

FLAVONOL GLYCOSIDES FROM *EPIMEDIUM KOREANUM*

WEN-KUI LI, PEI-GEN XIAO, GUANG-ZHONG TU,* LI-BIN MA* and RU-YI ZHANG†

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Haidian District, Dong Beiwang, Beijing 100094, China; *Beijing Institute of Microchemistry, Beijing 100091, China; †Department of Phytochemistry, School of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, China

(Received in revised form 3 May 1994)

Key Word Index—*Epimedium koreanum*; Berberidaceae; prenylated flavonol glycosides; caohuoside-B; epimedokoreanoside-I.

Abstract—A novel flavonol glycoside named caohuoside-B was isolated from the aerial parts of *Epimedium koreanum*, along with a known flavonol glycoside, epimedokoreanoside-I. Their structures were established by spectroscopic methods. The new compound was elucidated as anhydroicarinin 3-*O*- β -D-(4,6-*O*-diacetyl)glucopyranosyl-(1 → 3)- α -L-(4'-*O*-acetylrhamnopyranoside)-7-*O*- β -D-glucopyranoside.

INTRODUCTION

Epimedium koreanum Nakai (Berberidaceae) is native to Heilongjiang province in China. This species is used as a tonic, antirheumatic and aphrodisiac in traditional Chinese medicine, together with four other Chinese Pharmacopoeia recorded species: *E. brevicornum*, *E. sagittatum*, *E. pubescens* and *E. wushanense*. Some flavonoids have been isolated previously from *E. koreanum* [1-7]. In the present paper we describe the isolation and structural elucidation of a novel flavonol glycoside together with a known flavonol glycoside, epimedokoreanoside-I from the same species.

RESULTS AND DISCUSSION

Compound 1 gave m/z 965 [$M + H$]⁺, $C_{45}O_{56}H_{23}$ in FABMS and responded to the Molish and Shinoda (Mg-HCl) tests. Its IR spectrum showed a strong absorption band at 1650 cm^{-1} for a chelated carbonyl group. The UV spectrum of 1 in methanol showed absorptions at 266 (band II), 310 and 350 (band I) nm, indicating a C₃-*O*-substituted flavonol skeleton [8]. The bathochromic shift of band I with aluminium chloride-hydrochloride acid (60 nm) is a characteristic feature of a 5-hydroxy-3-*O*-substituted flavonol. A small bathochromic shift and decreasing intensity of band I (25 nm) with sodium methoxide suggested that there was no free 4'-hydroxyl group on the ring B [8]. The lack of a shift of band II with sodium acetate indicated that the C-7 hydroxyl group was absent or substituted. In the ¹H NMR spectrum (all protons were reasonably assigned by ¹H-¹H COSY, ¹H-¹H TOCSY and ¹H-¹³C COSY) of 1, a one-proton multiplet at δ 3.52 and 3.38, a one-proton triplet at 5.17 in addition to two three-proton singlets at 1.59 and 1.67 showed the presence of a γ,γ -dimethylallyl group. This

was also supported by signals at δ 21.4 assigned to C-11, 122.0 to C-12, 131.0 to C-13, and 25.4 and 17.7 to C-14 and C-15 in the ¹³C NMR spectrum, in which all carbons were assigned by APT, ¹H-¹³C COSY and ¹H-¹³C long range COSY. The B ring moiety was oxygenated only at C-4' on account of the signals of A₂B₂ at δ 7.88 and 7.16. On the basis of a three-proton singlet at δ 3.87 in the ¹H NMR spectrum and the significant fragment ion at m/z 369 in the FABMS, the aglycone moiety of 1 was identified as anhydroicarinin (8- γ,γ -dimethylallyl-3,5,7-trihydroxy-4'-methoxyflavone). The FABMS of 1 showed peaks at m/z 965, 719, 531 and 369, which were ascribed respectively to [$M + H$]⁺, [$M - \text{glucosyl(OAc)}_2 + H$]⁺, [$M - \text{glucosyl(OAc)}_2 - \text{rhamnosyl(OAc)} + H$]⁺ and [$M - \text{glucosyl(OAc)}_2 - \text{rhamnosyl(OAc)} - \text{glucosyl} + H$]⁺ ions, clearly suggesting the presence of one rhamnose and two glucose moieties together with three acetyl groups in the molecule. The presence of acetyl groups was supported by three three-proton singlets at δ 1.95, 1.97 and 2.03 in ¹H NMR spectrum and δ 169.6, 20.4 (OAc), 169.7, 20.6 (OAc) and 170.1, 20.8 (OAc) in the ¹³C NMR spectrum. The molar ratio, 1:2:1 of aglycone to glucose to rhamnose was confirmed by TLC-densitometry after acid hydrolysis [9].

Three anomeric protons in the ¹H NMR spectrum of 1 were observed and assigned to those of glucose δ 4.38 (*d*, *J* = 7.9 Hz), glucose 4.99 (*d*, *J* = 6.8 Hz) and rhamnose 5.28 (*d*, *J* = 1.5 Hz). The glycosyl anomeric proton (δ 4.99) showed a cross-peak with C-7 (δ 161.6) of the aglycone in the ¹H-¹³C long range COSY, indicating that a glucose was attached by a β -glycosidic linkage to the phenoxyl group at C-7. On the other hand, the anomeric proton of the rhamnose moiety (δ 5.28) caused a cross-peak with a carbon assigned to C-3 (δ 134.0), which also indicated that the rhamnose was attached to the phenoxyl group at C-3

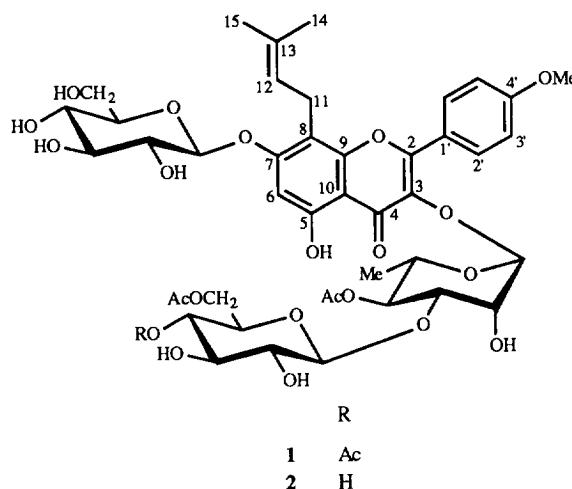


Fig. 1. The structure of **1** and **2**.

through a glycosidic linkage. The position of the terminal glucose was determined by a carbon signal (δ 77.2) assigned to C-3 of the rhamnose, which shifted downfield by *ca* 6 ppm on comparison with the corresponding signal of C-3 (δ 70.9) of icariin [10]. The glycosylation shift is usually observed to be 7–10 ppm [11]. In this case, the effect of the acetyl group attached to C-4 diminished the shift value. This was also supported by the appearance of a cross-peak of the proton at C-4 (δ 4.84) of the rhamnose with a carbonyl carbon of the acetyl group (δ 169.6) and a cross-peak of the proton at C-1 of the terminal glucose (δ 4.38) with C-3 of the rhamnose (δ 77.2). This finding showed the interlinkage of the biose to be β -D-glucopyranosyl(1→3)- α -L-rhamnopyranoside, and that an acetyl group was esterified at C-4 of the rhamnose. The position of the acetyl groups on terminal glucose was determined by the carbon signals (δ 71.1, 62.6) assignable, respectively, to C-4 and C-6 of the terminal glucose, which shifted downfield by *ca* 2 and 2 ppm on comparison with the corresponding signals of C-4 (δ 69.1) and C-6 (60.3) of epimedin A [3], suggesting that the acetyl groups were attached, respectively, to C-4 and C-6 of the terminal glucose. These were supported by other evidence: a proton at C-4 of the terminal glucose (δ 4.58) had a cross-peak with carbonyl carbon (δ 169.5) of an acetyl group, two protons at C-6 of the terminal glucose (δ 4.18, 3.95) had cross-peaks with carbonyl carbon (δ 170.1) of another acetyl group in ^1H - ^{13}C long range COSY. From the spectral data described above, the structure of **1** was concluded to be anhydroicarinin-3-O- β -D-(4,6-O-diacyl) glucopyranosyl(1→3)- α -L-(4'-O-acetyl)rhamnopyranoside-7-O- β -D-glucopyranoside and named caohuosit-B. Compound **2** was identified as the known compound epimedokoreanoside-I [5] by standard procedures (mp, IR, UV, ^1H NMR and ^{13}C NMR).

EXPERIMENTAL

Mps: uncorr. ^1H and ^{13}C NMR spectra were measured in $\text{DMSO}-d_6$ and chemical shifts given in values (ppm)

with TMS as the int. standard. TLC was carried out on G-PF 254 (Merk) in $\text{EtOAc}-\text{Me}_2\text{CO}-\text{H}_2\text{O}$ (25:5:1).

Plant material. The aerial parts of *Epimedium koreanum* were collected in September 1992 at Harbin, Heilongjiang province in China and a voucher specimen has been deposited in the Herbarium of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, China.

Extraction and isolation. The dried and powdered aerial parts of *E. koreanum* (25 kg) were completely extracted with 95% EtOH. The concd extract was partitioned successively with CH_2Cl_2 , EtOAc and *n*-BuOH. The EtOAc fr. (191 g) was chromatographed on a polyamide column eluted with $\text{CHCl}_3-\text{MeOH}$ (gradient) to afford 15 frs. Fr. 6 was rechromatographed over a silica gel column with $\text{CHCl}_3-\text{MeOH}$ (100:1, 50:1, 25:1, 10:1 and 5:1) as eluent, yielding subfrs A–D. Subfr. B was subjected to a Sephadex LH-20 column with MeOH as eluent to yield **1** (25 mg). Compound **2** (105 mg) was obtained from fr. 7 by silica gel and polyamide chromatography and final purification with Sephadex LH-20 chromatography.

Compound 1 (caohuosit-B). Yellow amorphous powder (MeOH, 25 mg), mp 125–127°, $\text{C}_{45}\text{H}_{56}\text{O}_{23}$, $[\alpha]_D^{20}$ −98.2 (MeOH; *c* 0.02). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3420, 2980, 2920, 1650, 1600, 1510, 1450, 840. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 220 (sh), 266, 310, 350, + NaOMe: 278, 375, + AlCl_3 : 232 (sh), 278, 302, 340, 410, + AlCl_3-HCl : 232 (sh), 278, 336, 410, + NaOAc: 268, 312, 350, + NaOAc- H_3BO_3 : 268, 312, 350 (sh). FABMS (*m/z*): 965 [$\text{M}+\text{H}]^+$, 719 [$\text{M}-246+\text{H}]^+$, 531 [$\text{M}-246-188+\text{H}]^+$, 369 [$\text{M}-246-188-162+\text{H}]^+$. ^1H NMR (500 MHz, $\text{DMSO}-d_6+\text{D}_2\text{O}$): δ [aglycone moiety] 7.88 (*d*, J = 8.1 Hz, H-2', 6'), 7.16 (*d*, J = 8.1 Hz, H-3', 5'), 6.63 (*s*, H-6), 3.38 and 3.52 (each *m*, H₂-11), 5.17 (*t*, J = 7.5 Hz, H-12), 1.67 and 1.59 (each *s*, Me-14, 15), 3.87 (*s*, OMe-4'), [sugar moieties] (rha) 5.28 (*d*, J = 1.5 Hz, H-1), 4.16 (*d, d*, J = 1.5, 3.5 Hz, H-2), 3.62 (*d, d*, J = 3.5, 10.1 Hz, H-3), 4.84 (*d, d*, J = 10.1, 10.1 Hz, H-4), 3.19 (*d, q*, J = 10.1, 6.1 Hz, H-5), 0.71 (*d*, J = 6.1 Hz, H-6), 1.95 (*s*, OAc-4), (7-O-glc) 4.99 (*d*, J = 6.8 Hz, H-1), 3.26 (*d, d*, J = 6.8, 9.3 Hz, H-2), 3.29 (*d, d*, J = 9.3, 9.3 Hz, H-3), 3.17 (*d, d*, J = 9.3, 9.3 Hz, H-4), 3.37 (*d, d, d*, J = 9.3, 6.5, 2.5 Hz, H-5), 3.70 (*d, d*, J = 11.3, 6.5 Hz, H-6), 3.47 (*d, d*, J = 11.3, 2.5 Hz, H-6), (terminal glc) 4.38 (*d*, J = 7.9 Hz, H-1), 3.08 (*d, d*, J = 7.9, 9.6 Hz, H-2), 3.42 (*d, d*, J = 9.6, 9.6 Hz, H-3), 4.58 (*d, d*, J = 9.6, 9.6 Hz, H-4), 3.71 (*d, d, d*, J = 9.6, 5.7, 2.5 Hz, H-5), 4.18 (*d, d*, J = 10.1, 5.7 Hz, H-6), 3.95 (*d, d*, J = 10.1, 2.5 Hz, H-6), 1.97 (*s*, OAc-4), 2.03 (*s*, OAc-6). ^{13}C NMR: Table 1.

Compound 2 (epimedokoreanoside-I). Mp 155–157°, obtained as a yellow amorphous powder. $\text{C}_{43}\text{H}_{54}\text{O}_{22}$. IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400, 2980, 2920, 1650, 1600, 1510, 1440, 840. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 220 (sh), 268, 314, 350, + NaOMe: 278, 375, + AlCl_3 : 230 (sh), 270, 306, 334, 410, + AlCl_3-HCl : 230 (sh), 270, 306, 340, 410, + NaOAc: 268, 314, 350, + NaOAc- H_3BO_3 : 268, 314, 350. FABMS (*m/z*): 961 [$\text{M}+\text{K}]^+$, 945 [$\text{M}+\text{Na}]^+$, 923 [$\text{M}+\text{H}]^+$, 719 [$\text{M}-\text{glucosyl(OAc)}+\text{H}]^+$, 531 [$\text{M}-\text{glucosyl(OAc)}-\text{rhamnosyl(OAc)}+\text{H}]^+$, 369 [$\text{M}-\text{glucosyl(OAc)}-\text{rhamnosyl(OAc)}-\text{glucosyl}+\text{H}]^+$. ^1H NMR (500 MHz, $\text{DMSO}-d_6$): δ 7.90 (*d*, J = 9.0 Hz, H-2', 6'), 7.16 (*d*, J = 9.0 Hz, H-3',

Table 1. ^{13}C NMR spectral data of **1** and **2** (DMSO- d_6)*

1			2		
Aglycone	Sugar		Aglycone	Sugar	
2	157.4	3-O-inner Rha	157.2	3-O-inner Rha	
3	134.0	1	101.3	133.8	100.8
4	178.1	2	69.5	178.1	69.3
5	160.6	3	77.2	160.5	77.1
6	98.3	4	71.4	98.2	71.1
7	161.6	5	68.3	161.6	68.3
8	108.5	6	17.0	108.4	16.9
9	153.0	4-COMe	169.6	153.0	169.6
10	110.8	4-COMe	20.4	110.5	4-COMe
11	21.4	terminal Glc		21.4	terminal Glc
12	122.0	1	105.6	122.0	104.8
13	131.0	2	73.7	131.4	72.9
14	25.4	3	70.0	25.3	76.6
15	17.8	4	71.1	17.7	69.7
1'	122.0	5	71.0	122.0	73.6
2'	130.4	6	62.6	130.6	63.9
3'	114.1	4-COMe	169.7	114.2	6-COMe
4'	159.0	4-COMe	20.6	159.0	6-COMe
5'	114.1	6-COMe	170.1	114.2	7-O-Glc
6'	130.4	6-COMe	20.8	130.6	100.6
OMe	55.5	7-O-Glc		55.5	
	1		100.6	2	73.3
	2		73.3	3	76.5
	3		76.6	4	70.2
	4		69.7	5	76.6
	5		76.7	6	60.6
	6		60.7		

*Chemical shifts are given in ppm values; the ^{13}C NMR spectrum of **1** was obtained in (DMSO- d_6 + D_2O).

5'), 6.64 (s, H-6), 5.16 (*t*, *J* = 7.5 Hz, H-12), 1.67 and 1.59 (each s, Me-14, 15), 3.87 (s, OMe-4'), 5.29 (*d*, *J* = 1.5 Hz, H-1, rha), 0.71 (*d*, *J* = 6.5 Hz, H-6, rha), 1.93 (s, OAc-4, rha), 4.99 (*d*, *J* = 5.9 Hz, H-1,7-O-glc), 4.25 (*d*, *J* = 7.8 Hz, H-1, terminal glc), 1.97 (s, OAc-6, terminal glc). ^{13}C NMR: Table 1.

Acid hydrolysis of glycosides [9]. Glycoside solns were applied 1 cm from the bottom edge of an HPTLC silica gel plate (10×10 cm) and hydrolysed with HCl vapour for 40 min at 50–60° and the plate developed in 9 ml of the lower layer of a mixt. of CHCl_3 – MeOH – H_2O (15:6:2) to which 1 ml of HOAc was added. The identification of sugars was carried out by comparison with authentic sugar markers on the same plate. To determine the molar ratio of the sugars and aglycone of **1**, a 10% soln of **1** was heated under reflux for 10 hr. The soln was taken down to dryness and the residue prep'd for quantitative determination by TLC-densitometry.

Acknowledgements—The authors are grateful to Professor Wen-yan Lian for identification of plant material. We thank the Analytical Laboratory of IMPLAD; the NMR service of Beijing Institute of Microchemistry; and the MS service of Beijing Medical University for provision of spectroscopic facilities.

REFERENCES

1. Xu, S. X., Wang, Z. X., Wu, L. J., Wang, N. L. and Chen, Y. L. (1982) *Chinese Pharm. Bulletin* **13**, 9.
2. Tokuoka, Y., Daigo, K. and Takemoto, T. (1975) *Yakugaku Zasshi* **95**, 825.
3. Oshima, Y., Okamoto, M. and Hikino, H. (1987) *Heterocycles* **26**, 935.
4. Ito, Y., Hirayama, F., Suto, K., Sagara, K. and Yishida, T. (1988) *Phytochemistry* **27**, 911.
5. Pachaly, P., Schöncherr-weißbarth, C. and Sin, K. S. (1990) *Planta Med.* **56**, 277.
6. Kang, S. S., Kang, Y. J. and Lee, M. W. (1991) *J. Nat. Prods.* **54**, 277.
7. Mizuno, M., Hanioka, S., Suzuki, S., Iinuma, M., Tanaka, T., Liu, X. S. and Min, Z. D. (1987) *Phytochemistry* **26**, 861.
8. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) in *The Systematic Identification of Flavonoids*, p. 235. Springer, Berlin.
9. Zhao, P. P., Li, B. M. and He, L. Y. (1987) *Acta Pharm. Sin.* **22**, 70.
10. Li, Y. S. and Liu, Y. R. (1992) *Traditional Chinese Herb and Drugs* **23**, 8.
11. Harborne, J. B. and Mabry, T. J. (1983) in *The Flavonoids: Advances in Research*, p. 37. Chapman and Hall, New York.