

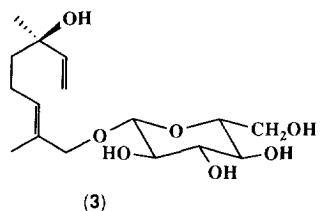
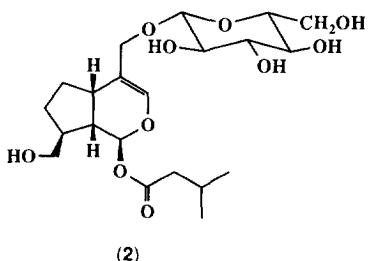
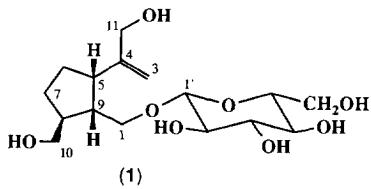
LANTANOSIDE, A MONOCYCLIC C₁₀ IRIDOID GLUCOSIDE FROM VIBURNUM LANTANA*

İHSAN CALIŞ,† AYŞEN YÜRÜKER, HEINZ RÜEGGER,‡ ANTHONY D. WRIGHT§ and OTTO STICHER§

Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-06100 Ankara, Turkey; ‡Swiss Federal Institute of Technology (ETH) Zurich, Laboratory of Inorganic Chemistry, CH-8092 Zürich, Switzerland; §Department of Pharmacy, Swiss Federal Institute of Technology (ETH) Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland

(Received in revised form 1 July 1994)

Key Word Index—*Viburnum lantana*; Caprifoliaceae; iridoid glucosides; lantanoside; dihydropenstemide; monoterpenoid glucoside; betulalbuside A.




Abstract—A new monocyclic C₁₀ iridoid glucoside was isolated from the leaves of *Viburnum lantana*, together with the two known glucosides, dihydropenstemide and betulalbuside A. The structure of the new compound, lantanoside, was established from extensive ¹H and ¹³C NMR, 1D and 2D homo- and heteronuclear correlation experiments.

INTRODUCTION

The genus *Viburnum* L. is represented by three species in the flora of Turkey; *V. opulus* L., *V. orientale* Pallas, and *V. lantana* L. [1]. In the course of an investigation into the chemical constituents of *Viburnum* species, we reported a series of acyclic monoterpenoid glycosides, anatoliosides [2, 3], and a valeriana type iridoid glucoside, viborientoside, from *V. orientale* [4]. As a result of continuing research into the genus *Viburnum*, we now report on the isolation and structure elucidation of a novel C₁₀ iridoid glucoside, lantanoside (1), as well as dihydropenstemide (2) [5-7], and the acyclic monoterpenoid glucoside, betulalbuside A (3) [3, 8] from *V. lantana*. In the previous studies, 2'-O-acetylpatrinoside, 2'-O-acetyl dihydropenstemide [9] and decapetaloside [10] have also been reported from the same plant.

RESULTS AND DISCUSSION

Compound 1 was obtained as an amorphous powder. Its molecular formula, C₁₆H₂₈O₈, was established by FAB-MS ([M + Na]⁺, *m/z* 371). The ¹H and ¹³C NMR spectral data for 1 were assigned from the results of 2D ¹H, ¹H homo- and 2D ¹H-¹³C heteronuclear COSY experiments. The ¹H and ¹³C NMR spectra of 1 showed resonances for two methylene (δ 1.80/1.72 and 1.94/1.30: H₂-6 and H₂-7; δ 29.7 and 28.7: C-6 and C-7) and three oxymethylene groups (δ 3.69/3.37, 3.54 and 4.16/4.03: H₂-1, H₂-10 and H₂-11; δ 71.9, 67.2 and 66.2: C-1, C-10 and

C-11), together with the resonances for an exocyclic double bond (δ 5.17 and 4.93: H₂-3; 108.1 and 150.4: C-3 and C-4). Additionally, three methine protons were observed (δ 2.54, 2.03 and 2.24: H-5, H-8 and H-9). The remaining protons and corresponding carbon signals were consistent for the presence of a glucose unit. The β -glycosidic linkage was derived from the *J*_{1',2'} (7.8 Hz).

When the sugar unit was subtracted from the molecular formula of 1, the aglycone was found to have the

*Presented at the poster session of the 41st Annual Congress on Medicinal Plant Research, Düsseldorf (Germany), 31 August-4 September 1993; *Planta Med.* (1993) **59**, Suppl. Issue, A601-A602.

†Author to whom correspondence should be addressed.

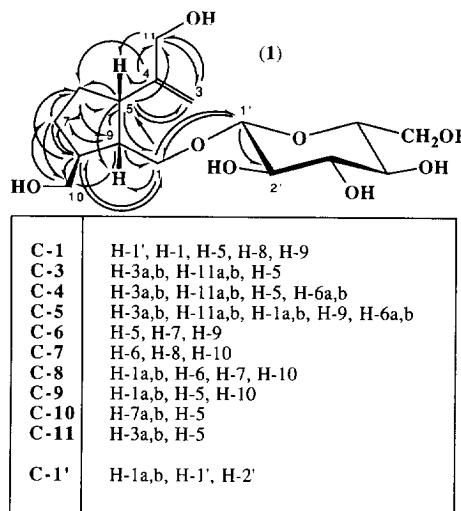


Fig. 1. Schematic representation of heteronuclear multiple bond correlations for lantanoside (1). Arrows point from carbon to proton resonances, whose shift values are given in the Experimental

formula $C_{10}H_{18}O_3$, indicating it to be a monocyclic C_{10} moiety. All connectivities, especially the inerglycosidic linkage between the glucose unit and the aglycone moiety were established from the results of a 2D $^1H-^{13}C$ heteronuclear long range COSY experiment (HMBC), which showed correlations between C-1 (δ 71.9) of the aglycone and H-1' (δ 4.18) of the glucose and C-1' (δ 104.2) of the glucose and H-1a and H-1b (δ 3.69 and 3.37) of the aglycone. 2D NOESY of **1** clearly showed H-5, H-9 and H-10 to be β . The other correlations are shown in Fig. 1 and confirmed the proposed structure for **1**.

Compound **1**, which has a similar structure to those of eucommioside [11], ajureptoside [12], gelsemiol 1- and 3-glucosides [13], in which the pyran rings are opened, is only the third example of a monocyclic cyclopentanoid-triol C_{10} iridoid glucoside. Menzetriol [14], a non-glucosidic iridoid, has a similar structure to the aglycone moiety of lantanoside (**1**).

Based on their spectral data, **2** and **3** were identified as dihydropenstemide [5–7] and betulalbuside A [3, 8], respectively.

EXPERIMENTAL

General experimental procedures were as reported in ref. [2].

Plant material. *Viburnum lantana* L. was collected in May 1992 from Beynam Forest, Ankara, Central Anatolia, Turkey. A voucher specimen has been deposited in the Herbarium of Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy (HUEF 92-001).

Extraction and isolation of 1–3. The air-dried leaves (300 g) were extracted twice with MeOH. The methanolic extract was evapd to dryness and H_2O (0.5 l) was added. This soln was successively extracted with petrol, Et_2O , $EtOAc$ and 1-BuOH (petrol extract, *ca* 25 g; Et_2O ex-

tract, 5.6 g; $EtOAc$ extract, 7.0 g; $BuOH$ extract, 23 g). A portion of the butanolic extract (10 g) was chromatographed over silica gel (200 g) with $CHCl_3$ –MeOH– H_2O (9:1:0.1 → 3:2:0.2) and the frs obtained were combined into 10 main frs, A–J (A, 164 mg; B, 1600 mg; C, 1500 mg; D, 880 mg; E, 190 mg; F, 480 mg; G, 363 mg; H, 515 mg; I, 377 mg; J, 705 mg). Fr. D was subjected to MPLC (Sephradry 40 μ m, MeOH– H_2O gradient, 35–40% MeOH) to give **3** (20 mg) and **2** (480 mg). Fr. F was also applied to MPLC (Sephradry 40 μ m, MeOH– H_2O gradient, 25–30% MeOH) to yield crude **1** (70 mg) which was finally purified over silica gel (20 g) using $CHCl_3$ –MeOH– H_2O (4:1:0.05).

Lantanoside (1). $[\alpha]_D^{20} = -28^\circ$ (MeOH; *c* 0.41). FAB-MS *m/z* (rel. int.): 371 (100) $[M + Na]^+$, 387 (9) $[M + K]^+$ (calcd for $C_{16}H_{28}O_8$: *M*, 348); UV λ_{max}^{MeOH} nm: 205; IR ν_{max}^{KBr} cm^{-1} : 3392, 2929, 1608, 1163, 1083 and 1044; 1H NMR (500 MHz, MeOH): aglycone moiety: δ 3.69 and 3.37 (each *m*, H-1a and H-1b), 5.17 and 4.93 (each *d*, $J_{AB} = 1.0$ Hz, H-3a and H-3b), 2.54 (*m*, H-5), 1.80 and 1.72 (each *m*, H-6a and H-6b), 1.94 and 1.30 (each *m*, H-7a and H-7b), 2.03 (*m*, H-8), 2.24 (*m*, H-9), 3.54 (*m*, H-10), 4.16 and 4.03 (each *br d*, $J_{AB} = 14.6$ Hz, H-11a and H-11b), glucose moiety: δ 4.18 (*d*, $J = 7.8$ Hz, H-1'), 3.18 (*dd*, *d*, $J = 7.8$ and 9.1 Hz, H-2'), 3.38 (*dd* 't', $J = 9.0$ Hz, H-3'), 3.30 (*dd* 't', $J = 9.0$ Hz, H-4'), 3.27 (*m*, H-5'), 3.70 (*dd*, $J = 12.0$ and 4.8 Hz, H-6'a), 3.89 (*dd*, $J = 12.0$ and 2.2 Hz, H-6'b); ^{13}C NMR (125 MHz, MeOH): aglycone moiety: δ 71.9 *t* (C-1), 108.1 *t* (C-3), 150.4 *s* (C-4), 45.2 *d* (C-5), 29.7 *t* (C-6), 28.7 *t* (C-7), 46.4 *d* (C-8), 43.9 *d* (C-9), 67.2 *t* (C-10), 66.2 *t* (C-11); glucose moiety: 104.2 *d* (C-1'), 75.2 *d* (C-2'), 78.0 *d* (C-3'), 71.6 *d* (C-4'), 77.9 *d* (C-5'), 62.7 *t* (C-6').

Dihydropenstemide (2). $[\alpha]_D^{20} = -83^\circ$ (MeOH; *c* 0.87). UV λ_{max}^{MeOH} nm: 211; IR ν_{max}^{KBr} cm^{-1} : 3401, 2959, 2930, 1750, 1668, 1148, 1078 and 1017; 1H NMR (300 MHz, MeOH): aglycone moiety: δ 6.01 (*d*, $J = 4.7$ Hz, H-1), 6.43 (*br s*, H-3), 2.87 (*d* 't', $J = 6.0$ Hz, H-5), 1.75 and 1.98 (each *m*, H-6a and H-6b), 1.44 and 1.75 (each *m*, H-7a and H-7b), 2.03 (*m*, H-8), 2.05 (*m*, H-9), 3.57 (*d*, $J = 6.0$ Hz, H-10), 4.30 and 4.13 (each *d*, $J_{AB} = 11.6$ Hz, H-11a and H-11b), glucose moiety: δ 4.33 (*d*, $J = 7.8$ Hz, H-1'), 3.23 (*dd*, *d*, $J = 7.8$ and 9.1 Hz, H-2'), 3.40 (*dd* 't', $J = 9.0$ Hz, H-3'), 3.32 (*dd*, 't', $J = 9.0$ Hz, H-4'), 3.31 (*m*, H-5'), 3.68 (*dd*, $J = 12.0$ and 4.8 Hz, H-6'a), 3.92 (*dd*, $J = 12.0$ and 2.2 Hz, H-6'b), acyl moiety: δ 2.28 (*d*, $J = 6.6$ Hz, $-CH_2$), 2.3 (*m*, $-CH$), 1.01 (*6H*, *d*, $J = 6.6$ Hz, $Me \times 2$); ^{13}C NMR (75 MHz, MeOH): aglycone moiety: δ 93.1 *d* (C-1), 140.7 *d* (C-3), 115.1 *s* (C-4), 36.9 *d* (C-5), 30.9 *t* (C-6), 28.1 *t* (C-7), 43.8 *d* (C-8), 44.9 *d* (C-9), 66.5 *t* (C-10), 69.6 *t* (C-11); glucose moiety: 103.1 *d* (C-1'), 75.1 *d* (C-2'), 78.1 *d* (C-3'), 71.7 *d* (C-4'), 77.9 *d* (C-5'), 62.8 *t* (C-6'), acyl moiety: δ 44.2 *t* (CH_2), 26.8 *d* (CH), 22.6 *q* ($Me \times 2$), 173.5 *s* (C=O).

Betulalbuside A (3). 1H NMR (75 MHz, MeOH): aglycone moiety: δ 4.07 and 4.24 (each *d*, $J_{AB} = 11.6$ Hz, H-1a and H-1b), 5.52 (*dd* 'br t', $J = 7.2$ Hz, H-3), 2.12 (2*H*, *m*, H_2-4), 1.60 (2*H*, *m*, H_2-5), 5.95 (*dd*, $J = 17.4$ and 10.8 Hz, H-7), 5.23 (*dd*, $J = 17.4$ and 1.5 Hz, H-8a), 5.07 (*dd*, $J = 10.8$ and 1.5 Hz, H-8b), 1.72 (3*H*, *s*, $Me-9$), 1.30 (3*H*, *s*, $Me-10$), glucose moiety: δ 4.28 (*d*, $J = 7.8$ Hz, H-1'), 3.23 (*dd*, $J = 7.8$ and 9.1 Hz, H-2'), 3.38 (*dd*, 't', $J = 9.0$ Hz, H-3'), 3.35

(*dd*, *t*, *J* = 9.0 Hz, H-4'), *ca* 3.33 (*m*, H-5'), 3.70 (*dd*, *J* = 12.0 and 5.5 Hz, H-6'a), 3.90 (*dd*, *J* = 12.0 and 2.2 Hz, H-6'b); ^{13}C NMR (75 MHz, MeOH): aglycone moiety: δ 76.0 *t* (C-1), 132.9 *s* (C-2), 130.2 *d* (C-3), 23.5 *t* (C-4), 43.0 *t* (C-5), 73.8 *s* (C-6), 146.3 *d* (C-7), 112.2 *t* (C-8), 14.1 *q* (C-9), 23.5 *q* (C-10); glucose moiety: 102.7 *d* (C-1'), 75.1 *d* (C-2'), 78.2 *d* (C-3'), 71.8 *d* (C-4'), 77.9 *d* (C-5'), 62.8 *t* (C-6').

REFERENCES

1. Davis, P. H. (1978) *Flora of Turkey and The East Aegean Islands*, Vol. 4. University Press, Edinburgh.
2. Çalış, İ., Yürüker, A., Rüegger, H., Wright, A. D. and Sticher, O. (1993) *Helv. Chim. Acta* **76**, 416.
3. Çalış, İ., Yürüker, A., Rüegger, H., Wright, A. D. and Sticher, O. (1993) *Helv. Chim. Acta* **76**, 2563.
4. Çalış, İ., Yürüker, A. and Sticher, O. (1992) *Proceedings of the 9th Symposium on Plant Drugs, Eskişehir-Turkey*, 16–19 May 1991 (Başer, H. C., ed.), pp. 428–436. Anadolu University Press.
5. Jensen, S. R., Nielsen, B. J., Mikkelsen, C. B., Hoffman, J. J., Jolad, S. D. and Cole, J. R. (1979) *Tetrahedron Letters* 3261.
6. Gering, B., Junior, P. and Wichtl, M. (1986) *Planta Med.* **52**, 356.
7. Gering, B., Junior, P. and Wichtl, M. (1987) *Phytochemistry* **26**, 3011.
8. Tschesche, R., Ciper, F. and Breitmaier, E. (1977) *Chem. Ber.* **110**, 3111.
9. Handjieva, N., Baranovska, I., Mikhova, B. and Popov, S. (1988) *Phytochemistry* **27**, 3175.
10. Handjieva, N., Saadi, H., Popov, S. and Baranovska, I. (1991) *Phytochemical Analysis* **2**, 130.
11. Bianco, A., Bonini, C. C., Iavarone, C. and Trogolo, C. (1982) *Phytochemistry* **21**, 201.
12. Shoji, N., Umeyana, A., Sunahara, N. and Arihara, S. (1992) *J. Nat. Prod.* **55**, 1004.
13. Jensen, S. R., Kirk, O., Nielsen, B. J. and Norrestam, R. (1987) *Phytochemistry* **26**, 1725.
14. Jensen, S. R., Mikkelsen, C. B. and Nielsen, B. J. (1981) *Phytochemistry* **20**, 71.