

PERFORATINOLONE, A LIMONOID FROM *HARRISONIA PERFORATA*

TRAN VAN SUNG, NGUYEN MINH PHUONG, CHRISTINE KAMPERDICK* and GÜNTER ADAM*†

Institute of Chemistry, National Centre for Scientific Research of Vietnam, Nghia, Do, Tu Liem, Hanoi, Vietnam; *Institute of Plant Biochemistry, P.O.B. 250, D-06018 Halle/Saale, Germany

(Received in revised form 1 July 1994)

Key Word Index—*Harrisonia perforata*; Simaroubaceae; tetrnortriterpenoid; limonoid; perforatinolone; perforatin.

Abstract—Perforatinolone, a new tetrnortriterpenoid with an A,D-ring *seco*-limonoid structure, which is closely related to perforatin, was isolated from the leaves of *Harrisonia perforata*. Its structure was deduced by spectroscopic data, especially NMR measurements.

INTRODUCTION

Harrisonia perforata (Blanco) Merr. is widely distributed in the mountains of North and Middle Vietnam. It is used in folk medicine for the treatment of itching. In Indonesia and Philippines the root bark is a remedy for diarrhoea, dysentery and cholera [1]. Recently, perforatin (2), a novel A,D-*seco*-limonoid, was isolated from this plant [2]. In the family Simaroubaceae, limonoids are known in the species *Harrisonia abyssinica* and *H. perforata* [2, 3]. Very recently, they were also found in the species *H. brownii* [4]. In continuation of our studies on constituents of *H. perforata* we now report the isolation and the structural elucidation of a new limonoid, perforatinolone (1). Additionally, gallic acid, sitosterol and 3-*O*- β -D-glucopyranosyl sitosterol were isolated from this plant.

RESULTS AND DISCUSSION

Repeated chromatography on silica gel of the acetone extract of the dried leaves of *Harrisonia perforata* yielded perforatinolone (1). Compound 1 gave no molecular ion peak in the EI mass spectrum. It exhibited important peaks at *m/z* 458.1250 $C_{23}H_{22}O_{10}$ [$M - Me_2CO$]⁺, 440.1094 $C_{23}H_{20}O_9$ [$M - Me_2CO - H_2O$]⁺, 301.1103 $C_{17}H_{17}O_5$, 151.0756 $C_9H_{11}O_2$ and 58 [Me_2CO]⁺. The FAB mass spectrum afforded an [$M + H$]⁺ peak at *m/z* 517, which corresponds to the molecular formula $C_{26}H_{28}O_{11}$.

The ¹³C NMR spectrum (Table 1) showed, in correspondence with the molecular formula, 26 signals including five methyl groups, which are all quaternary (five singlets in the proton spectrum). In the ¹H NMR spectrum (Table 1) two doublets at δ 5.90 (2-H) and 7.02 (1-H) with $J_{1,2} = 9.8$ Hz (δ_C 118.8 and 150.9, respectively) belong to a *cis*-disubstituted double bond of an α,β -

unsaturated lactone [long range coupling of C-3 (δ 161.0) with 1-H and 2-H]. Two other carbonyl carbons appeared at δ 168.1 (C-16, lactone) and 202.2 (C-6, ketone). Other functional groups are a hemiketal at δ_C 99.9 (C-7) and an epoxy ring [C-15, δ_C 57.9, δ_H 4.76, long range correlation between 15-H and C-14 (δ 70.4)]. All these features showed that 1 is closely related to perforatin (2). The carbon and proton shifts of the rings A, B and C of both compounds correspond to each other, so that these rings are identical. In the ring D appeared slight differences suggesting a different structure of the side chain. Thus, instead of the signals of the furan residue in perforatin (2), the new compound 1 showed a carbonyl signal (C-21, δ_C 170.0), which belonged to an α,β -unsaturated lactone [long range coupling between C-21 and 22-H, (*t*, 7.32, δ_C 150.9)]. Another long range coupling between C-21 and the proton at δ 6.18 (δ_C 97.8) indicated that C-21 is close to a hemiacetal as part of a hydroxy butenolide ring. The complete structure of the new compound 1 was confirmed by the analysis of the CH long range correlations from the HMBC spectrum (Table 1). The striking broadness of the ¹³C signal of C-23 (half-maximum intensity line width $\Delta v_{1/2}$ *ca* 40 Hz) is explained by an equilibrium between the α - and β -hydroxy isomers of the butenolide ring with the open-chained aldehyde form as intermediate. Another strong broadening effect is observed at C-22 and smaller effects at C-20 and C-21. Other limonoids with the same hydroxy butenolide residue such as nimocinolide [5] and nimbocinolide [6] from *Azadirachta indica* and 23-hydroxytoonacilide from *Toona ciliata* [7], show for C-16, C-17, C-20, C-21 and C-22 two distinct signals belonging to the two epimeric forms.

EXPERIMENTAL

Mps are uncorr. MS: 70 eV. FAB-MS: matrix glycerine. NMR spectra: chemical shifts are given in ppm from TMS; HMBC: delay 6.5 msec. TLC: precoated silica

†Author to whom correspondence should be addressed.

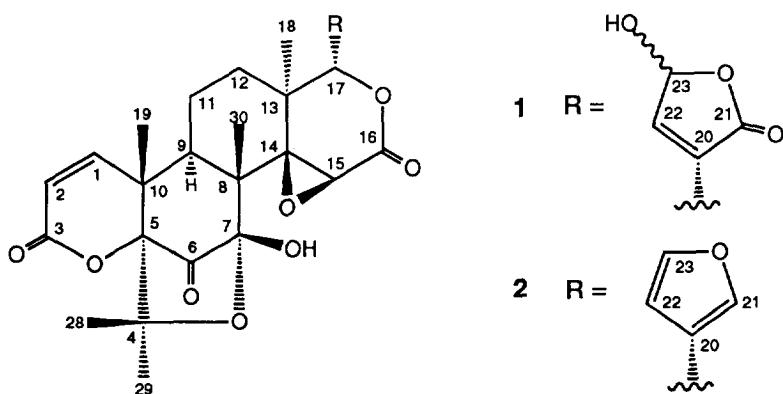


Table 1. NMR spectral data of 1 and 2

Pos.	1*		C—H-long range correlations from HMBC‡	2
	δ_c [ppm]†	δ_h [ppm]‡,§, J [Hz]		
1	150.9	7.02 <i>d</i> (9.8)	9-H, 19-H	152.5
2	118.8	5.90 <i>d</i> (9.8)	—	119.0
3	161.0	—	1-H, 2-H	161.1
4	80.2	—	28-H ₃ , 29-H ₃	80.8
5	89.2	—	1-H, 28-H ₃ , 29-H ₃	89.9
6	202.2	—	1-H	202.9
7	99.9	—	30-H ₃	101.0
8	51.6	—	9-H, 11-H ₂ , 30-H ₃	52.3
9	35.2	3.10 <i>dd</i> (13.1, 6.4)	1-H, 11-H ₂ , 12-H ^A , 30-H ₃	36.3
10	44.3	—	1-H, 2-H, 9-H, 19-H ₃	45.0
11	15.4	1.83–1.97 <i>m</i>	9-H	15.7
12	24.8	A 1.50 <i>m</i> B 1.99–2.07 <i>m</i>	11-H ₂ , 18-H ₃	26.0
13	40.6	—	11-H ₂ , 12-H ₂ , 17-H, 18-H ₃	40.6
14	70.4	—	9-H, 12-H ^A , 15-H, 17-H, 18-H ₃ , 30-H ₃	71.4
15	57.9	4.76 <i>s</i>	—	58.8
16	168.1	—	15-H	166.2
17	76.0	5.61 <i>s</i>	18-H ₃	78.5
18	18.7	1.29 <i>s</i>	12-H ^B , 17-H	19.9 ^b
19	19.5	1.22 <i>s</i>	9-H	19.8 ^b
20	133.5	—	17-H, 23-H	122.1
21	170.0	—	17-H, 22-H, 23-H	142.6
22	150.9 <i>br</i>	7.32 <i>t</i> (1.1)	17-H	111.0
23	97.8 <i>br</i> ¶	6.18 <i>s</i>	22-H	144.2
28	27.5 ^a	1.29 <i>s</i>	29-H	28.1
29	27.8 ^a	1.40 <i>s</i>	28-H	28.1
30	15.1	1.21 <i>s</i>	9-H	15.4

*In CDCl₃ with small amounts of CD₃OD.

†100 MHz.

‡125/500 MHz.

§One-bond ¹H—¹³C correlations were derived from the HMQC.||75/300 MHz, in acetone-*d*₆, from ref. [2]; assignments of C-4 and C-5 were reversed. The assignment of the methyl groups was missing in ref. [2] and was made by comparison with 1.¶Half-maximum intensity line width *ca* 40 Hz.^{a,b}Assignment interchangeable.

gel plates 60 F₂₅₄ (Merck), detection: UV-light, spray reagent: vanillin in H₂SO₄.

Plant material. The leaves of *Harrisonia perforata* were collected in the mountains of Son La province, North

Vietnam, in September 1991 and identified by Dr T. D. Dai. A voucher specimen is deposited in the Institute of Ecology and Natural Resources, National Centre for Scientific Research and Technology, Hanoi, Vietnam.

Isolation. The dried leaves (700 g) were defatted with *n*-hexane and extracted at room temp. with Me_2CO and EtOH successively and the solvents removed. The residue of the Me_2CO extract (35 g) was extracted with *n*-hexane. Repeated chromatography of the non-soluble part (17 g) over silica gel with increasing amounts of EtOAc in *n*-hexane as eluent afforded gallic acid (30 mg, sublimation at 232–236°, crystallized from H_2O), and perforatinolone (1) (17 mg). Mp 245–247°, (crystallized from MeOH). $[\alpha]_{D}^{25} - 63.4^\circ$, $[\alpha]_{D}^{34} - 82.2^\circ$ (MeOH ; c 0.51). IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 1794, 1746, 1601 (*br*), 1396, 1260, 1024. MS m/z (rel. int.): 458.1250 $\text{C}_{23}\text{H}_{22}\text{O}_{10}$ calc. 458.1287 (7.5), 440.1094 $\text{C}_{23}\text{H}_{20}\text{O}_9$, calc. 440.1108 (1.5), 301.1103 $\text{C}_{17}\text{H}_{17}\text{O}_5$ calc. 301.1130 (7.8), 275.1137 $\text{C}_{12}\text{H}_{19}\text{O}_7$, calc. 275.1142 (2.3), 163.0400 $\text{C}_9\text{H}_7\text{O}_3$ calc. 163.0405 (4.8), 151.0756 $\text{C}_9\text{H}_{11}\text{O}_2$ calc. 151.0759 (25.1). FAB-MS m/z (rel. int.): 609 $[\text{M} + \text{H} + \text{glycerine}]^+$ (7), 539 $[\text{M} + \text{H} + \text{Na}]^+$ (9), 517 $[\text{M} + \text{H}]^+$ (16), 115 (100). The residue of the EtOH extract (52 g) was chromatographed over silica gel. Elution with *n*-hexane– EtOAc (94:6) yielded sitosterol (16 mg, mp. 128–131°, crystallized from Me_2CO). Elution with CHCl_3 – MeOH (95:5) afforded 3-*O*- β -D-glucopyranosyl-sitosterol (116 mg, mp 285–290°, crystallized from EtOH – CHCl_3).

Acknowledgements—We thank Dr J. Schmidt for the mass spectra. We are indebted to the Bundesministerium für Forschung und Technologie, Bonn, and the Volkswagen-Stiftung, Hannover, for financial support.

REFERENCES

1. Perry, L. M. (1989) in *Medicinal Plants of East and Southeast Asia*, p. 389. The MIT Press, Cambridge.
2. Byrne, L. T., Tri, M. V., Phuong, N. M., Sargent, M. V., Skelton, B. W. and White, A. H. (1991) *Aust. J. Chem.* **44**, 165.
3. Champagne, D. E., Koul, O., Isman, M. B., Scudder, G. G. E. and Towers, G. H. N. (1992) *Phytochemistry* **31**, 377.
4. Mitsunaga, K., Koike, K., Ishii, K. and Ohmoto, T. (1994) *Phytochemistry* **35**, 451.
5. Siddiqui, S., Faizi, S., Mahmood, T. and Siddiqui, B. S. (1986) *J. Chem. Soc. Perkin Trans 1*, 1021.
6. Siddiqui, S., Siddiqui, B. S., Mahmood, T. and Faizi, S. (1989) *Heterocycles* **29**, 87.
7. Kraus, W. and Grimminger, W. (1980) *Nouv. J. Chem.* **4**, 651.