

FAGAROPSINE, A DEGRADED LIMONOID GLUCOSIDE FROM *FAGAROPSIS GLABRA*

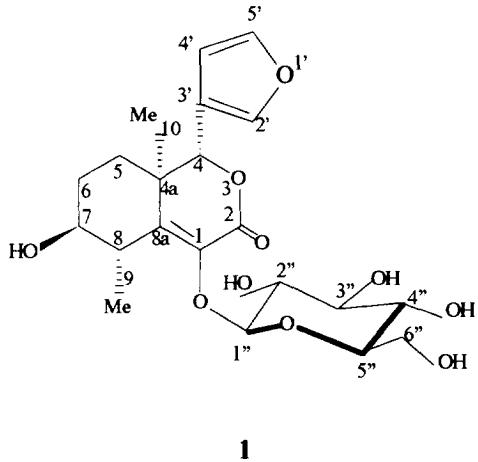
JOËL BOUSTIE,* MARIE-JOSÉ RESPAUD, CLAUDE MOULIS, CATHERINE LAVAUD,† JACQUELINE GLEYE and ISABELLE FOURASTÉ

Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Toulouse III, 35 Chemin des Maréchaux-31062 Toulouse, Cedex, France; *Laboratoire de Pharmacognosie et de Mycologie, Faculté de Pharmacie, Université de Rennes I, 2 Av. du Pr. Léon Bernard-35043 Rennes, Cedex, France; †Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Reims, 51 Rue Cognacq-Jay-51096 Reims, Cedex, France

(Received in revised form 1 July 1994)

Key Word Index—*Fagaropsis glabra*; Rutaceae; limonoid; degraded limonoid glycoside; fagaropsine.

Abstract—Phytochemical studies of the alcoholic-soluble portion of *Fagaropsis glabra* have resulted in the isolation of fagaropsine, a degraded limonoid glycoside. Its absolute structure was elucidated as 1-*O*- β -D-glucopyranosyl-4 α -(3'-furanyl)-7 β -hydroxy-4 α ,8 α -dimethyl-4a,5,6,7,8-hexahydro-3-benzopyran-2-one on the basis of spectral data.


INTRODUCTION

Previous investigations of *Fagaropsis* species related the presence in this genus of benzophenanthridine alkaloids [1, 2] and limonoids of the limonidic tetranortriterpenoid [1, 3] and degraded limonoid class [3–5]. The various biological activities of these limonoids are of agricultural and medicinal interest [6]. In the field of antifeedants research, structure–activity relationships [7] led chemists to focus on the C/D ring of these compounds [8, 9] which are naturally encountered as degraded limonoids. In addition to previous degraded limonoids found in *F. glabra* [3, 5], we report here the isolation and identification of the first glucosylated degraded limonoid glucoside (**1**) called fagaropsine, which differs in the D-ring glycosylation pattern from other reported β -D-limonoid glycosides [10].

RESULTS AND DISCUSSION

As the electronic impact mass spectrum of **1** did not afford any positive result, the molecular weight was determined by FAB mass spectrometry. The positive ion FAB mass spectrum showed the pseudomolecular ion peak $[M + H]^+$ at m/z 441 corresponding to $C_{21}H_{28}O_{10}$ and the base peak at m/z 279 indicated the presence of a hexose $[(M + H) - (180 + H_2O)]^+$. The IR spectrum of **1** exhibited a carbonyl absorption at 1712 cm^{-1} suggesting a pyrano-type aglycone with a conjugated δ -lactonic ring.

These results were corroborated by an extensive analysis of the NMR data (Tables 1 and 2). The comparison with signals observed for degraded limonoids we previously isolated [3, 5], in addition to signals corresponding to a sugar moiety, indicated a glucosylated compound of the pyroangolenside type [8, 11]. The coupling con-

1

stant $J = 6.5\text{ Hz}$ of the anomeric proton resonating at $\delta 4.78$ and the ^{13}C and ^1H NMR signals were consistent with a β -D-glucose substitution. The molecular mass indicated a further oxygen substituent. Homodecoupling experiments and a 2D COSY-45 homonuclear spectrum clarified most of the ambiguous ^1H coupling systems and confirmed the presence of a H-7 carbonylic signal located at $\delta 3.86$ and partially overlapping with H-6A of the glucose. The broad singlet shape of H-7 suggested its equatorial position which was confirmed by ROEs observed between H-7, and the two H-6 and Me-8. In addition, the absence of ROEs between H-7 and the sugar protons suggested a C-1 *O*-glucosidic substitution. Conclusive evidence was given by the HMBC spectrum where a $^3J_{\text{H}-\text{C}}$ cross-peak appeared between C-1 ($\delta 139.3$) of the aglycone and H-1 ($\delta 4.78$) of the sugar. Moreover, the

Table 1. ^1H NMR (300 MHz) data of fagaropsine in CD_3OD

H	δ J (Hz)
Aglycone	
4	5.26 s
5 _{ax}	1.85 <i>td</i> (12.5, 6.0)
5 _{eq}	1.13*
6 _{ax}	1.95 <i>tt</i> (12.5, 2.5)
6 _{eq}	1.68 <i>br dd</i> (12.5, 6.0)
7	3.84 <i>br s</i> *
8	3.53 <i>qt</i> (7.6, 1.5)
Me-4a	1.16 s
Me-8	1.20 <i>d</i> (7.6)
2'	7.59 <i>dd</i> (1.7, 0.8)
4'	6.50 <i>dd</i> (2.0, 0.8)
5'	7.53 <i>dd</i> (2.0, 1.7)
β -D-glucose	
1''	4.78 <i>d</i> (6.5)
2''	3.41*
3''	3.39*
4''	3.38*
5''	3.34*
6''A	3.84* <i>dd</i> (12.0, 2.1)
6''B	3.68 <i>dd</i> (12.0, 5.0)

*Overlapped signals.

Table 2. ^{13}C NMR (75 MHz) data of fagaropsine in CD_3OD

C	δ	Gated Dec. $J_{\text{C}-\text{H}}$ (Hz)
Aglycone		
1	139.3 s	
2	165.2 s	
4	82.6 <i>d</i>	(149.5)
4a	39.6 s	
5	28.9 <i>t</i>	(129.5)
6	23.5 <i>t</i>	(130.0)
7	71.2 <i>d</i>	(145.3)
8	37.0 <i>d</i>	(133.3)
8a	155.0 s	
9	19.7 <i>q</i>	(129.5)
10	19.5 <i>q</i>	(129.5)
2'	142.9 <i>dd</i>	(199.0, 10.5)
3'	121.2 <i>br s</i>	
4'	111.2 <i>dd</i>	(174.0, 14.0)
5'	144.5 <i>ddd</i>	(204.2, 10.0, 9.0)
β -D-glucose		
1''	105.2 <i>d</i>	(134.4)
2''	75.4 <i>d</i>	(145.7)
3''	77.8 <i>d</i>	(141.9)
4''	71.1 <i>d</i>	(145.3)
5''	78.5 <i>d</i>	(141.3)
6''	62.5 <i>t</i>	(142.2)

assignment of the ^1H and ^{13}C NMR resonances of **1** was supported by the HMBC spectrum and the sequence of the sugar protons which appeared as unresolved signals at δ 3.30–3.45 in the 1D ^1H NMR, can be determined as H-2'', 3'', 4'', 5'' (Table 1).

The high field position of the angular methyl group signal in the ^1H NMR spectrum indicated its position *cis* to the furan ring ($\simeq +0.4$ ppm in *trans*-isomers) [8] and supported the normal limonoid stereochemistry. The comparison with NMR spectra of previously identified degraded limonoids [3–5, 11] and particularly dictamdiol, an aglycone isomer [3, 12], suggested that ring C had a chair conformation. A W-like coupling (1.5 Hz) was present between H-6_{eq} (δ 1.68) and H-8 (δ 3.53) which inferred the axial (α)-position of the 8-methyl group. Thus, the structure of fagaropsine (**1**) was deduced to be 1-*O*- β -D-glucopyranosyl-(4*R*,4*aR*,7*S*,8*S*)-4-(3'-furanyl)-7-hydroxy-4*a*,8-dimethyl-4,4*a*,5,6,7,8-hexahydro-2*H*-3-benzopyran-2-one as the nomenclatural system adopted refers to its limonoid structure.

This compound is the first natural degraded limonoid isolated in a glucosylated form. It suggests the presence in this species of another biosynthetic route in limonoid metabolic glycosylation in contrast to the numerous 17-*O*- β -glucopyranosyl limonoids found in *Citrus* [10, 13] or *Tetradium* [14] species.

EXPERIMENTAL

General. Mps: uncorr. Analyt. TLC was on silica gel GF₂₅₄ and furanyl compounds were visualized with Ehrlich reagent spray followed by immersing in HCl vapour. ^1H and ^{13}C NMR spectra were obtained in

CD_3OD at 300.13 and 75.45 MHz, respectively, using TMS as int. standard. FAB-MS were recorded in glycerol and glycerol + KI matrix.

Plant material. *Fagaropsis glabra* Capuron trunk bark was collected in the Sambava country (NE of Malagasy Republic) and authenticated at source by the ORSTOM centre of Tananarive where a voucher specimen is deposited with the reference number : 59.

Extraction and isolation. Dried powdered trunk bark (900 g) of *F. glabra* was defatted with petrol and then successively extracted with CH_2Cl_2 (12 l) and EtOH 90° (15 l). The ethanolic extract was chromatographed over Amberlite XAD-4. The extract eluted with $\text{MeOH}-\text{H}_2\text{O}$ (3 : 1) contained compounds reacting with Ehrlich reagent and was flash-chromatographed over silica gel. Crude fagaropsine was eluted with $\text{EtOAc}-\text{MeOH}$ (9 : 1) and purified over a Bond Elut C₁₈ eluted with $\text{MeOH}-\text{H}_2\text{O}$ (3 : 2) to afford 12 mg of **1**.

Fagaropsine 1. Mp 165–170°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 204 (3.8), 238sh; FT-IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3430 (hydroxy), 1712, 1650 (conjugated δ -lactone), 1504, 1070, 1026, 928, 876, 764, 728 (3-substituted furan); FAB-MS m/z (rel. int.): 441 ([M + H]⁺; $\text{C}_{21}\text{H}_{28}\text{O}_{10}$) (100), 279 [(M + H) – (glucose + H_2O)⁺] (90); ^1H and ^{13}C NMR: Tables 1 and 2.

Acknowledgements—We sincerely thank Dr P. Uriac (Rennes) for his structural advice. We also thank Dr Montserrat B. (CNRS Toulouse) for recording the mass spectra.

REFERENCES

1. Waterman, P. G. and Khalid, S. A. (1981) *Biochem. Syst. Ecol.* **9**, 45.
2. Blaise, A. J., Marion, C. and Winternitz, F. (1986) *J. Nat. Prod.* **49**, 724.
3. Boustie, J., Gleye, J., Blaise, A. and Fourasté, I. (1992) *Planta Med.* **58**, 228.
4. Blaise, A. J. and Winternitz, F. (1985) *Phytochemistry* **24**, 2379.
5. Boustie, J., Moulis, C., Gleye, J., Fourasté, I., Servin, P. and Bon, M. (1990) *Phytochemistry* **29**, 1699.
6. Champagne, D. E., Koul, O., Isman, M. B., Scudder, G. G. E. and Towers, G. H. N. (1992) *Phytochemistry* **32**, 377.
7. Bentley, M. D., Rajab, M. S., Mendel, M. J. and Alford, A. R. (1990) *J. Agric. Food Chem.* **38**, 1400.
8. Mateos, A. F. and De La Fuente Blanco, J. A. (1991) *J. Org. Chem.* **56**, 7084.
9. Grappin, M. R., Vanucci, C. and Lhommet, G. (1993) *J. Chem. Soc. Perkin Trans. 1*, 995.
10. Hasegawa, S., Fong, C. H., Herman, Z. and Miyake, M. (1992) *ACS Symp. Ser.* **490**, 87.
11. Cassady, J. M. and Liu, C. S. (1972) *J. Chem. Soc. Chem. Commun.* 86.
12. Hu, C., Han, J., Zhao, J., Song, G., Li, Y. and Yin, D. (1989) *Zhiwu Xuebao* **31**, 453.
13. Hasegawa, S., Bennett, R. D., Herman, Z., Fong, C. H. and Ou, P. (1989) *Phytochemistry* **28**, 1717.
14. Ozaki, Y., Miyake, M., Maeda, H., Ifuku, Y., Bennett, R. D. and Hasegawa, S. (1991) *Phytochemistry* **30**, 2365.