

THE REVISED STRUCTURE OF TWO FLAVONOL 3- AND 4'-MONOGLUCOSIDES FROM *ERICA CINEREA**

BACHIR BENNINI, ALBERT J. CHULIA† and MOURAD KAOUADJI‡

Laboratoire de Pharmacognosie, UFR de Pharmacie, Université de Limoges, 2, rue Docteur Marcland, F-87025 Limoges Cedex, France; ‡Laboratoire de Chimie des Substances Naturelles, Université de Limoges, 123, avenue Albert Thomas, F-87060 Limoges Cedex, France

(Received 6 June 1994)

Key Word Index—*Erica cinerea*; Ericaceae; flavonol monoglycosides; gossypetin 7,8-dimethyl ether 3-glucoside; gossypetin 7,8-dimethyl ether 4'-glucoside.

Abstract—The structures of two flavonoid glucosides provisionally described previously from the fresh heather flowers of *Erica cinerea* need revision. They are now established as gossypetin 7,8-dimethyl ether 3-glucoside and gossypetin 7,8-dimethyl ether 4'-glucoside.

INTRODUCTION

As part of our investigation on flavonoids of the Ericaceae, we recently reported the occurrence of acylated flavonol diglycosides in *Calluna vulgaris* (L.) Hull [2-5] as well as flavonol diglycosides in *Erica cinerea* [6]. From the latter species, we have also isolated two new flavonol monoglycosides whose structures had been assigned only tentatively [7]. As a result, the previously proposed structures need to be revised to gossypetin 7,8-dimethyl ether 3- and 4'-glucoside instead of limocitrin 3- and 4'-glucoside. The structure correction of these is reported herein.

RESULTS AND DISCUSSION

Products **1** and **2** for which tentative structures have been published previously [7] were re-isolated from the fresh heather flowers of *Erica cinerea*. Treatment of the aqueous acetone extract first by liquid-liquid partitioning (petrol to *n*-BuOH) and then by combination of chromatographic separations on successive Sephadex LH 20 and polyamide columns afforded flavonol glucosides **1** and **2** for which final purification was achieved by reverse phase HPLC (see Experimental). The data for the new compounds are compiled in Tables 1 (¹H NMR) and 2 (¹³C NMR).

Compound **1** from *E. cinerea* was suggested in a preliminary communication to have 5,7,4'-trihydroxy-8,3'-dimethoxy-3-glucosyl substitution [7]. Analysis of the new spectroscopic data clearly shows a 5,3',4'-

trihydroxy-7,8-dimethoxy-3-glucosyl flavonol structure, i.e. gossypetin 7,8-dimethyl ether 3-glucoside. This result is supported by the absence of a significant shift on addition of sodium acetate (see Experimental) which thus indicates 7-*O*-substitution [8, 9].

Consequently, the 3'-OH group, must be free as proved by the important UV shift on addition of sodium acetate and boric acid ($\Delta\lambda_1$ 26 nm). A similar result is also obtained first in aluminium trichloride medium ($\Delta\lambda_1$ 78 nm) and then on addition of hydrochloric acid ($\Delta\lambda_1$ 44 nm). These UV data demonstrate the presence of the 3',4'-dihydroxy system in this molecule [8, 9]. Discrimination between the 3- and the 7-substitution by either a

Table 1. ¹H NMR spectra of flavonoid glucosides **1** and **2***

H	1	2
6	6.57 s	6.56 s
2'	7.63 br s	7.73 d (2)
5'	6.86 d (8.8)	7.27 d (8.5)
6'	7.67 dd (8.8-2)	7.63 dd (8.5-2)
HO-5	12.48 s	12.21 s
MeO-7	3.90 s	3.90 s
MeO-8	3.81 s	3.82 s
1''	5.46 d (7.2)	4.85 d (6.3)
2''	3.40-3.10 m	3.40-3.15 m
3''	3.40-3.10 m	3.40-3.15 m
4''	3.40-3.10 m	3.40-3.15 m
5''	3.08 m	3.40-3.15 m
6'' _A	3.40 m	3.49 dd (11.5-5.4)
6'' _B	3.57 br d (11.3)	3.73 br d (11.5)

*At 400 MHz in DMSO-*d*₆ (δ 2.49).

*Part 9 in the series 'Phytochemistry of the Ericaceae'. For Part 8, see ref. [1].

†Author to whom correspondence should be addressed.

Table 2. ^{13}C NMR spectra of flavonoid glucosides **1** and **2***

C	1	2
2	156.3	147.6
3	133.2	136.4
4	177.7	176.4
5	156.3	155.8
6	95.7	95.2
7	158.0	157.8
8	128.3	128.3
9	148.7	146.4 ^a
10	104.2	103.4
MeO-7	56.5	56.5
MeO-8	61.1	60.9
1'	121.2	125.2
2'	115.2	115.0
3'	144.9	146.8 ^a
4'	147.7	146.2
5'	116.0	116.0
6'	121.7	119.3
1''	100.9	101.4
2''	74.0	73.2
3''	76.4	75.9
4''	69.9	69.8
5''	77.5	77.2
6''	60.9	60.7

*At 75.46 MHz in $\text{DMSO}-d_6$ (δ 39.5).^aAssignments may need interchanging.

methoxy group or a glucosyl residue is based on the comparative analysis of the ^{13}C NMR of reference compounds with either ether linkages (OMe, OGlc) at C-3 and C-7 or with free hydroxyl groups at these positions (Table 3). According to the chemical shifts for C-3 (δ 133.2) and C-6 (δ 95.7), it is clearly established that the 3-position is glucosylated and the 7-position methylated. Compound **1** is therefore gossypetin 7, 8-dimethyl ether 3-glucoside, a new natural product.

As previously reported, **2** is assumed to be the 4'-glucosylated isomer of **1** lacking *ortho*-dihydroxyl substitution in the B-ring. This is shown in the UV spectrum by the changes after addition of shift reagents pointing to the

presence of free hydroxyl groups at C-3, C-5 and C-3'. The UV shifts for band I and band II in alkaline media (NaOAc: 48 nm and -5 nm; NaOH: 57 nm and 0 nm) are in agreement with a 4'-OH and a 7-OH both included in an ether linkage [8, 9]. As stated for **1**, the C-7 is bearing a methoxyl group according to both the ^1H and ^{13}C NMR chemical shifts at δ 6.56 and 95.2 for CH-6 (Tables 1-3). In contrast to **1**, the 3-hydroxyl is free as supported by the downfield shift of C-3 (δ 136.4) and the upfield shift of C-2 (δ 147.6) [10, 11]. The remaining glucosyl residue is located at C-4' as proved by both the downfield shift of the *para*-carbon C-1' (δ 125.2) and the *ortho*-proton H-5' (δ 7.27) (Tables 1-3). Consequently, **2** is gossypetin 7,8-dimethyl ether 4'-glucoside, another new natural product.

Gossypetin derivatives seem to be regular compounds in the Ericaceae [12-15]. We have previously reported in *E. cinerea* gossypetin 3-rutinoside [6], gossypetin 8-methyl ether 3-glucoside and 3-galactoside [7] as well as gossypetin 7, 8-dimethyl ether 3,3'-disulphate [1]. The two newly identified products described herein increase the list of compounds based on the gossypetin pattern in *E. cinerea*.

EXPERIMENTAL

The plant material was previously reported [7].

General procedure. TLC was carried out on micro-crystalline cellulose plastic sheets (Merck) and silica gel 60 F-254 plastic sheets (Merck). CC was achieved on Sephadex LH 20 (Pharmacia). Purification was performed by semi-prep. HPLC on a Waters model equipped with a 510 pump, a variable wavelength detector and a μ -bondapak C-18 column (10 μm , 25 \times 100 mm) (Waters). Acid hydrolysis and recording of UV spectra with the usual shift reagents were made according to standard procedures [8, 9]. Sugars were analysed by TLC on silica gel with EtOAc-H₂O-MeOH-HOAc (13:3:3:4) and visualized by spraying with *p*-anisidine phthalate. Chromatographic mobilities relative to glycosides **1** and **2** were recorded in 4 systems: system 1 (silica gel F-254, EtOAc-HCOOH-HOAc-H₂O = 20:1:1:2), system 2 [cellulose F-254, *n*-BuOH-HOAc-H₂O = 4:1:1:5 (upper phase)], system 3 (cellulose F-254, HOAc-H₂O = 3:17), system 4 [radial μ Bondapak 10 μ (8 \times 100 mm),

Table 3. ^{13}C NMR differentiation between 3-O-methyl, 3-O-glucosyl, 7-O-methyl and 7-O-glucosyl flavonols in reference to quercetin (**3**) taken from ref. [10]*

C	1	2	3	4	5	6	7
3	133.2	136.4	135.6	133.3	135.9	133.2	138.9
6	95.7	95.2	98.2	98.8	98.9	99.1	95.7
7	158.0	157.8	163.9	164.2	162.8	157.7	158.0
10	104.2	103.4	103.0	104.2	104.7	103.4	104.9
MeO-7	56.5	56.4					56.5
MeO-8	61.1	60.9				60.9	60.9

*In $\text{DMSO}-d_6$ (δ 39.5); **4**: quercetin 3-glucoside [10]; **5**: quercetin 7-glucoside [10]; **6**: gossypetin 8-methyl ether 3-glucoside [7]; **7**: 5, 2', 5'-trihydroxy 3, 7, 8-trimethoxyflavone [16].

MeOH–H₂O = 2:3, 1 ml min^{−1}]. NMR spectra were measured at 400 MHz for ¹H and 50 MHz for ¹³C.

Extraction and isolation. The general extraction procedure was previously reported [7]. The ethyl acetate soluble fr. (11 g) of the acetone extract was first treated by CC on Sephadex LH 20 with methanol. The middle fr. (8 g) containing **1** and **2** was then submitted to a polyamide column eluted with a toluene–MeOH gradient. Flavonol glucosides **1** and **2** were present together in the ahead fr. [toluene–MeOH (17:3 to 3:1)] corresponding to 118 mg. A part of this fr. was submitted to a further treatment by Sephadex LH 20 CC in MeOH. The reported compounds were concentrated in two different frs. Each flavonol glucoside was then purified by semi-prep. reverse phase HPLC with 32% aq. MeOH for glycoside **1** and 36% aq. MeOH for glycoside **2**. This procedure led to the isolation of pure **1** (14.5 mg) and **2** (5 mg).

Gossypetin 7,8-dimethyl ether 3-glucoside (1). Yellow powder; acid hydrolysis: glucose. Chromatographic mobilities: *R*_f 0.55 (system 1), *R*_f 0.66 (system 2), *R*_f 0.54 (system 3), *R*_t 11.6 (system 4). UV λ_{max} MeOH nm: 261, 270sh, 299sh, 361; (AlCl₃) 280sh, 308sh, 360sh, 407, 439; (AlCl₃ + HCl) 272, 308, 360, 405sh, 432sh; (NaOH) 270sh, 406; (NaOAc) 268, 302sh, 388sh, 285sh, 405sh; (NaOAc + H₃BO₃) 265, 302sh, 387. ¹H NMR: see Table 1. ¹³C NMR: see Table 2.

Gossypetin 7,8-dimethyl ether 4'-glucoside (2). Yellow powder; acid hydrolysis: glucose. Chromatographic mobilities: *R*_f 0.56 (system 1), *R*_f 0.64 (system 2), *R*_f 0.15 (system 3), *R*_t 15.9 (system 4). UV λ_{max} MeOH nm: 259, 271, 315sh, 335sh, 370; (AlCl₃) 268 285sh, 307sh, 360, 440; (AlCl₃ + HCl) 268, 285sh, 307sh, 360, 440; (NaOH) 271, 426; (NaOAc) 265, 418; (NaOAc + H₃BO₃) 257, 272, 335, 378. ¹H NMR: see Table 1. ¹³C NMR: see Table 1.

Acknowledgements—The authors are grateful to the French M.R.T. and to Région Limousin for the financial support and to Mrs S. Bourrut for technical assistance.

REFERENCES

- Chulia, A. J., Bennini, B., Kaouadji, M., Allais, D. P. and Delage, C. (1994) *J. Nat. Prod.* (in press).
- Allais, D. P., Simon, A., Bennini, B., Chulia, A. J., Kaouadji, M. and Delage, C. (1991) *Phytochemistry* **30**, 3101.
- Simon, A., Chulia, A. J., Kaouadji, M., Allais, D. P. and Delage, C. (1993) *Phytochemistry* **32**, 1045.
- Simon, A., Chulia, A. J., Kaouadji, M., Allais, D. P. and Delage, C. (1993) *Phytochemistry* **33**, 1237.
- Simon, A., Chulia, A. J., Kaouadji, M. and Delage, C. (1994) *Phytochemistry* **36**, 1043.
- Bennini, B., Chulia, A. J., and Kaouadji, M. (1994) *J. Nat. Prod.* **57**, 178.
- Bennini, B., Chulia, A. J., Kaouadji, M. and Thomasson, F. (1992) *Phytochemistry* **31**, 2483.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, Berlin.
- Markham, K. R. (1982) *Techniques of Flavonoid Identification*. Academic Press, London.
- Markham, K. R. and Chari, V. M. (1982) in *The Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds), Chap. 2. Chapman & Hall, London.
- Agrawal, P. K. (1989) *Studies in Organic Chemistry* **39**. *Carbon-13 of Flavonoids* (Agrawal, P. K., ed.). Elsevier, Amsterdam.
- De Loose, R. (1969) *Phytochemistry* **8**, 253.
- Harborne, J. B. (1969) *Phytochemistry* **8**, 177.
- Harborne, J. B. and Williams, C. A. (1971) *Phytochemistry* **10**, 2727.
- Harborne, J. B. and Williams, C. A. (1973) *Bot. J. Linn. Soc.* **66**, 37.
- Wollenweber, E., Marx, D., Favre-Bonvin, J., Voirin, B. and Kaouadji, M. (1988) *Phytochemistry* **27**, 2673.