

CLERODANE DITERPENOID FROM *SALVIA UROLEPIS*

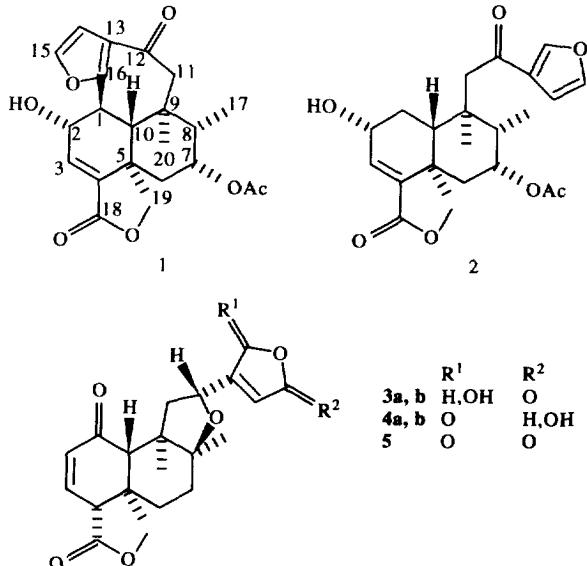
ANA ADELA SANCHEZ, BALDOMERO ESQUIVEL, T. P. RAMAMOORTHY and LYDIA RODRIGUEZ-HAHN

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D.F.

(Received in revised form 21 June 1994)

Key Word Index—*Salvia urolepis*; Labiate; clerodane derivatives; diterpenoids.

Abstract—From the aerial parts of *Salvia urolepis*, three new neoclerodane diterpenoids were isolated. Their structures were determined by spectroscopic means. The known languidulane diterpenoid 2 α -hydroxy-7-*epi*-8 β ,17-dihydro-languiduline was also obtained.


INTRODUCTION

In a continuation of our systematic studies of Mexican *Salvia* species we have analysed the diterpenoid content of *Salvia urolepis*, Fern. This species has been classified [1] in section *Angulatae*, subsection *Glumacea* (*Salvia*, subgenus *Calosphace*), which also includes *S. languidula* [2]. A phytochemical study of *S. languidula* led to the isolation of several diterpenoids with rearranged clerodane skeletons named languidulane [2] and salvilanguidulane [3]. Diterpenoids with rearranged skeletons of clerodanic origin were also isolated from *S. tiliacefolia* [4] and *S. rhyacophila* [5], two *Salvia* species included [1] in the section *Angulatae*, subsection *Tiliacefolia*. In this paper, we describe the isolation and structure determination of the diterpenoids found in *S. urolepis*.

RESULTS AND DISCUSSION

The aerial parts of *S. urolepis* afforded a mixture of oleanolic and ursolic acids, eupatorine [6] (6,7,4'-trimethoxy-5,5'-dihydroxy flavone); 5,6,3'-trihydroxy-7,4'-dimethoxy flavone [7], the languidulane diterpene 2 α -hydroxy-7-*epi*-8 β ,17-dihydrolanguiduline (**1**) previously isolated [8] from *S. soussae* (*Salvia*, sect. *Polystachiae*) and named salvisousolide, and three new neoclerodane diterpenoids whose structures (**2**–**4**) were determined by spectroscopic means.

The languidulane **1** was the most abundant diterpenoid. It was obtained as an amorphous powder and identified by comparison of its IR and ^1H NMR spectra with those of the previously obtained diterpenoid [8]. The use of high-field 2D NMR experiments allowed the unambiguous assignment of all the proton resonances (Table 1). The COSY experiments showed a *W* coupling between H-10 and the Me-20 protons which is only possible in a *trans* A/B ring fusion of the decalin with the Me-20 α -axial. The ^{13}C NMR spectrum of **1**, not previously described, was consistent with the languidulane

structure shown. The carbon resonances (Table 2) of the protonated carbon **5** were assigned by DEPT and HETCOR experiments. The three sp^3 doublets of carbons not bound to oxygen, were unambiguously assigned to C-1, C-8 and C-10. The quaternary and carbonyl carbon signals were established by comparison with the spectra of similar structures [2, 9].

The neoclerodane diterpene **2** was obtained as an unstable oil which showed in its IR spectrum bands due to a hydroxy group (3603 cm^{-1}), an α,β -unsaturated γ -lactone (1772 cm^{-1}), an ester function (1738 cm^{-1}), an α,β -unsaturated ketone (1673 cm^{-1}) and a furan ring (1607 , 1560 and 872 cm^{-1}). The mass spectrum was consistent with the molecular formula $C_{22}H_{26}O_7$ (see experimental). A strong peak at m/z 95 (93%) suggested that the α,β -unsaturated ketone group was at C-12 [10]. The

Table 1. ^1H NMR spectral data for **1–4** (200 MHz, CDCl_3 , TMS)

H	1*	2	3a	3b	4a	4b
1	3.11 <i>t</i> (9.3)	—	—	—	—	—
2	4.72 <i>dd</i> (9.3, 1.5)	4.52 <i>br dd</i> (8, 4)	6.21 <i>dd</i> (9.9, 2.7)	6.22 <i>dd</i> (10, 2.4)	6.21 <i>dd</i> (10.2, 3.0)	6.21 <i>dd</i> (10.2, 3)
3	6.68 <i>d</i> (1.5)	6.6 <i>br s</i> $W_{1/2} = 4$	6.60 <i>dd</i> (9.9, 3.3)	6.59 <i>dd</i> (10, 3.3)	6.57 <i>dd</i> (10.2, 3.3)	6.57 <i>dd</i> (10.2, 3.3)
4	—	—	3.25 <i>dd</i> (3.3, 2.7)	3.23 <i>dd</i> (3.3, 2.4)	3.23 <i>dd</i> (3.3, 3.0)	3.26 <i>dd</i> (3.3, 3.0)
6 α	2.38 <i>dd</i> (15, 2.2)	—	—	—	—	—
6 β	1.55 <i>ddd</i> (15, 4.0, 2.0)	—	—	—	—	—
7	5.3 <i>dt</i> (4, 2.2)	5.26 <i>dt</i> (4, 2)	—	—	—	—
8	1.68 <i>dq</i> (7, 4.0)	—	—	—	—	—
10	2.28 <i>d</i> (9.3)	—	2.85 <i>s</i>	2.83 <i>s</i>	2.83 <i>s</i>	2.84 <i>s</i>
11A	3.04 <i>d</i> (15.1)	2.98 <i>d</i> (16)	2.92 <i>br t</i> (8.1)	2.97 <i>br t</i> (8.1)	3.01 <i>m</i>	3.0 <i>m</i>
11B	2.54 <i>d</i> (15.1)	2.72 <i>d</i> (16)	—	—	—	—
12	—	—	4.89 <i>ddd</i> (9.6, 8.1, 1.8)	4.80 <i>ddd</i> (9.6, 8.1, 1.8)	4.76 <i>br t</i> (7.8)	4.77 <i>br t</i> (7.8)
14	6.79 <i>d</i> (2)	6.75 <i>d</i> (1.6)	6.04 (1)	5.99 <i>d</i> (1)	7.05 <i>br s</i>	7.05 <i>br s</i>
15	7.47 <i>d</i> (2)	7.47 <i>t</i> (1.6)	—	—	6.13 <i>br s</i>	6.13 <i>br s</i>
16	8.1 <i>br s</i>	5.97 <i>s</i>	6.13 <i>s</i>	—	—	—
H ₃ -17	1.04 <i>d</i> (7)	0.94 <i>d</i> (7.2)	1.12 <i>s</i>	1.12 <i>s</i>	1.15 <i>s</i>	1.12 <i>s</i>
19 <i>pro-R</i>	4.96 <i>d</i> (8.3)	4.82 <i>d</i> (8)	4.37 <i>d</i> (9)	4.37 <i>d</i> (9)	4.37 <i>d</i> (9)	4.38 <i>d</i> (9)
19 <i>pro-S</i>	4.11 <i>dd</i> (8.3, 2.0)	4.0 <i>dd</i> (8, 2)	4.06 <i>d</i> (9)	4.06 <i>d</i> (9)	4.06 <i>d</i> (9)	4.07 <i>d</i> (9)
H ₃ -20	0.90 <i>s</i>	0.91 <i>s</i>	1.08 <i>s</i>	1.07 <i>s</i>	1.06 <i>s</i>	1.05 <i>s</i>
MeCO ₂	2.13 <i>s</i>	2.1 <i>s</i>	—	—	—	—

* Run at 300 MHz.

J in Hertz in parentheses.

^1H NMR spectrum (Table 1) showed the typical resonances of a β -substituted furan ring conjugated to the ketone group (δ 8.1, *br s*, H-16). The signal at δ 193.65 in the ^{13}C NMR spectrum of **2** (Table 2) was attributed to this carbon. An AB system at δ 2.98 and 2.72 (two doublets, $J = 16$ Hz) was ascribed to the C-11 methylene. The rest of the ^1H NMR spectrum of **2** was very similar to that of **1** (Table 1). These data suggested the same substitution pattern in the decalin ring system of both diterpenoids, with the exception of the H-2 resonance observed as a doublet ($J = 8$ and 4 Hz) at δ 4.52 in **2**. The multiplicity and coupling constants of this signal confirmed that **2** had no substituent at C-1. The carbon resonances and multiplicities (Table 2) were established by comparison with those found for the spectra of similar structures [9] and DEPT experiments. A triplet at δ 30.25 assigned to C-1 confirmed the absence of a substituent at this carbon. The

neoclerodane **2** can be considered as a biogenetic precursor of the languidulane **1** [11].

The hydroxy lactone **3** was obtained as an oily C-16 epimeric mixture (**3a** and **b**) whose mass spectrum was in accordance with the molecular formula $\text{C}_{20}\text{H}_{22}\text{O}_7$, although the parent peak was not observed. The IR spectrum contained bands due to a hydroxy group (3582 and 3360 cm^{-1}), a γ -lactone (1774 cm^{-1}), an α, β -unsaturated ketone (1681 cm^{-1}), an ether function (1026 cm^{-1}) and double bonds (1632 and 830 cm^{-1}). The ^1H NMR spectrum showed duplicate signals for most protons (Table 1) which suggested that the sample was a mixture of C-16 epimers. The vinylic protons, H-14, of the hydroxy lactone moiety, were observed as doublets ($J = 1$ Hz) at δ 5.99 and 6.04. Two singlets δ 6.13 and 5.97 were ascribed to the protons geminal to the hydroxyls of this function. For simplicity, we will analyse the ^1H NMR of the

Table 2. ^{13}C NMR spectral data for compounds **1** and **2** (50 MHz, CDCl_3 , TMS)

C	1	2
1	45.1 <i>d</i>	30.3 <i>t</i>
2	75.1 <i>d</i>	69.5 <i>d</i>
3	139.5 <i>d</i>	140.1 <i>d</i>
4	143.3 <i>s</i>	137.3 <i>s</i>
5	46.3 <i>s</i>	44.5 <i>s</i>
6	36.9 <i>t</i>	37.5 <i>t</i>
7	71.6 <i>d</i>	73.2 <i>d</i>
8	44.6 <i>d</i>	39.6 <i>d</i>
9	37.3 <i>s</i>	39.9 <i>s</i>
10	51.8 <i>d</i>	42.3 <i>d</i>
11	56.5 <i>t</i>	45.9 <i>t</i>
12	192.4 <i>s</i>	193.7 <i>s</i>
13	124.5 <i>s</i>	128.9 <i>s</i>
14	109.3 <i>d</i>	108.5 <i>d</i>
15	143.3 <i>d</i>	144.6 <i>d</i>
16	157.4 <i>s</i>	147.0 <i>d</i>
17	12.1 <i>q</i>	11.9 <i>q</i>
18	167.4 <i>s</i>	168.7 <i>s</i>
19	70.7 <i>t</i>	72.1 <i>t</i>
20	13.9 <i>q</i>	19.2 <i>q</i>
21	169.8 <i>s</i>	169.8 <i>s</i>
22	21.1 <i>q</i>	21.2 <i>q</i>

The presence of the languidulane diterpenoid **1** in *S. urolepis* has chemotaxonomic interest. It supports the botanical classification [1] of this species in sect. *Angulatae*, subsect. *Glumacea* in which *S. languidula* [2] is also included. It is interesting to note that *S. soussae*, from which salvisousolide (**1**) was first isolated, has been included in sect. *Polystachyae*, a section botanically related to sect. *Angulatae*, subsect. *Glumacea*.

EXPERIMENTAL

Mps.: uncorr; MS: 70 eV, direct inlet; ^1H NMR: 200 and 300 MHz, CDCl_3 , TMS as int. standard; ^{13}C NMR: 50 MHz. Plant material was collected in Zimapán, State of Hidalgo (México) and a voucher specimen (TPR4852) is deposited in the Herbarium of Instituto de Biología UNAM.

Isolation of the constituents. Dried aerial parts of *Salvia urolepis* (3 kg) were extracted twice (2×20 l) with Me_2CO at room temp. for five days. The solvent was removed under red. pres. to yield 116.1 g of a gummy residue. This extract (78 g) was subjected to dry CC over silica gel (1 kg, 35–70 mesh, deactivated with 10% H_2O). Mixtures of petrol–EtOAc and EtOAc–MeOH of increasing polarity were used as eluents.

Elution with petrol–EtOAc (4:1) afforded β -sitosterol and a mixture of oleanolic and ursolic acids, which were identified by comparison with authentic samples. Elution with petrol–EtOAc (7:3) gave the flavone eupatorine (40 mg). The 5,6,3'-trihydroxy-7,4'-dimethoxy flavone (20 mg) was obtained from the fractions eluted with petrol–EtOAc (1:1). Both flavonoids were identified by comparison with literature data.

The fractions eluted with petrol–EtOAc (1:4) were subjected to extensive chromatographic purifications to afford 100 mg of **1**, 40 mg of **2**, 50 mg of the epimeric mixture **3a** and **b** and 15 mg of the mixture of hydroxy lactones **4a** and **b**.

Salvisousolide (**1**). Amorphous powder, mp 116–117°; $[\alpha]_D -136.5$ (CHCl_3 ; *c* 0.2); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 202 (4.5), 265 (3.4); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3580, 1770, 1740, 1660, 1590, 920, 870; ^1H NMR: Table 1; ^{13}C NMR: Table 2; MS *m/z* (rel. int.): 401 (5), 400 (10), 179 (20), 163 (5), 162 (40), 161 (100), 159 (10), 115 (20), 95 (10), 91 (10), 79 (5), 43 (60). $\text{C}_{22}\text{H}_{24}\text{O}_7$, requires $[\text{M}]^+$ at *m/z* 400.

2 α -Hydroxy-7 α -acetoxy-12-oxo-15 : 16-epoxy-neoclerodan-3,13(16),14-trien-18:19-olide (**2**). Oily compound; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3603, 1772, 1738, 1673, 1607, 1560, 872; ^1H NMR: Table 1, ^{13}C NMR: Table 2; MS *m/z* (rel. int.): 384 (0.2), 342 (0.2), 233 (10), 215 (10), 171 (15), 159 (15), 149 (20), 145 (20), 110 (22), 95 (92.7), 43 (100). $\text{C}_{22}\text{H}_{26}\text{O}_7$, requires $[\text{M}]^+$ at *m/z* 402, not observed.

Mixture of hydroxylactones 3a and b. Oily mixture; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3582, 3360, 1774, 1681, 1632, 1026, 830; ^1H NMR: Table 1; MS *m/z* (rel. int.): 359 (4.9), 341 (1.8), 231 (2.5), 115 (20), 91 (50), 76 (20), 55 (40). $\text{C}_{20}\text{H}_{22}\text{O}_7$, requires $[\text{M}]^+$ at *m/z* 374, not observed.

Mixture of hydroxylactones 4a and b. Oily mixture; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3400, 1771, 1678, 1630, 1020, 832, 753; ^1H NMR: Table 1; FABMS *m/z* (rel. int.): 375.2 (10),

hydroxy lactone **3b** in which two double doublets at δ 6.22 (*J* = 10 and 2.4 Hz) and 6.59 (*J* = 10 and 3.3 Hz) were assigned to the vinyl protons H-2 and H-3, respectively. They were shown to be coupled to H-4 which appeared at δ 3.23 (*dd*, *J* = 3.3 and 2.4 Hz). The chemical shifts and multiplicities of H-2 and H-3 suggested that the ketone group must be located at C-1. An AB system observed at δ 4.37 and 4.06 (*d*, *J* = 9 Hz) was attributed to the C-19 methylene. A complex signal at δ 4.80 was ascribed to H-12, geminal to an ethereal oxygen. Two methyl singlets at δ 1.07 and 1.12 were assigned to Me-20 and Me-17, respectively. Therefore, the ethereal function observed in the IR (1026 cm^{-1}) must be bound to C-8 and C-12 as found in kerlin (from *S. keerlii*) [12] and a related neoclerodane diterpenoid isolated from *S. rhyacophila* [5]. A singlet at δ 2.83 was assigned to H-10. COSY experiments proved that it was *W* coupled to the Me-20 protons, thus showing a *trans* steroidol decalin ring system in **3** [9].

The mass spectrum of the C-15 epimeric mixture of the hydroxy lactones **4a**, **b** was determined by FAB-mass spectrometry and indicated the molecular formula $\text{C}_{20}\text{H}_{22}\text{O}_7$. It showed the same main bands in the IR spectrum as **3a**, **b**. The ^1H NMR was very similar to that of **3a**, **b** from which it differed in the chemical shifts and multiplicities of the hydroxy lactone protons H-14 (δ 7.05, *br s*) and H-15 (δ 6.13, *br s*) as expected for an α substituted hydroxylated butenolide. The H-12 resonance was observed as a broad triplet (*J* = 7.8 Hz) at δ 4.76.

Attempted oxidation of the hydroxy lactones **3a**, **b** and **4a**, **b** to the anhydride **5**, were unsuccessful.

277.2 (8), 231.2 (6), 185.2 (85), 93.1 (100), 75.1 (25), 57.0 (18). $C_{20}H_{22}O_7$ requires $[M]^+$ at m/z 374.

Acknowledgements—The authors are indebted to Ms Sci. A. Gutiérrez, I. Chávez, A., Zapién, R. Gaviño, R. Patiño, L. Velasco and F. Pérez for technical assistance. This work was supported in part by DGAPA-UNAM (Grant PAPIID IN 205192).

REFERENCES

1. Epling, C. (1939) *Rep. Spec. Nov. Regni Veg. Beih.* **110**, 1.
2. Cardenas, J., Esquivel, B., Toscano, R. A. and Rodriguez-Hahn, L. (1988) *Heterocycles* **27**, 1809.
3. Cardenas, J., Pavon, T., Esquivel, B., Toscano, A. and Rodriguez-Hahn, L. (1992) *Tetrahedron Letters* **33**, 581.
4. Rodriguez-Hahn, L., O'Reilly, R., Esquivel, B., Maldonado, E., Ortega A., Cárdenas, J. and Toscano, R. A. (1990) *J. Org. Chem.* **55**, 3522.
5. Fernandez, M. C., Esquivel, B., Cárdenas, J., Sánchez, A. A., Toscano, R. A. and Rodriguez-Hahn, L. (1991) *Tetrahedron* **47**, 7199.
6. Dobberstein, R. H., Tia-Wa, M. and Crane, F. A. (1977) *J. Pharm. Sci.* **66**, 600.
7. Ferraro, G. E., Martino, V. S. and Coussio, J. D. (1977) *Phytochemistry* **16**, 1618.
8. Esquivel, B., Ochoa, J., Cardenas, J., Ramamoorthy, T. P. and Rodriguez-Hahn, L. (1988) *Phytochemistry* **27**, 483.
9. Cárdenas, J., Esquivel, B., Rodriguez-Hahn, L., Jankowski, K. and van Calsteren, M. R. (1994) *Magn. Reson. Chem.* **32**, 321.
10. Esquivel, B., Esquivel, O., Cardenas, J., Sanchez, A. A., Ramamoorthy, T. P., Toscano, R. A. and Rodriguez-Hahn, L. (1991) *Phytochemistry* **30**, 2335.
11. Rodriguez-Hahn, L., Esquivel, B. and Cárdenas, J. (1992) *Trends Org. Chem.* **3**, 99.
12. Esquivel, B., Méndez, A., Ortega, A., Soriano-García, M., Toscano, A. and Rodriguez-Hahn, L. (1985) *Phytochemistry* **24**, 1769.