

QUINOVIC ACID GLYCOSIDES FROM *NAUCLEA DIDERRICHII*

M. LAMIDI, E. OLLIVIER, R. FAURE,* L. DEBRAUWER,† L. NZE-EKEKANG and G. BALANSARD‡

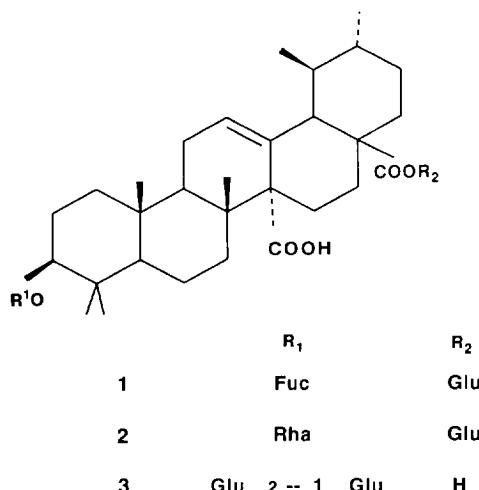
Laboratoire de Pharmacognosie, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France; *URA 1411, Université d'Aix-Marseille III, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 3, France; †INRA Centre de Recherche de Toulouse, Laboratoire des Xénobiotiques, 180 Chemin du Tournefeuille, BP 3, 31931 Toulouse, France; ‡Iphametra (Cenarest) BP 842, Libreville, Gabon

(Received 20 April 1994)

Key Word Index—*Nauclea diderrichii*; Rubiaceae; triterpenoid saponins; quinovic acid.

Abstract—Three saponins were isolated from stems of *Nauclea diderrichii* and their structures established. These saponins are described for the first time in this plant. Two of them are new compounds.

INTRODUCTION


Nauclea diderrichii (de Wild) Merr is a traditional medicinal plant extensively used in West and Central Africa. The decoctions from the barks and the leaves are used for the treatment of stomach pains, fever and diarrhoea. [1–3]. The isolation of alkaloids and secoiridoids from this plant has been reported [4–7], but to date knowledge about the triterpenoid constituents is scanty. From the bark only quinovic, oxoquinovic acid and the quinovic acid 3-*O*-glucoside have been isolated [7].

In this paper, we describe the isolation and structure elucidation of three saponins from *N. diderrichii*. Saponin 1 has been previously isolated from *Uncaria tomentosa* [8], but is reported now for the first time in *N. diderrichii*. Two of the compounds are new; saponin 2 is quinovic acid-3-*O*- α -L-rhamnosyl (28→1) β -D-glucopyranosyl ester and saponin 3 is quinovic acid-3-*O*[(β -D-glucopyranosyl(1→2) β -D-glucopyranoside)].

RESULTS AND DISCUSSION

The saponins were extracted from the dried and powdered barks with a mixture of water and methanol (2:8 V/V) and isolated by preparative liquid chromatography on a silica column eluted with mixtures of CHCl_3 -methanol-water. The complete structures were determined by acid and basic hydrolysis and by ^1H and ^{13}C NMR spectroscopy and FAB-mass spectrometry (see Experimental).

Acid hydrolysis of 1 yielded fucose and glucose (TLC). Alkaline hydrolysis provided a monodesmoside. The FAB-mass spectrum gave a peak at m/z 793 [$\text{M} - \text{H}$]⁻ corresponding to the molecular formula $\text{C}_{42}\text{H}_{66}\text{O}_{14}$

 $\text{Fuc} = \beta - \text{D}$ fucopyranose $\text{Rha} = \alpha - \text{L}$ rhamnopyranose $\text{Glu} = \beta - \text{D}$ glucopyranose

which was confirmed by ^{13}C NMR and DEPT spectral data. In the ^{13}C NMR spectrum (CD_3OD) [Table 1] signals at δ 177.9 and 90.6 indicated that positions C-27 or C-28 and C-3 of the genin were not free. Thus, 1 was a bidesmoside. The genin was identified as quinovic acid by comparison with its literature data [9].

The ^{13}C NMR spectrum exhibited signals ascribable to a β -D-fucopyranose linked at C-3 of the genin [9].

The presence in glycoside 1 of a glucose unit linked at the C-28 carboxyl group of the genin was determined

†Author to whom all correspondence should be addressed.

Table 1. ^{13}C NMR data of **1–3** (CD_3OD)

Aglycone carbon	DEPT				Sugar carbon	Sugar carbon		
	1	2	3	DEPT		1	2	3
1	40.0	40.0	40.0	CH_2		Fucose	Rhamnose	Glucose
2	27.1	26.7	26.5	CH_2	at C-3	at C-3	at C-3	
3	90.6	90.4	91.4	CH	1'	107.1	104.4	104.5
4	40.3	40.3	40.4	C	2'	73.1	72.5	81.1
5	57.0	56.7	56.9	CH	3'	75.3	72.5	78.5
6	19.3	19.4	19.3	CH_2	4'	72.9	74.0	71.9
7	37.8	37.9	37.7	CH_2	5'	71.6	69.9	77.7
8	40.8	40.8	40.8	C	6'	17.1	17.8	63.1
9	48.1	48.1	48.0	CH				
10	38.0	38.0	38.1	C				Glucose
11	23.9	23.9	23.9	CH_2				at C-3
12	130.9	130.9	130.3	CH	1''			105.4
13	133.8	133.4	133.5	C	2''			76.3
14	57.3	57.4	57.3	C	3''			78.4
15	26.4	26.5	26.4	CH_2	4''			71.6
16	25.8	25.8	25.8	CH_2	5''			77.9
17	49.8	49.8	49.5	C	6''			62.9
18	55.3	55.4	55.6	CH				
19	40.1	39.8	40.0	CH				
20	38.3	38.3	38.4	CH		Glucose	at C-28	
21	31.2	31.2	31.3	CH_2	1'''	95.6	95.6	
22	37.0	37.0	37.0	CH_2	2'''	73.9	74.1	
23	19.2	19.2	19.1	Me	3'''	78.7	78.6	
24	28.5	28.8	28.5	Me	4'''	71.2	71.3	
25	16.9	16.9	16.9	Me	5'''	78.6	78.3	
26	18.1	18.2	18.2	Me	6'''	62.5	62.6	
27	179.1	179.2	179.2	C				
28	177.9	178.0	182.0	C				
29	17.1	17.0	17.0	Me				
30	21.5	21.5	21.5	Me				

using HMQC and HMBC [10]. The HMQC sequence [^1H detected one-bond heteronuclear multiple quantum coherence] established the connectivity between C-18 (δ 55.3) and H-18 (δ 2.3; d , J = 10.5 Hz). In the HMBC [heteronuclear multiple quantum bond connectivity] spectrum long range connectivity (3J) was observed between H-18 and the carboxylic resonance of the genin C-28 (δ 177.9). This later resonance also presented a correlation peak with the anomeric proton of the glucose H-1. Therefore, these results indicated esterification of the carboxyl group (C-28) with a β -D-glucose moiety. Consequently, the structure of **1** was that of quinovic acid 3- O - β -D-fucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester.

Saponin **2** provided a monodesmoside on alkaline hydrolysis. Acid hydrolysis of saponin **2** yielded rhamnose and glucose (TLC). The FAB-mass spectrum of **2**, in negative ion mode, showed a quasi-molecular anion at m/z 793 and a major fragment at m/z 587 suggesting the loss of a carboxyl group and a glucose unit. The molecular formula, $\text{C}_{42}\text{H}_{66}\text{O}_{14}$, was confirmed by the NMR data. All carbon signals of the genin (Table 1) could be assigned by comparison with the ^{13}C NMR spectra of the related quinovic acid glycosides [11–13] and those of **1**. The ^{13}C NMR spectrum (CD_3OD) of **2** (Table 1) was characteristic of a bidesmoside with C-3 at δ 90.4 and C-

28 at δ 178.0. The assignment of the carbon atoms of an esterified glucose was carried out by comparison with the spectrum of **1**.

The presence in **2** of α -L-rhamnopyranose linked at the C-3 of quinovic acid was deduced by comparison with previously reported ^{13}C NMR data [10, 11]. From these the structure, quinovic acid-3- O - α -L-rhamnopyranosyl(28 \rightarrow 1)- β -D-glucopyranosyl ester, was assigned to **2**.

Alkaline hydrolysis showed that **3** was a monodesmoside. Acid hydrolysis yielded glucose only (TLC).

The FAB-mass spectrum gave a peak at m/z 809 [$\text{M} - \text{H}$] $^-$ corresponding to the molecular formula $\text{C}_{42}\text{H}_{66}\text{O}_{15}$. The genin was identified as quinovic acid by comparison of ^1H and ^{13}C NMR data with those of **1** and **2**. The signal at δ 182.0 due to C-28 of the genin indicated that the carboxyl group was free.

The downfield shift of the signal for C-3 (δ 91.4) showed that a sugar chain was located at this position. The presence of the disaccharide, β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucopyranoside linked at the C-3 of the genin was deduced by comparison with previously reported data [12]. The structure of **3** was elucidated as quinovic acid 3- O - β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucopyranoside.

Saponins **1–3** are described here for the first time in *N. diderrichii*. Saponin **1** is a known compound, previously

isolated from *Uncaria tomentosa* [8]. Saponins **2** and **3** are new compounds.

EXPERIMENTAL

General experimental procedure. FAB-MS was in a 10-10H Nermag mass spectrometer in the negative ion mode. All NMR spectra were recorded on a Bruker AMX 400 spectrometer in CD_3OD solns; TMS was used as standard in ^1H and ^{13}C measurements.

^{13}C Resonance multiplicities were established via the acquisition of DEPT spectra [14]. Standard Bruker pulse sequences were used for both direct and long-range heteronuclear correlation experiments. For other experimental details see Faure *et al.* [15].

Extraction and isolation. Plant material was collected in the vicinity of Libreville (Gabon) in August 1992. A voucher specimen is kept in the Department of Pharmacognosy, Faculty of Pharmacy, Marseille (France). Dried and powdered barks (500 g) were treated with H_2O -MeOH (2:8). After concn, the H_2O layer was freeze-dried. The residue (20 g) was solubilized in MeOH and subjected to chromatography on a column of activated charcoal (activated carbon, J.T. Baker). The methanolic extract was evapd to dryness (12 g). The residue was partitioned on polyamide (polyamide polycaprolactam Macherey Nagel SC6) with a gradient of MeOH in H_2O . After evapn the fr. H_2O -MeOH (6:4) gave a residue (1 g) which was submitted to prep. HPLC on a silica gel column (silica gel 230-400 Mesh Merck), with CHCl_3 -MeOH- H_2O (80:20:2). Saponin **1** was obtained (500 mg). The fr. H_2O -MeOH (4:6) (1.2 g) was subjected to chromatography on silica gel and eluted with a mixt. CHCl_3 -MeOH- H_2O (80:20:2) to yield **2** (150 mg) and **3** (22 mg).

TLC. TLC analyses of sugars and saponins were performed on precoated silica gel plates (Kieselgel 60F 254, 0.25 mm; Merck) using the following solvent systems: EtOAc - HCO_2H - HOAc - H_2O (100:11:11:27) [system 1]; CHCl_3 -MeOH- H_2O (80:20:2) [system 2]; CHCl_3 - Me_2CO (50:6) [system 3]; CH_2Cl_2 -MeOH- H_2O (50:25:5) [system 4]. Plates were developed with phosphoric acid naphtoresorcinol for sugars, and H_2SO_4 for glycosides and genins followed by heating at 110°.

Alkaline hydrolysis. The saponin (2 mg) in 0.2% aq. KOH (2 ml) was heated at 100° in a sealed tube for 75 min. After acidification with HCl (pH 5), the mono-desmoside was extracted *n*-BuOH; TLC analysis was performed using CHCl_3 -MeOH- H_2O (80:20:2) [system 2].

Acid hydrolysis. The saponin (2 mg) was heated with aq. 10% HCl (2 ml) in a sealed tube at 100° for 4 hr. The sapogenin was extracted with Et_2O ; then the aq. layer was neutralized with N,N-diethylamine (10% in CHCl_3) and dried. The sapogenin and sugars were identified by TLC analysis with authentic samples in systems 3 and 4, respectively.

Quinovic acid-3-O- β -D-fucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester (1). Amorphous powder; TLC (system 1) R_f 0.73; (system 2) R_f 0.32. FAB-MS m/z : 793 [$\text{M}-\text{H}$]⁻,

Table 2. ^1H NMR data of **1** in $\delta(\text{CD}_3\text{OD})^*$

Aglycone proton	1
Me-23 (3H, s)	0.82
Me-26 (3H, s)	0.87
Me-29 and 30 (6H, d)	0.91
Me-25 (3H, s)	0.97
Me-24 (3H, s)	1.02
H18 (d, $J=10.5$ Hz)	2.30
 Sugar proton*	
Fuc-Me (3H, d, $J=6$ Hz)	1.25
H'1 (1H, d, $J=7$ Hz)	4.22
H"1 (1H, d, $J=8.1$ Hz)	5.40

*Determined from HMQC measurement.

587 [$(\text{M}-\text{H})-162-\text{CO}_2$]⁻, 441 [$(\text{M}-\text{H})-162-146-\text{CO}_2$]⁻. ^{13}C NMR (CD_3OD): Table 1; ^1H NMR (CD_3OD): Table 2.

Quinovic acid-3-O- α -L-rhamnosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester (2). Amorphous powder; TLC (system 1) R_f 0.83; (system 2) R_f 0.3. FAB-MS m/z : 793 [$\text{M}-\text{H}$]⁻, 587 [$(\text{M}-\text{H})-162-\text{CO}_2$]⁻, 441 [$(\text{M}-\text{H})-162-146-\text{CO}_2$]⁻. ^{13}C NMR (CD_3OD): Table 1.

Quinovic acid-3-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside (3). Amorphous powder; TLC (system 1) R_f 0.50; (system 2) R_f 0.10. FAB-MS m/z : 809 [$\text{M}-\text{H}$]⁻, 647 [$(\text{M}-\text{H})-162$]⁻, 603 [$(\text{M}-\text{H})-162-\text{CO}_2$]⁻, 441 [$(\text{M}-\text{H})-162-162-\text{CO}_2$]⁻. ^{13}C NMR (CD_3OD): Table 1.

Acknowledgements—This work was realized within the context of a convention between the Faculty of Pharmacy of Aix-Marseille II (Laboratory of Pharmacognosy) and the Institute of Traditional Pharmacopoeia and Medicine of Libreville (Gabon).

REFERENCES

1. Walker, A. and Silans, R. (1961) *Les plantes utiles du Gabon*. Paul Lechevalier.
2. Bouquet, A. (1969) *Féticheurs et Médecines Traditionnelles du Congo* (Brazzaville). Orstom.
3. Halle, N. (1966) *Flore du Gabon*, No. 12 (1ère partie). Museum National d'Histoire Naturelle (France).
4. McLean, S. and Murray, D. G. (1970) *Can. J. Chem.* **48**, 867.
5. Murray, D. G., Szakolczi, A. and McLean, S. (1972) *Can. J. Chem.* **50**, 1486.
6. McLean, S. and Murray, D. G. (1972) *Can. J. Chem.* **50**, 1496.
7. Adeoye, A. O. and Waigh, R. D. (1983) *Phytochemistry* **22**, 975.
8. Aquino, R., De Simone, F. and Pizza, C. (1989) *J. Nat. Prod.* **52**, 679.

9. Yepez, A. M., Lock de Ugaz, O., Alvarez, C. M., De Feo, V., Aquino, R., De Simone, F. and Pizza, C. (1991) *Phytochemistry* **30**, 1635.
10. Martin, G. E. and Zektzer, A. S. (1988) *Two-dimensional NMR methods for Establishing Molecular Connectivity: a Chemist's Guide to Experiment Selection. Performance and Interpretation*, VCH, New York.
11. Aquino, R., De Simone, F., Pizza, C. and De Mello, J. (1989) *Phytochemistry* **28**, 199.
12. Matos, M. E. O., Sausa, M. P., Machado, M. I. L. and Filho, R. B. (1986) *Phytochemistry* **25**, 1419.
13. Hostettmann, K. (1980) *Helv. Chim. Acta* **63**, 606.
14. Doddrell, D. M., Pegg D. T. and Bendall, M. R. (1982) *J. Magn. Reson.* **48**, 323.
15. Faure, R., Graydoo, E. M. and Wollenweber, E. (1991) *J. Nat. Prod.* **54**, 1564.