4.90 <i>s</i>	4.94 <i>s</i>	4.80 <i>br s</i>	5.28 <i>br s</i>	4.91 <i>d</i> (1.5)
13	3.20 <i>s</i>	3.20 <i>s</i>	3.21 <i>s</i>	3.06 <i>s</i>	3.21 <i>s</i>
14	2.47 <i>heptet</i> (6.8)	2.46 <i>heptet</i> (6.8)	2.48 <i>heptet</i> (6.8)	2.70 <i>heptet</i> (6.8)	2.50 <i>heptet</i> (6.8)
15	1.23 <i>d</i> (6.8)	1.23 <i>d</i> (6.8)	1.21 <i>d</i> (6.8)	1.15 <i>d</i> (6.8)	1.19 <i>d</i> (6.8)
16	1.44 <i>d</i> (6.8)	1.43 <i>d</i> (6.8)	1.43 <i>d</i> (6.8)	1.43 <i>d</i> (6.8)	1.45 <i>d</i> (6.8)
11-OH	4.18 <i>br s</i>	4.22 <i>br s</i>	4.35 <i>br d</i> (2.0)	4.40 <i>br s</i>	4.19 <i>d</i> (1.5)
5'a	5.41 <i>br s</i>	5.60 <i>br s</i>	5.80 <i>br s</i>	5.96 <i>br d</i> (6.8)	5.60 <i>s</i>
6'	5.28 <i>br s</i>	5.14 <i>br s</i>	†‡	6.97 <i>br d</i> (6.8)	†
7'	6.53 <i>d</i> (8.0)	6.52 <i>d</i> (7.8)	6.54 <i>d</i> (7.8)	6.59 <i>br d</i> (7.8)	6.48 <i>d</i> (7.8)
8'	7.22 <i>t</i> (8.0)	7.22 <i>t</i> (7.8)	7.08 <i>br t</i> (7.8)	7.05 <i>br t</i> (7.8)	7.17 <i>td</i> (7.8, 1.0)
9'	6.92 <i>t</i> (8.0)	6.92 <i>t</i> (7.8)	6.74 <i>br s</i>	6.40 <i>br t</i> (7.8)	6.88 <i>t</i> (7.8)
10'	7.74 <i>d</i> (8.0)	7.76 <i>d</i> (7.8)	7.62 <i>br s</i>	6.27 <i>br d</i> (7.8)	7.72 <i>dd</i> (7.8, 1.0)
11'	5.33 <i>s</i>	5.33 <i>s</i>	6.12 <i>br s</i>	6.21 <i>br s</i>	5.26 <i>s</i>
13'	3.00 <i>s</i>	2.99 <i>s</i>	2.93 <i>br s</i>	2.91 <i>br s</i>	3.02 <i>s</i>
14'	3.94 <i>d</i> (12.8) 4.12 <i>d</i> (12.8)	3.74 <i>d</i> (12.6) 4.52 <i>d</i> (12.6)	4.17 <i>dd</i> (12.5, 9.2) 4.33 <i>dd</i> (12.5, 5.2)	4.17 <i>br d</i> (12.5) 4.32 <i>br d</i> (12.5)	3.70 <i>d</i> (12.0) 4.03 <i>d</i> (12.0)
11'-OH	3.82 <i>br s</i>	4.42 <i>br s</i>	3.3 <i>br s</i>	3.40 <i>br s</i>	†
14'-OH	†	†	†‡	†	†
2'-SMe					2.22 <i>s</i>
12'-SMe					2.39 <i>s</i>

* ^1H chemical shift values (δ ppm) followed by multiplicity and then the coupling constant (J /Hz) in parentheses.

† Interchangeable within each column.

‡ Not detected.

peak at 709 $[\text{MH} - 2\text{S}]^+$ arising from the loss of sulphur atoms from the hydroxymethyl-bearing dioxopiperazine ring together with the fragment ions $[\text{b}]^+$, $[\text{c}]^+$, $[\text{c} - 3\text{S}]^+$ and $[\text{c} - 3\text{S} - \text{H}_2\text{O}]^+$. Leptosin G₂ (6) was transformed

into bis(methylthio) and tetrakis(methylthio) derivatives 8 and 9 by treatment with NaBH_4 and MeI . The presence of two methylthio groups on the hydroxymethyl-bearing dioxopiperazine ring of 8 was established from

Table 2. ^{13}C NMR spectral data of leptosins **4**, **5** and **7** (75.4 MHz, CHCl_3 , TMS as int. standard)*

C	4	5	7
1	170.1 (q)†	170.1 (q)	168.8 (q)‡
3	77.6 (q)	77.4 (q)	81.6 (q)
4	165.1 (q)	165.1 (q)	167.7 (q)‡
5a	79.3 (t)	79.7 (t)	79.2 (t)
6a	150.9 (q)	151.0 (q)	148.1 (q)
7	110.7 (t)	110.8 (t)	108.6 (t)
8	131.0 (t)	131.0 (t)	130.2 (t)
9	119.3 (t)	119.4 (t)	118.9 (t)
10	126.7 (t)	126.7 (t)	127.4 (t)
10a	123.5 (q)	123.8 (q)‡	127.1 (q)
10b	60.7 (q)	60.6 (q)	61.6 (q)
11	83.2 (t)	83.2 (t)	83.0 (t)
12	83.3 (q)	83.4 (q)	80.0 (q)
13	28.0 (p)	27.9 (p)	30.2 (p)
14	35.5 (t)	35.5 (t)	36.0 (t)
15	19.2 (p)	19.2 (p)	18.3 (p)
16	18.0 (p)	18.1 (p)	18.4 (p)
1'	168.4 (q)	167.7 (q)	167.7 (q)
3'	79.0 (q)	80.6 (q)	79.2 (q)
4'	169.3 (q)	165.8 (q)	164.7 (q)
5'a	80.5 (t)	79.7 (t)	83.2 (t)
6'a	149.8 (q)	149.9 (q)	149.6 (q)
7'	109.8 (t)	109.7 (t)	109.6 (t)
8'	130.0 (t)	130.0 (t)	129.7 (t)
9'	119.0 (t)	118.8 (t)	119.3 (t)
10'	130.2 (t)	130.3 (t)	129.8 (t)
10'a	122.9 (q)	123.2 (q)‡	121.7 (q)
10'b	64.2 (q)	65.2 (q)	63.3 (q)
11'	79.0 (t)	79.7 (t)	78.8 (t)
12'	80.5 (q)	76.3 (q)	74.5 (q)
13'	28.9 (p)	28.5 (p)	26.4 (p)
14'	63.6 (s)	62.0 (s)	60.6 (s)

* Signal assignments were based on long range ^1H - ^{13}C HETCOR and/or ^1H - ^{13}C HETCOR spectra.

† Letters *p*, *s*, *t* and *q*, in parentheses indicate, respectively, primary, secondary, tertiary and quaternary carbons, assigned by DEPT.

‡ Assignments may be interchangeable in each column.

the fact that the chemical shifts of the ^1H NMR signals for the isopropyl-bearing half of **8** were similar to those of the corresponding half of **4**-**6** (Table 1), and a polysulphide bridge in a hydroxymethyl-bearing dioxopiperazine ring could react more easily than that of an isopropyl-bearing ring on treatment with NaBH_4 and MeI as reported previously [3]. The derivative **9** was identical to that derived from **1** [3] in all respects examined, including the CD spectrum. The above-mentioned evidence led to stereostructure **6** for leptosin **G**₂.

For the purpose of desulphurization, **4** was treated with triphenylphosphine to afford **5** and **6**. This proved **4** and **5** to have the same absolute configuration as that of **6**.

Leptosin **H** (**7**) had the same molecular formula as **5**. The ^{13}C NMR signals (C-1' to C-14') for the hydroxymethyl-bearing half of the molecule of **7** (Table 2) revealed similarities with those of the same half of **3** with a

Table 3. Cytotoxicity of **4**-**7** against tumour cells

Compound	Cell line P-388 (ED_{50} ng ml^{-1})
Leptosin G (4)	4.6
Leptosin G ₁ (5)	4.3
Leptosin G ₂ (6)	4.4
Leptosin H (7)	3.0
Mitomycin C (standard)	21.5

disulphide bridge [3]. The FABMS exhibited fragment peaks at m/z 740 [$\text{M}-2\text{S}$]⁺, arising from the loss of sulphur atoms from the polysulphide bridge in the hydroxymethyl-bearing dioxopiperazine ring, 440 [e]⁺, 556 [f]⁺, 428 [f-4S]⁺ and 410 [f-4S-H₂O]⁺, the last four indicating that the isopropyl-bearing ring has a tetrasulphide bridge. Treatment of **7** with NaBH_4 and MeI afforded bis(methylthio) and tetrakis(methylthio) derivatives **8** and **9**. Formation of **8** suggested that the reductive elimination of one sulphur atom from the tetrasulphide bridge in the isopropyl-bearing dioxopiperazine ring of **7** coincided with reductive cleavage of the disulphide bridge in the hydroxymethyl-bearing ring on NaBH_4 reduction. Based on the above evidence, the stereostructure for leptosin **H** is represented as **7**.

The cytotoxic activities of **4**-**7** were examined in the P388 lymphocytic leukaemia test system in cell culture according to the method reported previously [4]. All the compounds tested exhibited cytotoxic activity greater than that of mitomycin C, used as a standard sample (Table 3). The cytotoxicities were equivalent to those of the previously reported compounds **1**-**3** and suggested that a difference in the numbers of sulphur atoms of the polysulphide bridges had no influence on the cytotoxicities of such compounds against P388 cells.

EXPERIMENTAL

Isolation of metabolites. As reported previously [3], a strain of *Leptosphaeria* sp. isolated from the marine alga *Sargassum tortile* C. Agaroh (Sargassaceae) was cultured in a medium (20 l) containing 2% glucose, 1% peptone and 0.5% yeast extract in artificial seawater at 27°. The CH_2Cl_2 -MeOH (1:1)-soluble fr. (21.5 g) of the mycelium was successively subjected to CC on Sephadex LH-20 (CH_2Cl_2 -MeOH, 1:1) and silica gel (hexane- CH_2Cl_2 gradient). One fr. each of the hexane- CH_2Cl_2 (6:4) and (4:6), and CH_2Cl_2 eluates [fr. 4 (117 mg), fr. 7 (141 mg) and fr. 10 (45 mg)] was purified by HPLC (SIL) using CH_2Cl_2 , $\text{Me}_2\text{CO}-\text{CH}_2\text{Cl}_2$ and $\text{MeOH}-\text{CH}_2\text{Cl}_2$ (1:49) as eluents, respectively, to afford **6** (7.2 mg), **5** (5.4 mg) and **7** (6.2 mg), and **4** (7.6 mg).

Leptosin G (4**).** Pale yellow powder, mp 205-210°, $[\alpha]_D^{24} +481^\circ$ (CHCl_3 ; c 0.40). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 206 (4.91), 240 (4.42), 296 (3.91); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3423 (OH, NH), 1686, 1666 (CON), 1607, 1597 (Ar-C-C); FABMS m/z (rel. int): 837 [$\text{M}+\text{H}$]⁺ (1), 709 [$\text{MH}-4\text{S}$]⁺ (9), 691 [$\text{MH}-4\text{S}-\text{H}_2\text{O}$]⁺ (2), 525 [cH]⁺ (4), 429 [$\text{cH}-3\text{S}$]⁺ (4), 428

[a]⁺ (2), 411 [cH – 3S – H₂O]⁺ (3), 408 [b]⁺ (4), 312 [b – 3S]⁺ (14), 232 [bi-indolyl]⁺ (59), 197 [cH – 3S – 232]⁺ (33), 155 [cH – 3S – 232 – i-Pr + H]⁺ (63), 119 (100); HRFABMS *m/z* 837.0459 [M + H]⁺ (C₃₂H₃₃N₆O₇S, requires: 837.0456); CD $\lambda_{\text{ext}}^{\text{EtOH}}$ nm [c 2.77 $\times 10^{-5}$ M] ($\Delta\epsilon$): 233 (+ 32.9), 249 (+ 39.6), 316 (+ 4.8); ¹H and ¹³C NMR: Tables 1 and 2.

Leptosin G₁ (**5**). Powder, mp 210–212°, [α]_D²⁴ + 558° (CHCl₃; *c* 0.45). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 210 (4.72), 240 (4.14), 296 (3.79); IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3503 (OH, NH), 1691, 1665 (CON), 1606, 1594 (Ar. C-C); FABMS *m/z* (rel. int.): 805 [M + H]⁺ (4), 709 [MH – 3S]⁺ (2), 691 [MH – 3S – H₂O]⁺ (0.6), 613 [MH – 6S]⁺ (0.5), 524 [c]⁺ (1), 428 [c – 3S]⁺ (1), 410 [c – 3S – H₂O]⁺ (1), 408 [b]⁺ (2), 397 [d + H]⁺ (2), 312 [b – 3S]⁺ (5), 307 (100), 289 (21), 232 [bi-indolyl]⁺ (100), 197 [cH – 3S – 232]⁺ (11), 155 [cH – 3S – 232 – i-Pr + H]⁺ (63), 136 (100); HRFABMS *m/z* 805.0738 [M + H]⁺ (C₃₂H₃₃N₆O₇S₆ requires: 805.0735); CD $\lambda_{\text{ext}}^{\text{EtOH}}$ nm [c 5.53 $\times 10^{-5}$ M] ($\Delta\epsilon$): 230 (+ 41.1), 238 (+ 39.4), 251 (+ 43.5), 304 (+ 4.9), 318 (+ 5.3); ¹H and ¹³C NMR: Tables 1 and 2.

Leptosin G₂ (**6**). Pale yellow powder, mp 210–215°, [α]_D²⁴ + 303° (CHCl₃; *c* 0.58). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 206 (4.79), 240 (4.31), 296 (3.80); IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3398 (OH, NH), 1690, 1666 (CON), 1608, 1594 (Ar. C-C); FABMS *m/z* (rel. int.): 773 [M + H]⁺ (3), 709 [MH – 2S]⁺ (0.2), 613 [MH – 5S]⁺ (0.2), 524 [c]⁺ (0.2), 428 [c – 3S]⁺ (0.2), 410 [c – 3S – H₂O]⁺ (0.2), 408 [b]⁺ (0.1), 307 (28), 289 (14), 232 [bi-indolyl]⁺ (11), 197 [cH – 3S – 232]⁺ (3), 154 [cH – 3S – 232 – i-Pr]⁺ (100), 136 (61); HRFABMS *m/z*: 773.1012 [M + H]⁺ (C₃₂H₃₃N₆O₇S₅ requires: 773.1014). CD $\lambda_{\text{ext}}^{\text{EtOH}}$ nm (c 2.63 $\times 10^{-5}$ M) ($\Delta\epsilon$): 229 (+ 43.1), 256 (+ 15.0), 292 (+ 0.3), 320 (+ 3.9); ¹H NMR: Table 1.

Leptosin H (**7**). Pale yellow powder, mp 214–215°, [α]_D²⁴ + 298° (CHCl₃; *c* 0.47). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 207 (4.81), 240 (4.37), 302 (3.85); IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3397 (OH, NH), 1672 (CON), 1609, 1594 (Ar. C-C); FABMS *m/z* (rel. int.): 805 [M + H]⁺ (0.8), 740 [M – 2S]⁺ (0.4), 613 [MH – 6S]⁺ (0.2), 556 [f]⁺ (0.3), 440 [e]⁺ (0.1), 428 [f – 4S]⁺ (1), 410 [f – 4S – H₂O]⁺ (0.3), 307 (29), 289 (14), 232 (bi-indolyl)⁺ (16), 197 [fH – 4S – 232]⁺ (8), 154 [fH – 4S – 232 – i-Pr]⁺ (100), 136 (62); HRFABMS *m/z*: 805.0732 [M + H]⁺ (C₃₂H₃₃N₆O₇S₆ requires: 805.0735); CD $\lambda_{\text{ext}}^{\text{EtOH}}$ nm (c 2.24 $\times 10^{-5}$ M) ($\Delta\epsilon$): 232 (+ 40.6), 250 (+ 23.7), 257 (+ 24.4), 346 (− 1.7); ¹H and ¹³C NMR: Tables 1 and 2.

*Formation of the bis(methylthio) and tetrakis(methylthio) derivatives **8** and **9** from leptosins G₂ (**6**) and H (**7**).* Leptosin G₂ (**6**, 5 mg) was dissolved in a soln (0.13 ml) of pyridine and MeOH (5:8). MeI (0.5 ml) and NaBH₄ (2 mg) were added, and the mixt. was stirred for 20 min at room temp. The reaction mixt. was then diluted with H₂O and extracted with Et₂O. The solvent was evapd *in vacuo*, and the residue was chromatographed on a silica gel column with a CH₂Cl₂–MeOH gradient as the eluent. The MeOH–CH₂Cl₂ (1:99) eluate afforded **8** (1.3 mg) and **9** (1.0 mg). Compound **8** was obtained as a powder; IR $\lambda_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3490 (OH, NH), 1660, 1640 (CON), 1609, 1594 (Ar. C-C); FABMS *m/z* (rel. int.): 803 [MH]⁺ (7); ¹H NMR: Table 1. Compound **9** was obtained as a pale yellow oil. It was identical with the sample derived from **1** in all respects [3]. The same reaction with **7** (6.5 mg) gave **8** (3.5 mg) and **9** (1.3 mg).

*Formation of leptosins G₁ (**5**) and G₂ (**6**) from leptosin G (**4**).* Triphenylphosphine (2 mg) was added to a CHCl₃ soln (5 ml) of **4** (5.5 mg), and the reaction mixt. was left standing at room temp. for 1 hr. The solvent was evapd *in vacuo*, and the residue was purified by silica gel CC using MeOH–CH₂Cl₂ (1:99) as the eluent to afford **5** (1.0 mg) and **6** (1.2 mg), which were identified by IR, ¹H NMR, CD and TLC.

Acknowledgements—We are grateful to Dr K. Nomoto, Suntory Institute for Bioorganic Research, for HRFABMS measurements and to Dr Y. Usami and Mr K. Minoura, of this university, for NMR measurements.

REFERENCES

1. Numata, A., Takahashi, C., Matsushita, T., Miyamoto, T., Kawai, K., Usami, Y., Matsumura, E., Inoue, M., Ohishi, H. and Shingu, T. (1992) *Tetrahedron Letters* **33**, 1621.
2. Numata, A., Takahashi, C., Ito, Y., Takada, T., Kawai, K., Usami, Y., Matsumura, E., Imachi, M., Ito, T. and Hasegawa, T. (1993) *Tetrahedron Letters* **34**, 2355.
3. Takahashi, C., Numata, A., Ito, Y., Matsumura, E., Araki, H., Iwaki, H. and Kushida, K. (1994) *J. Chem. Soc. Perkin Trans. I* 1859.
4. Numata, A., Yang, P., Takahashi, C., Fujiki, R., Naba, M. and Fujita, E. (1989) *Chem. Pharm. Bull.* **37**, 648.