

AZEDARACHIN C, A LIMONOID ANTIFEEDANT FROM *MELIA AZEDARACH*

RUO CHUN HUANG,* HIROAKI OKAMURA, TETSUO IWAGAWA, KENICHIRO TADERA* and MUNEHIRO NAKATANI†

Department of Chemistry, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan; *Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890. Japan

(Received 13 May 1994)

Key Word Index—*Melia azedarach*; Meliaceae; insect antifeedant; azedarachin; limonoid.

Abstract—A new limonoid, azedarachin C, was isolated as an insect antifeedant from the root bark of Chinese *Melia azedarach* and the structure was elucidated by spectroscopic means.

INTRODUCTION

Recently, we isolated a new meliacepinin [1], six trichilins [2] and three azedarachins [3], azedarachin A, 12-O-acetylazedarachin A and 12-O-acetylazedarachin B, as insect antifeedants from the root bark of the Chinese Meliaceae plant *Melia azedarach* L. In the continuing study of limonoid antifeedants from the plant, we have isolated a new limonoid, named azedarachin C, as an antifeedant against the larvae of the voracious pest insect *Spodoptera exigua* Hübner (Boisduval). Azedarachin C has no oxygen-function at C-12 and thus is different from known azedarachins.

RESULTS AND DISCUSSION

The antifeeding limonoids from *M. azedarach* were very sensitive to a trace of acid and gradually decomposed on a silica column. Therefore, flash chromatography and HPLC separation techniques were used for the isolation. Azedarachin C (**1**) was isolated by very careful

combined use of normal- and reversed phase HPLC of an active fraction from the flash chromatography of a powder, insoluble in 50% hexane-ether, from the ether extract of the root bark.

Azedarachin C (**1**) was assigned the molecular formula $C_{32}H_{42}O_{10}$ from the $[M + 1]^+$ ion at m/z 587 in the SIMS spectrum and from the 1H NMR data (Table 1). Taking into account the circular dichroism (CD) data ($\Delta\epsilon_{301} = 19$; $n - \pi^*$ of 11-keto group) and IR data (3458 cm^{-1} ; OH, 1736 cm^{-1} ; ester and 1703 cm^{-1} ; CO), these facts allowed us to predict **1** to be 12-dehydroxyazedarachin B. The 1H NMR spectrum was very similar to that of 12-O-acetylazedarachin B (**2**), including the signals due to a 2-methyl-propanoyl group, except for the lack of one acetoxy group and some changes of chemical shifts (Table 1). The 12-methylene protons were observed as a singlet at $\delta 2.47$ similar to those (both $\delta 2.46s$) of trichilin D [4] and meliatoxin A₂ [5].

Compound **1** has a free 1α -hydroxyl and a 3α -acetoxy group and this substitution pattern around the A-ring is the same as in **2** and azedarachin A (**3**), as was shown by the fact that the H-9 signal in **1** was at $\delta 4.56$ due to the

*Author to whom correspondence should be addressed.

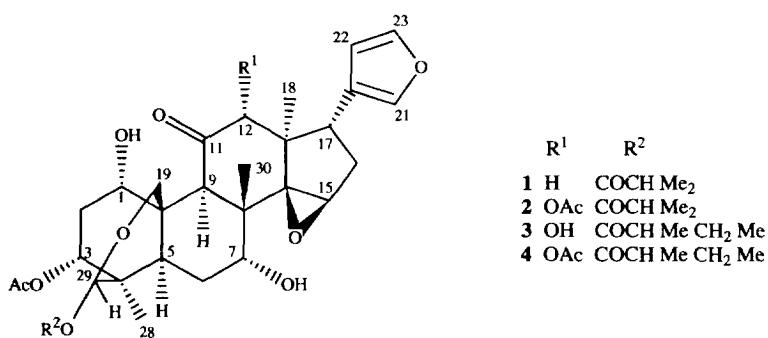


Table 1. ^1H NMR data for azedarachins **1** and **2** (400 MHz, CDCl_3)

H	1	2	H	1	2
1	4.11 <i>m</i>	4.27 <i>m</i>	18	1.24 <i>s</i>	1.32 <i>s</i>
2 α	1.88 <i>d</i> (<i>br</i>) (16.4)	1.89 <i>d</i> (<i>br</i>) (16.4)	19a	4.38 <i>d</i> (13.0)	4.28 <i>d</i> (12.4)
2 β	2.87 <i>dt</i> (16.6, 4.4)	2.82 <i>dt</i> (16.4, 4.6)	19b	4.41 <i>d</i> (13.0)	4.34 <i>d</i> (12.4)
3	5.34 <i>d</i> (<i>br</i>) (3.9)	5.31 <i>d</i> (<i>br</i>) (4.4)	21	7.14 <i>m</i>	7.13 <i>d</i> (<i>br</i>) (1.4)
5	2.63 <i>dd</i> (13.8, 4.0)	2.72 <i>dd</i> (13.9, 4.0)	22	6.14 <i>m</i>	6.15 <i>m</i>
6 α	1.73 <i>dt</i> (14.3, 3.7)	1.73 <i>dt</i> (14.3, 3.7)	23	7.37 <i>t</i> (1.4)	7.33 <i>t</i> (1.6)
6 β	2.07 <i>dt</i> (2.2, 14.3)	2.04 <i>dt</i> (2.1, 14.3)	28	0.83 <i>s</i>	0.83 <i>s</i>
7	3.69 <i>m</i>	3.67 <i>m</i>	29	5.81 <i>s</i>	5.80 <i>s</i>
9	4.56 <i>s</i>	4.61 <i>s</i>	30	1.10 <i>s</i>	1.17 <i>s</i>
12	2.47 <i>s</i>	5.28 <i>s</i>	2'	2.62 <i>hept</i> (6.9)	2.61 <i>hept</i> (7.0)
15	3.70 <i>s</i>	3.75 <i>s</i>	3'	1.19 <i>d</i> (7.0)	1.19 <i>d</i> (7.0)
16 α	2.27 <i>ddd</i> (13.5, 6.2, 0.9)	2.25 <i>dd</i> (13.2, 6.3)		1.20 <i>d</i> (7.0)	1.20 <i>d</i> (7.0)
16 β	1.88 <i>dd</i> (13.5, 11.0)	1.92 <i>dd</i> (13.2, 11.1)	Ac	2.11 <i>s</i>	1.98 <i>s</i>
17	2.76 <i>dd</i> (11.0, 0.69)	2.98 <i>dd</i> (11.1, 6.1)			2.11 <i>s</i>

effect of the 1-hydroxyl in a 1,3-diaxial relationship. On the other hand, the *S*(*exo*)-configuration at C-29 was assigned from the chemical shift of the 3 β -H, which was observed at the low position of δ 5.34, as found in sendanin [6], and all of the trichilins and azedarachins, when compared to endo-compounds (29*R*-benzoate: δ 5.07 [7]). This assignment was also supported by an NOE observation between the 28-Me and H-29 signals. Finally, the stereochemistry of **1** (Fig. 1) was elucidated by NOE enhancements between the 18-Me and the H-9, H-21 and H-22 signals, the 30-Me and the H-7 β and H_a-19 signals, and long range couplings between the H-9 and 30-Me and the H-5 and H_a-19 signals, respectively.

Azedarachin C (**1**) at 400 ppm (corresponding to a concentration of *ca* 8 $\mu\text{g cm}^{-2}$) inhibited the feeding of the larvae of the Japanese pest insect *Spodoptera exigua* Hübner (Boisduval) when arranged by the conventional leaf disk method [8].

EXPERIMENTAL

^1H NMR: 400 MHz in CDCl_3 . $[\alpha]_D$, UV and CD: in MeOH. IR: in CHCl_3 . Bioassay of the antifeedant was done by the leaf disk method with the larvae of *S. exigua*.

Plant material. The root bark was collected in October 1992 at Guangzhou, China.

Extraction and isolation. The dried root bark (375 g) was extracted with Et_2O to yield 3.1 g of material which was dissolved in 13 ml Et_2O and then added to the same vol. of hexane to give 975 mg of a ppt. It was flash chromatographed on silica gel with 1–10% MeOH– CH_2Cl_2 , and the limonoid frs eluted with 1–1.5% MeOH– CH_2Cl_2 were rechromatographed on a flash column with 20% hexane– Et_2O . Each limonoid fr. was sepd through HPLC using normal, μ -Porasil and reversed-phase columns, μ -Bondapac C₁₈, with 0.5–2% MeOH– CH_2Cl_2 and 25–40% H_2O –MeOH as the solvents, respectively, to give **1**(0.5 mg) and 3 known limonoids **2** (2.5 mg), **3** (1 mg) and **4** (0.7 mg).

Azedarachin C (1**).** $\text{C}_{32}\text{H}_{42}\text{O}_{10}$; SIMS *m/z*: 587 [M + 1]⁺; $[\alpha]_D^{22}$ – 41° (c 0.08); UV $\lambda_{\text{max}}^{\text{nm}}$ (ϵ): 207 (4200); CD nm: $\Delta\epsilon_{225}$ + 2.2, $\Delta\epsilon_{243}$ – 3.3 and $\Delta\epsilon_{301}$ – 19; IR ν_{max} : cm^{-1} : 3458, 1736 and 1703.

12-O-Acetylazedarachin B (2**).** $\text{C}_{34}\text{H}_{44}\text{O}_{12}$; SIMS *m/z* 645[M + 1]⁺; $[\alpha]_D^{22}$ + 55° (c 0.13); UV $\lambda_{\text{max}}^{\text{nm}}$ (ϵ): 213(3000); CD nm: $\Delta\epsilon_{217}$ + 25 and $\Delta\epsilon_{308}$ – 10. **Azedarachin A (**3**)**. $\text{C}_{33}\text{H}_{44}\text{O}_{11}$; SIMS *m/z* 617 [M + 1]⁺; $[\alpha]_D^{22}$ – 10° (c 0.05); UV $\lambda_{\text{max}}^{\text{nm}}$ (ϵ): 213(4300); CD nm: $\Delta\epsilon_{223}$ + 6 and $\Delta\epsilon_{310}$ – 26. **12-O-Acetylazedarachin A (**4**)**. $\text{C}_{35}\text{H}_{46}\text{O}_{12}$; SIMS *m/z* 659[M + 1]⁺; $[\alpha]_D^{22}$ + 7.5° (c 0.08); UV $\lambda_{\text{max}}^{\text{nm}}$ (ϵ): 212 (6300); CD nm: $\Delta\epsilon_{218}$ + 17 and $\Delta\epsilon_{309}$ – 14.

Acknowledgements—We would like to thank Dr H. Naoki (Suntory Institute for Bioorganic Research) for SIMS measurements. We are also grateful to Mr H. Suenaga (Kagoshima Prefectural Agricultural Experimental Station) for the supply of the insects.

REFERENCES

1. Nakatani, M., Huang, R. C., Okamura, H. and Iwagawa, T. (1993) *Chem. Letters* 2125.
2. Nakatani, M., Huang, R. C., Okamura, H., Naoki, H. and Iwagawa, T. (1994) *Phytochemistry* **36**, 39.
3. Huang, R. C., Okamura, H., Iwagawa, T. and Nakatani, M. (1994) *Bull. Chem. Soc. Jpn.* **67**, 2468.
4. Nakatani, M., James, J. C. and Nakanishi, K. (1981) *J. Am. Chem. Soc.* **103**, 1228.
5. Oelrichs, P. B., Hill, M. W., Vallely, P. J., MacLeod, J. K. and Molinski, T. F. (1983) *Phytochemistry* **22**, 531.
6. Ochi, M., Kotsuki, H., Hirotsu, K. and Tokoroyama, T. (1976) *Tetrahedron Letters* **17**, 2877.
7. Ochi, M., Kotsuki, H., Ishida, H. and Tokoroyama, T. (1978) *Chem. Letters* 99.
8. Wada, K. and Munakata, K. (1968) *Agric. Food Chem.* **17**, 471.